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Abstract: Background: Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-
pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and
for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial
Intelligence in healthcare in growing. This review aimed to provide an overview of the current
state of Al in EUS from imaging to pathological diagnosis and training. Methods: Al algorithms
can assist in lesion detection and characterization in EUS by analyzing EUS images and identifying
suspicious areas that may require further clinical evaluation or biopsy sampling. Deep learning
techniques, such as convolutional neural networks (CNNs), have shown great potential for tumor
identification and subepithelial lesion (SEL) evaluation by extracting important features from EUS
images and using them to classify or segment the images. Results: Al models with new features can
increase the accuracy of diagnoses, provide faster diagnoses, identify subtle differences in disease
presentation that may be missed by human eyes, and provide more information and insights into
disease pathology. Conclusions: The integration of Al in EUS images and biopsies has the potential
to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in repeated
procedures in case of non-diagnostic biopsies.

Keywords: endoscopic ultrasound; artificial intelligence; biopsy; pathological diagnosis

1. Introduction

Endoscopic ultrasound (EUS) has revolutionized the field of gastrointestinal (GI)
endoscopy by providing high-resolution imaging of the gastrointestinal tract and adjacent
anatomical structures. EUS has been widely used for the diagnosis of bilio-pancreatic
diseases, staging of GI tract tumors, evaluation of subepithelial lesions, and sampling of
lymph nodes and solid masses [1]. EUS-guided fine-needle aspiration (FNA) and biopsy
(FNB) have enabled the diagnosis of various malignancies and have greatly improved
patient outcomes [2].
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However, the accuracy of EUS-guided FNA and FNB largely depends on the skills and
experience of the endoscopist and of the pathologist. In recent years, artificial intelligence
(AI) has emerged as a promising tool for improving the accuracy and efficiency of EUS-
guided tissue sampling and pathological diagnosis [3].

Al refers to the use of computer algorithms to analyze large amounts of data and
identify patterns or make predictions. In healthcare, Al has been applied to various tasks,
including image recognition, natural language processing, and clinical decision-making [4].
Al algorithms can analyze EUS images and assist with the interpretation of findings, as
well as predict the pathological diagnosis of tissue samples obtained by EUS-guided FNA
and FNB.

The objective of this review article is to provide an overview of the current state of
Al in EUS imaging and pathology on the final pathological diagnosis. We will discuss
the various Al techniques used for EUS image analysis and pathological diagnosis, their
strengths and limitations, and their potential impact on clinical practice. A section is
dedicated to the application of Al in training program to improve the knowledge of EUS
and the recognition of anatomical structures.

2. AI Algorithms and Image Acquisition

The use of artificial intelligence in EUS image interpretation has shown great potential
for improving the accuracy and efficiency of the diagnostic process. Al algorithms can be di-
vided into two main categories: deep learning techniques and machine learning techniques.

Deep learning techniques involve the use of neural networks to learn and recognize
patterns in EUS images (Figure 1). These networks are composed of multiple layers of
interconnected nodes that allow for the processing of large amounts of data. Convolutional
neural networks (CNNs) are a commonly used deep learning technique for image analysis
in healthcare [5]. They are designed to identify and extract important features from EUS
images and use them to classify or segment the images.

FEATURE NEURAL NETWORK
EXTRACTION CLASSIFICATION

IMAGE PROCESSING wl

SURFACE FRACTAL DIMENSION
ESTIMATE

Figure 1. By combining recognized EUS-image features for pancreatic lesion diagnosis with mea-
surements of non-Euclidean anatomical features, significant progress can be made in distinguishing
diverse sub-types that have varying outcomes, A, B, and C. The utilization of fractal geometry, specifi-
cally the surface fractal dimension, as a measure of the space-filling property of an irregularly shaped
structure, can be effectively merged as a feature within an Al-based neuronal network classification
system, to achieve a more precise anatomical classifier system.

Machine learning techniques, on the other hand, involve the use of algorithms that
can learn from data and make predictions based on that learning. These techniques can



J. Clin. Med. 2023, 12, 3757

30f13

be supervised, unsupervised, or semi-supervised. Supervised learning involves the use
of labelled data to train an algorithm to recognize patterns in EUS images. Unsupervised
learning involves the use of unlabeled data to discover patterns and relationships in the
data. Semi-supervised learning combines both supervised and unsupervised learning [6].
In addition to image interpretation, Al can also be used to enhance the acquisition of EUS
images. This includes automatic segmentation and image quality improvement.

