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Abstract: Short-term heat stress can affect the growth of rice (Oryza sativa L.) seedlings, subsequently
decreasing yields. Determining the dynamic response of rice seedlings to short-term heat stress is
highly important for accelerating research on rice heat tolerance. Here, we observed the seedling
characteristics of two contrasting cultivars (T11: heat-tolerant and T15: heat-sensitive) after different
durations of 42 ◦C heat stress. The dynamic transcriptomic changes of the two cultivars were
monitored after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of stress. The results indicate that several
pathways were rapidly responding to heat stress, such as protein processing in the endoplasmic
reticulum, glycerophospholipid metabolism, and plant hormone signal transduction. Functional
annotation and cluster analysis of differentially expressed genes at different stress times indicate
that the tolerant cultivar responded more rapidly and intensively to heat stress compared to the
sensitive cultivar. The MAPK signaling pathway was found to be the specific early-response pathway
of the tolerant cultivar. Moreover, by combining data from a GWAS and RNA-seq analysis, we
identified 27 candidate genes. The reliability of the transcriptome data was verified using RT-qPCR
on 10 candidate genes and 20 genes with different expression patterns. This study provides valuable
information for short-term thermotolerance response mechanisms active at the rice seedling stage
and lays a foundation for breeding thermotolerant varieties via molecular breeding.

Keywords: RNA-seq; dynamic response; MAPK signaling pathway; candidate gene

1. Introduction

Climate change has led to a decline in global food production [1]. It has been predicted
that the extreme annual daily maximum temperature will increase by approximately 1 to
4 ◦C by 2100 [2]. Rice (Oryza sativa L.) is the main food crop species worldwide and feeds
more than half of the global population [3]. The production of rice will need to increase by
70% in 2050 to satisfy the demand of a rapidly growing global population [4]. According
to statistical data, heat stress has caused a 25% reduction in rice yield, and continued
warming could pose a serious threat to global production [5]. It has been predicted that
each degree-Celsius increase in global mean temperature would, on average, reduce global
yields of rice by 3.2% [6].
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Plants can reduce the damage caused by heat stress and maintain normal growth via
stress signaling [7], ion transport [8], hormone metabolism [9], and transcriptional regu-
lation [10]. As highly conserved serine and threonine protein kinases, mitogen-activated
protein kinases (MAPKs) can transmit extracellular stimuli ultimately to elicit intracellular
responses [11–13]. Plants can induce a primary heat stress response (HSR) via Ca2+-
dependent calmodulin (CaM3) and H2O2-induced MAPKs to repair and refold damaged
proteins [10,14]. Like WRKY and HSF activities, the MAPK cascade also regulates abscisic
acid (ABA) biosynthesis and transcription factor (TF) phosphorylation, which in turn
regulate the response to abiotic stress [15–17]. Previous studies have reported that the
expression of MAPK-related genes plays a key role in the plant heat response. Knocking
out SlMAPK3 in tomato plants has been shown to enhance heat tolerance [11]. Similarly,
overexpression of maize ZmMAPK1 in Arabidopsis thaliana was shown to increase the
survival rate of seedlings under heat stress [18].

Several heat-responsive genes have been identified and characterized in rice in recent
years. Three rice QTLs, namely qHTSF4.1, miR169r-5p, and qEMF3, can regulate plant heat
tolerance at the flowering stage [19–21]. Overexpression of HTH5 was shown to increase
the seed set at the heading stage of rice plants under heat stress, whereas suppression of
HTH5 resulted in greater susceptibility to heat stress [22]. TT1, the thermotolerance gene
identified in African rice (Oryza glaberrima), encoding an α2 subunit of the 26S proteasome,
protects cells from heat stress through the elimination of cytotoxic denatured proteins
and maintenance of heat-response processes [23]. TT2, encoding a Gγ subunit, confers
thermotolerance to rice during both the vegetative and reproductive growth stages without
a yield penalty [24]. Experiments involving overexpression and knockout rice lines showed
that HTG3a could also positively regulate heat tolerance at these stages [25]. Furthermore,
the TT3 natural allele or genetic editing in rice enhanced the heat tolerance and reduced the
decrease in grain yield caused by heat stress [26]. Using molecular cloning of TT1-2 and
performing a phenotypic analysis, researchers bred a new hybrid, Zhehangyou 1586, which
showed high yield, good quality, and strong heat tolerance [27]. Interestingly, TT1 [23],
TT2 [24], and TT3 [26] were identified at the seedling stage and favored yields.