Automatic segmentation involves the use of Al algorithms to identify and separate
different structures in EUS images [7]. This can help to improve the accuracy and efficiency
of EUS-guided procedures by providing better visualization of the target area. For example,
Al algorithms can be used to automatically segment the pancreas or the lymph nodes in
EUS images, allowing for more precise targeting during EUS-guided biopsy [8].

Image quality improvement involves the use of Al algorithms to enhance the clarity
and resolution of EUS images. This can help to improve the accuracy of image interpretation
and diagnosis. For example, Al algorithms can be used to reduce noise, improve contrast,
and sharpen edges in EUS images. Al-enhanced image quality can also help to reduce
the variability in image quality between different endoscopists and ultrasound machines,
improving the consistency of diagnosis and treatment [9].

3. Lesion Detection and Characterization
3.1. Tumor Identification

Tumor identification is a crucial step in the diagnosis and staging of GI neoplasia, espe-
cially in case of pancreatic cancers that may be isoechoic with the surrounding parenchyma
or may be hidden by signs of chronic pancreatitis. Al algorithms can assist with tumor
identification by analyzing EUS images and identifying suspicious areas that may require
biopsy sampling and microscopy observation or further clinical evaluation [10]. Deep
learning techniques, such as CNNs, have shown great potential for tumor identification
by extracting important features from EUS images and using them to classify or segment
the images [11]. Supervised machine learning techniques can also be used to train Al
algorithms to recognize specific tumor features, such as shape, size, and vascularity [12,13].
A recent meta-analysis of 10 studies, which involved 1871 patients, evaluated the diagnostic
accuracy of Al applied to EUS in detecting pancreatic cancer (Table 1). The results showed
that Al had a high diagnostic sensitivity of 0.92 and specificity of 0.9, with an area under
the summary receiver operating characteristics (SROC) curve of 0.95 and a diagnostic odds
ratio of 128.9 [14]. These findings suggest that Al-assisted EUS could become an essential
tool for the computer-aided diagnosis of pancreatic cancer. However, a relatively small
number of studies and enrolled patients make generalizing difficult, and further research is
needed to validate these results on a larger scale.

It is known that there are several advantages of incorporating new features in classify-
ing pathological changes using AL. Among these are the following: (a) increased accuracy:
the addition of new features to Al models can increase their accuracy in diagnosing and
classifying pathological changes; (b) faster diagnosis: Al models with new features can
analyze large amounts of data quickly and accurately, allowing for early diagnosis and
better patient outcomes with reduced healthcare costs; (c) personalized treatment: Al mod-
els with new features can identify subtle differences in disease presentation that may be
missed by human eyes. This can lead to more personalized treatment plans that are tailored
to the specific needs of each patient; (d) improved decision-making: Al models with new
features can provide clinicians with more information and insights into disease pathology,
allowing them to make more informed decisions about patient care; and (e) scalability:
Al models can be easily scaled to analyze large amounts of data, making them ideal for
analyzing large datasets or monitoring patient health over time. This can lead to improved
population health management and disease surveillance.
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Table 1. Al's role in pancreatic cancer.

. Wazir M. et al., Corral JE et al.,
Study S‘“;‘:lllih“’z:i‘i'é?z"' 2019, USA 2019, USA
[15] [16]
Al type ANN ANN ANN
differentiation of molecular-genomic . -
Topic profile of PDAC subtypes (mRNA and PDAC risk prleﬁm?%n dbased on IPMN characterization on MRI
DNA methylation models) personal health data
. . . 139 patients with histologically characterized
Study population 45 pancreatic cancer samples 898 p atlf\n;s dtliagni)lsef with IPMN:ss (due to pancreatectomy) and previous
pancreatic cance! MRI images
Al in differentiation of two PDAC Al in detect dysplasia Sn and Sp: 92%, 52%.
subtypes: overall classification Ac ) ) Identification of high-grade dysplasia/cancer:
Main results 100% for the mRNA-based model, 99%  AI Sn and Sp in testing cohort: 80.7%, Sn and Sp 75% and 78%.
for the DNA methylation-model; 80.7%; AUROC curve 0.85. AI AUROC curves 0.78 (p = 0.90) vsAUROC
model provides predictions of clinical base on AGA criteria 0.76, AUROC based on
response to chemotherapy Fukuoka criteria 0.77.

Abbreviations: Al (Artificial Intelligence), PDAC (Pancreatic Ductal Adenocarcinoma), ANN (Artificial Neural
Network), mRNA (Messenger RNA), DNA (Deoxyribonucleic Acid), IPMN (Intraductal Papillary Mucinous
Neoplasm), MRI (Magnetic Resonance Imaging), Ac (Accuracy), Sn (Sensitivity), Sp (Specificity), AUROC (Area
Under the Receiver Operating Characteristic Curve), and AGA (American Gastroenterological Association).

Diseases of various origins, such as inflammatory disorders, tumors, and functional
diseases, can result in changes in the structural complexity and dynamic activity patterns.
One way to quantify this structural complexity is by measuring the fractal dimension,
among other parameters.

The human body is composed of intricate systems and networks, including its most
complex structures. It is now widely accepted that the architecture of anatomical entities
and their activities exhibit non-Euclidean properties. Natural fractals, including those
found in anatomy, possess four distinct characteristics: (a) irregular shape, (b) statistical self-
similarity, (c) non-integer or fractal dimension, and (d) scaling properties that depend on the
scale of measurement. As anatomical structures do not conform to regular Euclidean shapes,
their dimensions are expressed as non-integer values between two integer topological
dimensions [17]. Fractal geometry has been shown to be useful in evaluating the geometric
complexity of anatomic and imaging patterns observed in both benign and malignant
masses (Figure 1).

Recently, Carrara et al. have introduced a new estimator, called the surface fractal
dimension, to evaluate the complexity of EUS-Elastography images in differentiating solid
pancreatic lesions [18]. The study showed that the surface fractal dimension can distinguish
malignant tumors from NETs, unaffected tissues surrounding malignant tumors from NETs,
and NETs from inflammatory lesions. This study highlights the importance of incorporating
fractal analysis into Al algorithms for the diagnosis and categorization of the diverse array
of pancreatic lesions.

3.2. Subepithelial Lesion Evaluation

Subepithelial lesions (SELs) are a common indication to perform EUS, and their
diagnosis can be challenging. Al algorithms can assist with SELs evaluation by analyzing
EUS images and identifying suspicious lesions that may require biopsy. Deep learning
techniques, such as CNNs, have shown great potential for SELs evaluation by extracting
important features from EUS images and using them to classify or segment the images.
The study by Hirai et al. suggests that an Al system has higher diagnostic performance
than experts in differentiating SELs on EUS images [19]. The Al system’s accuracy for
classifying five different types of SELs was 86.1%, which was significantly better than that
of all endoscopists. In particular, the sensitivity and accuracy of the Al system for detecting
gastrointestinal stromal tumors (GISTs) were higher than those of all endoscopists. These
findings suggest that Al technology can be a valuable tool to assist in the diagnosis of SELs
on EUS images, and may help improve clinical decision-making [19].
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3.3. Diagnostic Accuracy

The diagnostic accuracy of Al algorithms may be affected by several factors, such as
the quality of the EUS images, the size and location of the lesion, and the expertise of the
endoscopists and the pathologists. The results of previous studies have been controversial.
In recent meta-analysis, Xiao et al. identified seven studies to assess the diagnostic accuracy
of Al-based EUS in distinguishing GISTs from other SELs [20]. The combined sensitivity
and specificity of Al-based EUS were 0.93 and 0.78, respectively, with an overall diagnostic
odds ratio of 36.74 and an area under the summary receiver operating characteristic curve
(AUROC) of 0.94. These results suggest that Al-based EUS showed high diagnostic ability
in differentiating GISTs from other SELs and could potentially set a premise for adapting
diagnostic capabilities of other disease under EUS.

3.4. Clinical Impact and Limitations

The clinical impact of AI algorithms for lesion detection and characterization in EUS-
guided pathological diagnosis is still under investigation. However, studies have reported
that Al algorithms can improve the accuracy and efficiency of EUS-guided procedures,
reduce the need for unnecessary biopsies, and assist with treatment planning [21]. Al
algorithms can also help to reduce the inter-observer variability in lesion detection and
characterization between different endoscopists [22]. However, the implementation of Al
algorithms in clinical practice may be limited by several factors, such as the availability
and cost of Al software, the need for specialized training, concerns about data privacy
and security, and most importantly the need for larger studies to establish the accuracy of
such systems.

4. Digital Histopathological Diagnosis

The advancement of digital pathology has revolutionized the field of pathology by
enabling the acquisition, management, and interpretation of pathological information in a
digital format. This transition has been fueled by advances in whole slide imaging (WSI)
technology, which allows for the digitization of glass slides at high resolution [23]. The
adoption of digital pathology offers numerous advantages, such as improved efficiency,
reduced turnaround times, remote consultation, and easy access to archived cases [23]. The
ability to store pictures from tissue acquisition, as it happens for radiological imaging, puts
the basis to share and use a lot of knowledge from pathological anatomy. Moreover, it sets
the stage for the application of Al algorithms to facilitate and enhance diagnostic accuracy
in the field of EUS.