Transcriptomic analysis contributed to revealing the early response mechanism and
identified the early stress signal perception genes [28]. Transcriptomic analysis of muskmel-
ons after 15 min salt treatment indicated that calcium-dependent protein kinase (CDPK)
was closely related to early abiotic stress response [29]. The overexpression of a rice Os-
CPK12 calmodulin-independent protein kinase has been shown to reduce the accumulation
of ROS [30]. The early signal perception mechanisms could induce downstream func-
tional genes that are needed to establish new cellular homeostasis in order to lead the
plant drought resistance [31]. However, very little is known about the early events in the
perception signals of rice seedlings under heat stress.

Monitoring the RNA-seq time-series data can identify the dynamic characteristics of
gene regulatory network models and candidate genes [32,33]. The transcriptomic analysis
of the Pyropia chauhanii monospore-producing process over a series of seven time points
revealed that genes related to GTPase activity, signal transduction, and protein phospho-
rylation may positively regulate the formation and release of monospores [34]. A high-
temporal-resolution transcriptomic investigation performed using two foxtail millet (Setaria
italica) contrast cultivars under drought stress revealed the temporal drought-response
process and provided a reference for selecting drought-resistance candidate genes [35].
Furthermore, researchers have identified defense potential candidate genes in response
to Fusarium udum infection by researching the characteristics of pigeon pea root tissue
using this method [36]. The putative seed-dormancy gene AGL was identified based on
the gene expression trends according to the juvenile olive-tree time-series transcriptome
analysis [37]. Therefore, monitoring the time-series transcriptome would be conducive to
better understanding the regulatory mechanism of biological processes.

According to the World Meteorological Organization, many parts of the world have
experienced temperatures of 40 ◦C during the rice seedling stage in recent years (https:

https://worldweather.wmo.int/
https://worldweather.wmo.int/
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//worldweather.wmo.int/, accessed on 1 February 2021). This temperature is higher than
the optimal temperature for the growth of rice seedlings (25–28 ◦C), resulting in seedlings
being stunted, withering, and even dying [4,38]. Here, we detected the phenotypic changes
of two contrasting genotypes of rice, T11 (heat-tolerant) and T15 (heat-sensitive), under
different heat stress durations at the seedling stage. The transcriptomic changes of the
two cultivars were monitored after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of heat stress
to better reveal the molecular signatures and patterns of rice seedling short-term heat
stress. Furthermore, we also incorporated genome-wide association study (GWAS) analysis
results [3] to identify potential candidate genes involved in heat tolerance.

2. Results
2.1. Phenotype Characteristics of T11 and T15 under Heat Stress

Both rice cultivars were green and robust before heat stress (Figure 1a). After applying
the heat treatment (42 ◦C), we found that T15 exhibited some drooping leaves after 4 h
stress, and the leaf drooping was even severe for extended heat treatment (Figure 1b). For
T15, heat stress-treated seedlings visibly showed a wilting phenotype at 10 h compared
to the control seedlings (Figure 1c). Significant differences were evident between T11 and
T15 after 20 h of heat treatment, with T15 being nearly dead but T11 having slightly curled
leaves (Figure 1d).
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Figure 1. Phenotypic changes of heat-stressed T11 and T15 seedlings. (a) T11 and T15 seedlings at
0 h of heat treatment. (b) T11 and T15 seedlings at 4 h of heat treatment. (c) T11 and T15 seedlings at
10 h of heat treatment. (d) T11 and T15 seedlings at 20 h of heat treatment.