WSI involves the scanning of entire histological glass slides to create high-resolution
digital images. These digital images can be zoomed in or out and navigated as easily as
a glass slide under a microscope. WSI technology has been instrumental in overcoming
the challenges of data management in digital pathology, as it allows for efficient storage,
retrieval, and sharing of massive amounts of image data [23]. Furthermore, WSI facilitates
the standardization of image quality and provides an ideal platform for the application of
Al algorithms to analyze the digital images, thereby supporting the development of novel
diagnostic tools in endoscopic ultrasound.

In the context of histopathological image analysis, CNNs can be trained to automat-
ically detect and classify the multifarious tissue structures, cellular patterns, and patho-
logical alterations. CNNs are composed of multiple layers of interconnected “neurons”,
including convolutional, pooling, and fully connected layers. The hierarchical structure
of CNNs allows them to learn complex, high-level features from raw image data, thereby
making them particularly suitable for the analysis of intricate histopathological images in
endoscopic ultrasound [24-26].

In addition to CNNs, other machine learning techniques have been employed in
histopathological image analysis for endoscopic ultrasound. These include support vector
machines (SVM), random forests, and decision trees, among others. These algorithms
can be used to extract and analyze peculiar features from histopathological images, such
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as texture, shape, and color. By leveraging the strengths of multiple machine learning
techniques, ensemble models can be created to improve overall performance and address
potential limitations of individual algorithms [27].

The integration of Al algorithms, particularly CNNS, into the field of EUS has the
potential to revolutionize the diagnosis and management of various GI tract disorders. As
research progresses and these techniques become more refined, Al-based tools are expected
to play an increasingly prominent role in the field of EUS and digital pathology.

5. Al in Pathological Diagnosis
5.1. Al Applications in Anatomical Pathology

Tumor grading and staging are critical steps in the management of GI malignancies.
Accurate tumor grading and staging are necessary for determining the appropriate treat-
ment plan and predicting patient outcomes. Al algorithms can aid in tumor grading and
staging by analyzing EUS images and identifying features that correspond to different
tumor stages and grades (Figure 1). Deep learning techniques, such as CNNs, can identify
subtle differences in tissue structure and morphology that may not be apparent to the
human eye. For example, CNNs can potentially analyze EUS images of pancreatic cancer
and differentiate between early-stage and advanced-stage tumors based on changes in
tissue texture and vascularity [15,16,28]. Al algorithms can also predict the presence of
lymph node metastasis by analyzing EUS images and identifying characteristic features,
such as size, shape, and echogenicity, (Table 2). In a study by Saftoiu et al., contrast-
enhanced harmonic EUS (CEH-EUS) with time-intensity curve (TIC) analysis and artificial
neural network (ANN) processing were used to differentiate pancreatic carcinoma (PC)
and chronic pancreatitis (CP) cases [29]. Parameters obtained through TIC analysis were
able to differentiate between PC and CP cases and showed good diagnostic results in an
automated computer-aided diagnostic system.

Table 2. Studies assessing diagnostic capabilities of Al systems in EUS.

Hirai K. et al., Marya NB. et al,, Marya NB. et al., Oh CK. et al., Saftoiu A. et al., Zhang MM. et al.,
Study 2022, Japan 2021, USA 2021, USA 2021, South Korea 2015, Denmark 2010, China
[19] [24] [25] [26] [29] [27]
Al type CNN CNN CNN CNN ANN SVM
differential . . . .
diagnosis of SELs differential di dlffe;rer}t})a]; AC di dlffe?rer\ftif]lj AC
Topi (five-category: GIST, enhance the identify and diagnosis of SELs 1agnc(1)s(1§jo . flagn SIS © 16
opic leiomyoma, diagnosis of AIP classify FLLs (GISTs and an usng rom normaz ussue
) CH-EUS and TIC (based on 29 pattern
schwannoma, NET, leiomyomas) lvsi £
ectopic pancreas) analysis eatures)
114 patients (with
. 583 patients, 256 patients, histologically . . 216 patients
Study population 3 *T19 MBS 1 174 461 stillimages 210,685 still images  confirmed gastric 167 patients with (153 with PDAC,
from videos from videos GIST), 376 still 63 without)
images
overall Ac: AI86.1% ﬁai::::gﬂosu;ly
vs. expert Al processed o . .
endoscopy 68.0% 955 frames /sec. e . s Al Ac, Sn, Sp, PPV
(p < 0.001); Sn, Sp, Sn and Sp for 2P, perimage anaysis: Al Sn Sp PPV and /9T, Op,
L e classifying 95.6%, 82.1%, 91.2% X and NPV for the
Acof Al distinguishing AIP malignant FLLs on Sn.So. Acin NPV using TIC diagnosis of
. in differentiating from PDAC: 90%, 93%. gnant 1 . s oPs . analysis on 8ne .
Main results random still images: ~ per-patient analysis ; o pancreatic cancer:
GISTs from Sn and Sp for 90%. 71% 100.0%, 85.7% CH-EUS: 94.64%, 97.98%  94.32%
non-GIST: 98.8%, distinguishing AIP S él S N ‘V. b - h, 94.44%, 97.24%, ’ o ' oq o, ’
67.6%, 89.3% (better from all studied nand op in 96.3% (better 4 an 89.47% 99.45%, 98.65%,
¢ classifying expert endoscopist: 97.77%

than expert
endoscopist: Sn, Ac
p < 0001)

conditions (PDAC, CP,
NP): 90%, 85%

malignant FLLs on
full-length videos:
100% and 80%

Sn, Ac p < 0001)

Abbreviations: Al (Artificial Intelligence), CNN (Convolutional Neural Network), ANN (Artificial Neural Net-
work), SVM (Support Vector Machine), SELs (Subepithelial Lesions), GIST (Gastrointestinal Stromal Tumor),
NET (Neuroendocrine Tumor), AIP (Autoimmune Pancreatitis), CP (Chronic Pancreatitis), CH-EUS (Contrast-
Enhanced Endoscopic Ultrasound), TIC (Time-Intensity Curve), PDAC (Pancreatic Ductal Adenocarcinoma), FLLs
(Focal Liver Lesions), NP (Normal Pancreas/Neuroendocrine Tumor), PPV (Positive Predictive Value), and NPV
(Negative Predictive Value).
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Prognostic and predictive biomarker analysis is essential for predicting patient out-
comes and determining the most appropriate treatment plan. Prognostic biomarkers are
associated with patient outcomes, such as survival or recurrence, while predictive biomark-
ers are associated with response to specific therapies [30]. Kurita et al. investigated the
diagnostic ability of carcinoembryonic antigen (CEA), cytology, and Al using cyst fluid in
differentiating malignant from benign pancreatic cystic lesions [31]. Al using deep learning
showed higher sensitivity and accuracy in differentiating malignant from benign pancreatic
cystic lesions than CEA and cytology.

5.2. Integrating Al in EUS-Guided Tissue Acquisition

EUS-guided fine needle aspiration (EUS-FNA) and EUS-guided fine needle biopsy
(EUS-FNB) are commonly used techniques for obtaining tissue samples for pathological
diagnosis. The accuracy of EUS-guided tissue acquisition largely depends on the skills and
experience of the operator and the quality and size of the tissue samples obtained can vary.
The integration of Al in EUS-guided tissue acquisition has the potential to improve the
accuracy and efficiency of the procedure, leading to better patient outcomes (Table 3).

Table 3. Studies assessing Al’s pathological diagnosis.

Ishikawa T. et al., Kurita Y et al,, Hashimoto Y. et al., Inoue H. et al.,
Study 2022, Japan 2019, Japan, 2018, Japan 2014, Japan
[21] [31] [32] [33]
Al type CNN ANN ANN GMM
analysis of cyst fluid, cytology and Al automatic visual
Topi . A EUS characteristics in . . . .
opic MOSE in pancreatic diseases . L . ROSE in PDAC inspection method is
differentiating malignant from dt ist ROSE
benign pancreatic cysts proposed to assis
. . . 500 images of cytology
Study population 96 patients, 173 specimens 85 patients (59 surgical specimens, specimen (stained and in \

26 EUS-guided FNA specimens) high definition)

Main results

Al diagnostic ability in malignant

Initial study: AI Ac71.8% (vs.