Based on these results, T11 showed superior heat tolerance at the seedling stage. To
characterize the molecular response mechanisms before and after the phenotypic differences
in the rice seedlings, transcriptome analysis was performed on the seedlings at the 0 min,
10 min, 30 min, 1 h, 4 h, and 10 h time points.
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2.2. RNA–Seq Data Processing and Identification of Differentially Expressed Genes in Response to
Heat Stress

A total of 243.05 Gb of clean data were obtained from 36 libraries. The clean reads of all
samples showed 91.80–95.22% mapping to the reference rice genome. All of the correlation
coefficients between the three biological replicates for each treatment based on all of the
transcripts were more than 0.9, indicating that the expression data were highly reproducible
(Figure S1). We determined the heat-responsive genes by comparing heat-treated samples
with the controls for each cultivar at five stress time points (10 min, 30 min, 1 h, 4 h, and
10 h). Principal component analysis (PCA) was conducted to examine time-point-related
transcriptional changes in T11 and T15 after heat treatment (Figure 2a). Remarkably, more
differentially expressed genes (DEGs) were detected for T11 than for T15 at the first four
stress time points, while the opposite was true at 10 h of treatment (Figure 2b, Table S1).
The gene expression changed in T11 and T15 after 10 min heat treatment, and we speculate
that rice seedlings initially regulate gene depression to resist heat stress. We speculate,
based on PCA, that the rice seedlings may have suffered serious damage at the molecular
level at 20 h for both cultivars. Moreover, the expression levels of T15 after 4 h of stress and
10 h of stress were relatively similar, which could be related to its sensitivity.
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of T11 and T15 transcriptome data for samples taken at five different stress times. (b) Number of
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2.3. Early-Stage Response of Rice Seedlings under Heat Stress

The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were used to
resolve the resistance mechanism of rice seedlings at an early stage using the DEGs at 10
min in T11 and T15, respectively (Figure 3). The results showed that protein processing
in the endoplasmic reticulum, glycerophospholipid metabolism, plant-pathogen interac-
tions, plant hormone signal transduction, endocytosis, alpha-linolenic acid metabolism,
glycerolipid metabolism, galactose metabolism, and sphingolipid metabolism were acti-
vated in both T11 and T15. Moreover, we found that the plant MAPK signaling pathway,
biosynthesis of secondary metabolites, and arginine and proline metabolism were specifi-
cally induced under heat stress in T11. Soluble NSF attachment protein receptor (SNARE)
interactions in vesicular transport, amino sugar and nucleotide sugar metabolism, and the
phosphatidylinositol signaling system were specifically induced in the T15 cultivar.
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2.4. Time-Series Transcriptome Expression Trend Analysis

To gain dynamic insight into heat-induced changes at the gene expression level under
heat stress, we performed the time-series transcriptome expression trends analysis using
the DEGs in T11 and T15 (Figure 4). There were six significant expression trend profiles
in T11 (p < 0.05). Profile 4 had the highest significance, followed by profile 16, profile 3,
profile 19, profile 14, and profile 0. There were also six significant expression trend profiles
in T15: profile 16, profile 4, profile 3, profile 19, profile 0, and profile 7 in descending order
of significance. Remarkably, the same profiles (profile 4, profile 16, profile 3, profile 19,
and profile 0) had different significance levels and DEG numbers in the two cultivars. We
performed KEGG analysis using the DEGs in these profiles to decode the transcriptional
regulatory pathways that take place in plants following heat stress.
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Profile 4 in T11 (6860 genes) and T15 (2534 genes) included genes that were downreg-
ulated rapidly but exhibited a rebound in expression as the stress was prolonged. These
genes were enriched in aminoacyl-tRNA biosynthesis, base excision repair, and other gly-
can degradation activity. Profile 16 (T11 with 3855 genes, T15 with 5377 genes) included
genes that were rapidly and continuously upregulated in response to heat stress, and
these genes were mainly involved in ribosomes, ribosome biogenesis in eukaryotes, RNA
transport, spliceosome, proteasome, RNA degradation, nucleotide excision repair, and
RNA polymerase. Profile 3 (T11 with 2228 genes, T15 with 2506 genes) genes were rapidly
upregulated and continuously expressed, and they were mainly involved in metabolic
pathways, photosynthesis, carbon fixation in photosynthetic organisms, biosynthesis of
secondary metabolites, glyoxylate and dicarboxylate metabolism, nitrogen metabolism,
carbon metabolism, and oxidative phosphorylation. Profile 19 (T11 with 897 genes, T15
with 1109 genes) genes were upregulated rapidly and then downregulated after reaching a
peak in the middle stage. These genes were mainly enriched in protein processing in the
endoplasmic reticulum; galactose metabolism; synthesis and degradation of ketone bodies;
glycerolipid metabolism; and valine, leucine, and isoleucine degradation. Remarkably,
profile 0 genes exhibited the same expression trend but without the same pathways as
those in T11 (508 genes) and T15 (992 genes). The genes in this profile were downregulated
rapidly, then upregulated, and then downregulated again at the late stage. The genes in T11
were enriched in autophagy, ubiquitin-mediated proteolysis, ether lipid metabolism, the
spliceosome, and the mRNA surveillance pathway. The genes in T15 were mainly enriched
in homologous recombination, nucleotide excision repair, and fatty acid elongation.