MOSE performed by EUS
experts 81.6%). Using
contrastive learning: Al Sn,

Sp, Ac: 90.34%, 53.5%, 84.39%,

(vs. 88.97%, 53.5%, 83.24% of

cystic lesions: AUROC curve 0.966
(vs. 0.719 for CEA,
0.739 for cytology)
AISn, Sp, Ac: 95.7%, 91.9%, 92.9%
(vs. CEA Sn 60.9%, p = 0.021;
cytology Sn 47.8% p = 0.001; CEA

Al Sn, Sp, Ac at the first
learning stage: 78%, 60% 69%
Al Sn, Sp, Ac at the second
learning stage: 80%, 80%, 80%

The Al method is reported as
helpful for EUS-FNA in
aiding ROSE, indicating areas
highly likely to include
tumor cells

EUS experts) Ac 71.8%, p < 0.00; cytology Ac

85.9%, p = 0.210)

Abbreviations: Al (Artificial Intelligence), CNN (Convolutional Neural Network), ANN (Artificial Neural Net-
work), GMM (Gaussian Mixture Model), MOSE (Magnifying Endoscopy with Narrow Band Imaging) in pancreatic
diseases, ROSE (Rapid On-Site Evaluation), PDAC (Pancreatic Ductal Adenocarcinoma), EUS (Endoscopic Ultra-
sound), AUROC (Area Under the Receiver Operating Characteristic Curve), CEA (Carcinoembryonic Antigen),
and Sn (Sensitivity), Sp (Specificity), and Ac (Accuracy).

In a study by Inoue et al., an automatic visual inspection method based on supervised
machine learning was proposed to assist rapid on-site evaluation (ROSE) for endoscopic
ultrasound-guided fine needle aspiration (EUS-FNA) biopsy. The proposed method was
effective in assisting on-site visual inspection of cellular tissue in ROSE for EUS-FNA,
indicating highly probable areas including tumor cells [33].

Hashimoto et al. evaluated the diagnostic performance of their computer-aided diagno-
sis system using deep learning in EUS-FNA cytology of pancreatic ductal adenocarcinoma.
The deep learning system showed promising results in improving diagnostic performance
by step-by-step learning, with higher training volume and more efficient system develop-
ment required for optimal CAD performance in ROSE of EUS-FNA cytology [32].

Ishikawa et al. developed a new Al-based method for evaluating EUS-FNB speci-
mens in pancreatic diseases using deep learning and contrastive learning. The Al-based
evaluation method using contrastive learning was comparable to macroscopic on-site eval-
uation (MOSE) performed by EUS experts and can be a novel objective evaluation method
for EUS-FNB [21].

Al algorithms can potentially assist in EUS-FNA and EUS-FNB by providing real-time
feedback to the endoscopist during the procedure. Al algorithms can analyze EUS images
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in real-time and provide guidance on the optimal location and depth of the needle insertion,
as well as feedback on the quality of the tissue sample obtained. Al algorithms can also
assist in the selection of the appropriate needle size and type based on the characteristics of
the target lesion, such as diameter and location. The expectations of the limit of how Al
can help improve variability in an endoscopic procedure can be the forefront need to find
applicability from these systems to aid the outcome of a procedure [3].

6. Clinical Validation of AI-Enhanced Pathological Diagnosis

The accuracy of Al-enhanced pathological diagnosis has not been evaluated to a
certain degree in the EUS setting. Traditional pathology approaches have been crucial
in diagnosing diseases. Additionally, several qualitative and semi-quantitative grading
and staging scoring systems have been widely proposed with even more accepted limita-
tions. Semi-quantitative scores are not “measures” but only “labels” of severity [34]. An
observer assigns “semiquantitative” scores to tissue changes based on predefined mor-
phologic criteria. These scores are whole numbers and are less precise than quantitative
scores because they only approximate relative changes. However, the advantage of semi-
quantitative scoring is that it can be applied to both macroscopic and microscopic tissue
changes, generating strong data that can be statistically analyzed and used to evaluate
experimental groups [35].

However, the development of digital pathology and Al solutions have allowed for
more quantitative pathologic assessments, which are particularly useful in translational
research [36]. These approaches provide invaluable opportunities for biomarker discovery
and patient selection, aiding in the identification of optimal treatment regimens based on
patient profiles [37]. Despite these benefits, challenges still exist in implementing Al-based
methods in clinical settings. Specifically, in endoscopic setting, the incorporation of datasets
and patient profiles to enhance the pathological diagnosis of a set disease is an expectation
of many clinicians with the ever-growing boom of Al into clinical practice, that does not
exist as of today.

The clinical impact of Al-enhanced pathological diagnosis has yet to be fully real-
ized. However, the potential benefits include improved diagnostic accuracy, reduced
inter-observer variability, and more efficient use of healthcare resources. Al-enhanced
pathological diagnosis may also lead to the development of new biomarkers and treatment
strategies for gastrointestinal malignancies. Limitations to the use of Al in pathological
diagnosis exist, such as the accuracy of Al algorithms depends on the quality and quantity
of the data used for training. The development of Al algorithms requires large amounts of
data, which may be difficult to obtain for rare or uncommon gastrointestinal malignancies.
Additionally, the use of Al in pathological diagnosis may raise ethical concerns regarding
the role of technology in healthcare decision-making, a stage unexplored yet in many
aspects of Al’s massive incorporation into healthcare.

7. EUS Training

The learning of EUS requires time and practice in a high-volume center, with an
experienced endosonographer as teacher. This is due to the need to learn not only en-
doscopy but also to show excellent knowledge of ultrasound anatomy and of different
district diseases [38].

As in other areas, in EUS Al ideally aims to improve the quality of the examination,
helping to distinguish the type of lesions found, reducing procedural times, and providing
real-time decision support and guidance in the execution of operative procedures [39]. It
could also support the training of beginners, speeding up the learning process and reducing
the need for a mentor. Furthermore, Al could provide quality control, standardizing
performance between trainees and experts (Table 4).
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Table 4. Al's role in EUS training.
Tang A. et al,, Tang A. et al,, Bonmati E. et al., Robles-Medranda C. et al., Yao L. etal., Iwasa Y. etal,, Zhang]J. et al.,
Study 2023, China 2023, China 2022, UK 2021, Ecuador 2021, China 2021, Japan. 2020, China
[40] [41] [42] [43] [44] [7] [45]
Al type CNN CNN CNN CNN CNN CNN CNN
pancreatic mass real-time capture and
diagnosis with ap . . . . real time recognition and CH-EUS for pancreatic pancreatobiliary
segmentation of solid voice-assisted image o . . . - .
. CH-EUS and Al . . - - characterization of bile duct scanning tumors, automatic segmentation and station
Topic - . pancreatic masses with labeling for Al image . . . e
guided EUS-FNA in e anatomical structures augmentation segmentation (U-Net recognition system
. CH-EUS classification . .
real time (CH-EUS MASTER) (radial and linear EUS) system) (BP MASTER)
(CH-EUS MASTER)
39 patients (o210 images (081 4155 images (19,486 for
(randomized to EUS 4530 images of pancreatic 12 patients, 8113 still images from model, 2529 for station classification
Study population FNA with or without masses; 8 trainees 3575 images (143 sets EUS videos segmentation model), 100 patients model, ?207 for
CH-EUS of 25 frames each) . . segmentation model);
781 videos clips (264, .
MASTERuse) : 8 trainees
517); 12 trainees
. . Al real-time capture and
palr\\{:fgst(iiclan%;l:ssgggAc segmentation: dice Al external validation:
Sn, Sp, PPV, NPV: coefficient of 0.76.3, recall Radial model: mAP 69.67%, .A.c in statlon0 . A.I exter}nal Va11q§tlor}: Ac
o o o rate 0.941, precision rate o classification 83.9%, in in station classification
93.8%, 90.9%, 100%, g 4. Ac0.842. Median Fl-score 92%, average JoU video set 90.1% 82.4%; dice in
xll(s)oe/;;c?s'icf),isAti ‘3[;2% IoU of all cases 0.731. Al prediction Ac 76% (ozggiilt;itvzzgnezl(;ifl Al segmentation: dice segmentation 0.715.
Main resulis VS. e E 0 05)'. Al Average IoU of trainees: atimage level on a rl:l)narking) 79.08% rl)oss 0.77 in image set; Sn concordance rate using Al station classification
Y A from 0.80 to 0.87 dataset with 5 I and Sp 89.48% and IoU 0.77 model: per-frame Ac
guided EUS-FNA Ac, (p = 0.002), average time different landmarks . of 0.13. o 82.3% in video set. 86.2% in videos. Trainees
Sn, Sp, PPV, NPV: . S . Linear model: mAP 83.43%, ] . . .
o for identifying lesions Trainees aided by Al aided by the AI: Acin
93.8%, 90.9%, 100%, (pancreatic body /tail Fl-score 89%, average loU Ac in station station recognition 78.4%
100%, 83.3%; Al AUC 4 yra 73.48%, total loss 0.16. - o g ; 5 e
0.955 vs. control 0.933 22.75 vs. 1798sp < Q.Ol, recognition 76.3% from rom 67.2% (p < 0.01)
(p > 0.05) pancreatic head /uncinate 60.8% (p < 0.01).