Furthermore, profile 14 (555 genes) genes were responsible for the T11-specific ex-
pression trend. These genes were induced rapidly and showed upregulation first but then
downregulation, and their expression level rose slightly at the late stage. These genes
were enriched in the plant MAPK signaling pathway, purine metabolism, endocytosis,
metabolic pathways, and pyruvate metabolism. Among these pathways, the plant MAPK
signaling pathway and pyruvate metabolism were specific. Profile 7 (795 genes) genes
were responsible for the T15-specific expression trend. These genes were downregulated,
upregulated to the highest level, and stably downregulated again. The genes in this profile
were mainly enriched in fatty acid degradation and peroxisome and fatty acid metabolism.

2.5. Identification of DEGs and Their Functional Annotations between Two Cultivars with
Contrasting Heat Tolerances

Differences in genetic background were identified by comparing the gene expression
between the two cultivars at 0 h. Differences in genetic background were also excluded to
examine transcriptional changes in the two cultivars after heat treatment. In total, 2038, 4239,
4061, 6512, and 3794 genes were differentially expressed in T11 and T15 at 10 min, 30 min, 1
h, 4 h, and 10 h under heat stress, respectively. We identified 166 common DEGs between
T11 and T15 across all heat treatment time points (Figure 5a), and remarkably, most of these
genes were upregulated in T11. Differential expression of these genes may explain the heat-
tolerant phenotype of T11, and we predicted TFs and annotated the functions of these genes
(Figure 5b). The results showed that three genes were predicted to encode TFs: ARF, C2H2,
and WRKY. In addition, the functional annotation results showed that some genes were also
involved in plant hormone signal transduction, ubiquitin-mediated proteolysis, protein
processing in the endoplasmic reticulum, ribosomes, glutathione metabolism, purine and
pyrimidine metabolism, and base and nucleotide excision repair. The expression levels of
genes involved in these pathways at the five stress time points revealed that the expression
in T11 was higher than that in T15. These factors may have contributed to T11’s heat
tolerance.
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2.6. Plant MAPK Signaling Pathway in Response to Heat Stress

The MAPK signaling pathway was significantly enriched only in the early stress of
the heat-tolerant cultivar. The results revealed a total of 48 DEGs involved in this pathway.
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To explore the role of this pathway in rice heat tolerance, we evaluated their differential
expression at different stress time points for T11 and the differential expression between T11
and T15 at different stress time points (Figure 6). The results revealed that six genes encoded
CaM; one was upregulated in T11 under 10 min of stress, and five were downregulated.
These genes differed between T11 and T15. At the time point of 10 min of T11 stress, two
genes encoding the receptor protein PYR/PYL were upregulated, and five genes encoding
phosphatase PP2C and three genes encoding MPK were downregulated. A total of four
genes were annotated as encoding the kinase SnRK2: one was upregulated, and three
were downregulated. The genes encoding WRKY, MPK, and MKK were induced and
upregulated in the T11 cultivar at the early stress stage. Remarkably, the gene encoding
WRKY was upregulated across all stress time points in T11, and its expression level was
higher than that in T15. All of the genes in this pathway showed significant differences in
expression levels between the two cultivars across the different stress time points.
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from left to right means T11_10 min vs. T11_ck, T11_30 min vs. T11_ck, T11_1 h vs. T11_ck, T11_4 h
vs. T11_ck, T11_10 h vs. T11_ck, T11_10 min vs. T15_ 10 min, T11_30 min vs. T15_30 min, T11_1 h
vs. T15_1 h, T11_4 h vs. T15_4 h, and T11_10 h vs. T15_T11_10 h. The “?” means it has not yet been
resolved.

2.7. Candidate Genes in Response to Heat Stress at the Rice Seedling Stage

Using data from previously reported quantitative trait loci (QTLs) that regulate the
response of rice seedlings to heat stress, we identified corresponding genes and compared
them with the T11-specific heat-response genes in our data [3]. A total of 27 candidate
genes were identified (Table S2). We performed the expression trend analysis with these
candidate genes in T11 and T15. The results showed that there were three expression
trends both in T11 and T15, namely upregulated constantly, downregulated constantly,
and downregulated and then upregulated. The genes with an upregulated trend in T11
and T15 were uniform. However, the other two gene expression trends differed in the
two cultivars. There were four and nine genes downregulated constantly in T11 and T15,
respectively. In the downregulated and then upregulated trend, we found 13 and 8 genes
for T11 and T15 cultivars, respectively. Annotation of these candidate genes resulted in
functions related to pyruvate metabolism; mRNA surveillance pathway; biosynthesis of
secondary metabolites; and valine, leucine, and isoleucine degradation. Among these, the
gene involved in the pyruvate metabolism pathway encoded pyruvate kinase barrel- and
α/β domain-containing proteins. Furthermore, several genes encode auxin-responsive
proteins, cytochrome P450, stress-induced proteins, and Hsp20/alpha crystallin family
members in response to heat stress. Remarkably, LOC_Os05g23140, a member of the
Hsp20/alpha crystallin family, was upregulated more than 1000-fold from 10 min to 4 h of
stress. However, under 10 h of stress, this gene was slightly downregulated compared with
that of the control. Furthermore, seven candidate genes were not functionally annotated.
The expression of all the candidate genes may lead to the improved heat tolerance of T11.
Nevertheless, their regulatory mechanisms and functions need to be explored and verified.

2.8. RNA-Seq Validation by Quantitative Real-Time PCR (RT-qPCR)

To confirm the accuracy and reproducibility of the RNA-seq results, we selected
10 candidate genes and 20 genes with different expression patterns for RT-qPCR. The
expression pattern data obtained via RT-qPCR were highly consistent with the RNA-seq
data (Figure S2). These results supported the reliability of the RNA-seq data.

3. Discussion

Although heat stress has been shown to clearly alter rice seedling phenotypes and gene
expression, there are limited data characterizing the short-time-series characteristics of rice
seedlings under heat treatment. In recent years, short-term heat wave shock has become
severe, which has hindered crop production [39]. This indicates that characterizing the
early stage of heat stress in rice is critical for determining future prevention or mitigation
strategies. Therefore, we examined changes in phenotypes and transcription in growing
seedlings over a 10 h heat stress period (six time points) at 42 ◦C.

3.1. MAPK Signaling Is Transient and Occurs at an Early Stage of Heat Stress

As expected, the rice seedlings were already responding at the molecular level after
stress for 10 min. In the present study, both T11 and T15 rapidly regulated gene expression
in response to heat stress, but T11 regulated more DEGs than T15. The genes related to
heat shock proteins, plant hormone signaling, and sugar and lipid signaling can be rapidly
activated in response to heat stress [40]. The same was found in our research: the protein
processing and galactose metabolism-related pathways were activated significantly. Protein
processing in the endoplasmic reticulum has been proven to play a key role in the response
of maize seedlings to heat stress [41].
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Interestingly, the MAPK signaling pathway was only enriched in the tolerant cultivar
at the 10 min stress time point in this research. MAPK cascades participate in conserved
signaling pathways that transmit extracellular stimuli to produce intracellular responses in
eukaryotes [42], and they have been shown to respond to a variety of environmental stimuli,
including temperature, reactive oxygen species, and drought, by phosphorylating proteins
and thus modifying their activity [16,43]. ABA is a key regulator of abiotic stress in plants,
and it has been indicated that overexpression of its receptor PYL5 or PYL8 alone could en-
hance drought resistance in Arabidopsis [44–46]; the upregulation of PYR/PYL found in this
research may have led to the better heat resistance of T11. The binding of the ABA receptor
protein PYR/PYL to ABA inhibits PP2C activity and activates SnRK2 [44]. Activated SnRK2
phosphorylates its downstream target genes and leads to the establishment of the abiotic
stress response. We hypothesized that the downregulation of PP2C in this research may be
conducive to the enhancement of heat resistance in T11. In addition, MPK3/MPK6, key
players in stomatal development, are also involved in the abiotic stress response mediated
by ABA [47]. It has been reported that OsMPK3 can contribute to defense signaling by
phosphorylating the TF OsbHLH65 [48]. Furthermore, MAPK may act as a master switch to
trigger different genes or enzymes involved in tolerance in wheat under heat stress without
affecting grain quality [49]. This finding indicated that this pathway may participate in
early heat signaling events, and this deduction has been suggested in other studies [50].