34.21 vs. 2592 s p < 0.01).

Abbreviations: Al (Artificial Intelligence), CNN (Convolutional Neural Network), CH-EUS (Contrast-Enhanced Endoscopic Ultrasound), EUS (Endoscopic Ultrasound), FNA (Fine

Needle Aspiration), Ac (Accuracy), Sn (Sensitivity), Sp (Specificity), PPV (Positive Predictive Value), NPV (Negative Predictive Value), AUC (Area Under the Curve), IoU (Intersection
over Union), mAP (mean Average Precision).
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Often one of the first obstacles for the trainee in approaching EUS is the recognition
of anatomical structures, as these are visualized in an unusual perspective, that varies
according to the position of the endoscope and the station being examined. In 2021 at the
ESGE days, a pilot study was awarded as the “best procedural innovation of the year”;
it proposed an Al system based on two convolutional neuronal networks that recognizes
anatomical structures in both radial and linear EUS. This software has already achieved a
recognition accuracy of 85% during the development phase [43].

Similarly, another study proposed the use of a CNN consisting of two branches,
one for voice data and one for image data. EUS image labels were assigned based on
simple verbal inputs indicating anatomical landmarks provided by experienced operators
during the procedures [42]. The prediction accuracy after the first system training reached
76% at the image level on a data set with five different labels. Moreover, voice tagging,
instead of manual annotation, is very convenient in saving time [42]. These results are
encouraging from the point of view of providing support to beginners, however data on
actual improvement in the learning curve are scarce [42].

The BP MASTER (pancreaticobiliary master) system was specifically designed by
a joint collaboration (by Renmin Hospital of Wuhan University, Wuhan Union Hospital
of Huazhong University of Science and Technology, Wuhan Puai Hospital, and Wuhan
EndoAngel Medical Technology Company) for training in EUS and examination quality
control. The system includes a station classification model and a pancreas/abdominal
aorta/portal confluence segmentation model. It was validated both internally and exter-
nally, reaching in the latter an accuracy of 82.4% in station classification and 0.72 Dice score
in segmentation. The results of accuracy in classification and Dice score in segmentation
were also comparable to that of experienced operators. In a crossover study, it was tested
whether the system could increase the accuracy of station recognition in trainees, showing
an improvement from 67.2% to 78.4% (p < 0.01) [45].

The same research group, subsequently, implemented the BP MASTER incorporating
four deep convolutional neural networks (DCNN) in order to obtain additional functions:
transducer location information, real-time operating instructions, and to annotate the
common bile duct anatomy and measure its caliber on freeze frame [44]. At internal
and external validations, the model confirmed its accuracy values, comparable to that of
an expert.

Another crossover study was performed, aiming to evaluate the trainees” accuracy
improvement in interpreting the images when assisted by Al, which raised from 60.8% to
76.3% (p < 0.01) [44]. Finally, another study proposed to use Al to improve learning of the
CH-EUS technique, particularly useful in identifying pancreatic masses and notoriously
difficult to learn.

The system (CH-EUS MASTER), which includes a real-time acquisition and segmen-
tation model, was adequately validated. A cross-trial was then conducted to assess the
impact on trainees’ learning curve, using intersection over union (IoU) and time to lesion
finding as indicators. Beginners who were supported by CH-EUS MASTER reported an
improvement in mean IoU from 0.80 to 0.87 (p = 0.002) and a reduction in mean lesion
identification times from 22.75 to 17.98 s (p < 0.01), and from 34.21 to0 25.92 s (p < 0.01) in
the pancreatic body-tail and head-uncinate process, respectively [41].

CH-EUS MASTER seems also a valid tool in guiding EUS-FNA, with improvement in
the first-pass diagnostic yield [40]. The development of more effective and articulate Al
systems is desirable to allow trainees to speed up the training process and improve their per-
formance. Ideally, integrating Al assistance systems with the use of simulators, up to virtual
reality, could almost make the mentor unnecessary, but further data are necessary [46,47].

8. Future Directions and Conclusions

The integration of Al in EUS images and biopsy microscopy analysis has the potential
to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in
repeated procedures in case of non-diagnostic biopsies. Al algorithms can also aid in tumor
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grading, staging, and prognostic analysis. However, the clinical impact of Al-enhanced
pathological diagnosis has yet to be established. Further research is needed to evaluate the
long-term benefits and limitations of Al in EUS-imaging and biopsies.
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