3.2. Gene Expression Dynamics of Rice in Response to Continuous Heat Stress

Time-series monitoring of the transcriptome could reveal which pathways the plant
regulated in response to heat stress and how the expression of the genes in these pathways is
regulated [35]. Several recent studies have reported the transcription dynamics of different
plant species in response to abiotic stress [51,52]. Therefore, we selected five stress time
points to investigate transcriptional dynamic characteristics of rice seedlings from no visible
phenotypic changes to leaf wilting based on the phenotypic changes of rice seedlings under
heat stress.

We found that the genes related to nucleotide excision repair were upregulated and
that their expression increased continually with stress duration. DNA damage is caused
when plants encounter environmental stress, and this damage is gradually aggravated
with prolonged heat treatment. In response to stress, plants can rapidly initiate repair
mechanisms such as nucleic acid excision [53]. The increase in endoplasmic reticulum
activity confers increased stress tolerance to plants, which initiates the unfolded protein
response [54]. In plants, the UPR signaling pathway involves two ER membrane-associated
TFs, bZIP17 and bZIP28, and is also involved in the RNA-splicing factor IRE1 and its
target RNA, bZIP60 [55]. Under short-term stress conditions, signaling from IRE1 activates
endocytosis [56]. The expression of endocytosis-related genes also changed dynamically in
this study. Plant leaves lose water, resulting in hyperosmosis and leading to endocytosis
enhanced with increased heat treatment time [57]. Endocytosis is tightly linked to stress
signaling pathways, which can help plants to adapt to the ever-changing environment [58].
Similarly, our results on the expression patterns and functional annotation of candidate
genes also showed that the genes encoding cytochrome P450, auxin-responsive protein,
stress-induced protein Di19, and RNA recognition motifs were continuously upregulated
to resist heat stress. Time-series transcriptomic analysis revealed comprehensive tran-
scriptome dynamics of rice seedlings and enhanced our understanding of the molecular
mechanisms of rice heat adaptation. Furthermore, the genes of the profile significantly
downregulated by heat stress were enriched in carbon fixation in photosynthetic organisms,
photosynthesis, carbon metabolism, and their related pathways. These results suggested
that the carbon assimilation system is sensitive to elevated temperatures, which agreed
with previous work performed in plants [59].
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3.3. Candidate Genes of Rice Heat Tolerance

Combining GWAS and RNA-seq can provide both the power and the resolution
needed to identify candidate genes and has proven to be more successful than either
strategy alone. Researchers combining GWAS results with associated RNA-seq analysis
data identified 10 candidate genes related to seed germination at low temperatures in
maize [60]. Our transcriptome data combined with Wei’s [3] GWAS data could better
exclude genes with different genetic backgrounds in screening for more reliable candidates
for heat tolerance. All the candidate genes were activated more than 10-fold at multiple time
points after heat stress in heat-resistant cultivars. In addition, these genes were differentially
expressed at multiple time points between the two cultivars. This may explain why T11
has better heat resistance than T15.

Cytochrome P450, a member of the oxidoreductase class of enzymes [61], is the first
line of an organism’s chemical defense [62] and has been shown to play an important
role in abiotic stresses such as heat [63], drought, and salt [64]. Previous studies have
identified some genes involved in signal transduction and P450 functional categories that
have heat-resistance functions in rice seedlings [65]. The candidate gene LOC_Os05g23140
was annotated as an Hsp20/alpha crystallin family member, which may also be involved
in the rice heat response. Members of this gene family have been shown to be heat-tolerant
in potatoes and wheat [66,67]. The candidate gene LOC_Os05g11140, encoding protein
tyrosine kinase, has been predicted to respond to heat stress [68]. Some candidate genes
also may play an important role in heat tolerance, although these genes have not been
functionally annotated. The function and mechanism of all the candidate genes will be
further explored.

4. Materials and Methods
4.1. Plant Material, Heat Treatment, and Sample Preparation

Two Indica rice varieties, T11 (Erjiunan 1, heat-tolerant) and T15 (Zhegangu, heat-
sensitive), were used in our research. Seeds of the two rice cultivars were allowed to
germinate on wet filter paper for 4 days and then evenly sown in a small plastic crucible
and cultured in an artificial climate chamber (AGC-MR, Zhejiang, China). The culture
conditions were as follows: 14 h/28 ◦C day and 10 h/25 ◦C night cycle and 250 µmol m2s−1

light. After 21 days, the seedlings were placed in an incubator at 42 ◦C. Leaf samples were
harvested after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of heat treatment, immediately
put in liquid nitrogen, and then stored at −80 ◦C until further analysis. Three biological
replicates were included for each time point of each cultivar.

4.2. Total RNA Extraction, Library Construction, Sequencing, and Bioinformatic Analysis

Total RNA was extracted from leaves using TRIzol reagent (Invitrogen, Waltham,
MA, USA) according to the manufacturer’s instructions. Three biological replicates were
collected for each treatment. RNA concentration and purity were measured using a Nan-
oDrop 2000 (Thermo Fisher Scientific, Wilmington, NC, USA). RNA integrity was assessed
using an RNA Nano 6000 Assay Kit and an Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA). A total amount of 1 µg of RNA per sample was used
as input material for the RNA sample preparations. Sequencing libraries were generated
using the NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA)
following the manufacturer’s recommendations. The library preparations were sequenced,
and 150 bp paired-end reads were generated. After filtering using the Fastp Toolkit, all
the clean reads were aligned to the reference sequences of MSU v7.0 [69]. Fragments per
kilobase million reads (FPKM) were used to quantify the levels of gene expression. Pear-
son’s correlation coefficient was used to calculate the correlation coefficients of FPKM of
all transcripts among three replications for each sample. DESeq2 was used for differential
expression analysis based on count value, and clustered profiles of genes with a p value
≤ 0.05 and |log2(fold-change)| ≥ 1 were considered differentially expressed [70]. STEM
was conducted to classify the identified DEG expression patterns. KEGG pathway analysis
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of the DEGs was performed using the OmicShare tools, a free online platform for data
analysis (http://www.omicshare.com/tools, accessed on 7 February 2023). The gene Nr
function was annotated based on the NCBI nonredundant protein sequence database. The
online platform PlantTFDB v5.0 (http://planttfdb.gao-lab.org/, accessed on 7 February
2023) was used for TF analysis. Venn diagrams and heatmaps were constructed using
TBtools software V1.098 [71].

4.3. RT–qPCR for RNA-Seq Validation

The RNA samples used for RT-qPCR were identical to those used for the RNA-seq
experiments to validate the reliability. Primers (Table S3) were designed using Primer v5
software (Premier Biosoft International, San Francisco, CA, USA), and ubiquitin (UBQ5)
was used as an internal control. The experimental operating system used for RT-qPCR was
described in our previous studies [70,72]. The data were processed according to the Ct
(2−∆∆Ct) method.

5. Conclusions

We explored the mechanisms of heat response and tolerance at different biological
levels of seedlings of the two different rice cultivars upon high-temperature exposure. Our
data suggested that although the phenotype did not change significantly in the early stage
of stress, its gene expression levels changed in response to heat stress. Compared with
the heat-sensitive one, the heat-tolerant cultivar can rapidly regulate more genes to cope
with heat stress. This research investigated the transcriptome characteristics of two rice
cultivars at six different stress time points at the seedling stage, the results of which reveal
the dynamic molecular response mechanism. We also identified 27 candidate genes for rice
heat tolerance. This enhances our understanding of the molecular mechanisms of plant
heat adaptation and provides a resource for heat tolerance candidate genes. In future work,
we will concentrate on the functional verification of these candidate genes and explore how
they function in response to heat stress.
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