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Abstract

Cardiometabolic disease comprises cardiovascular and metabolic dysfunction, and underlies 

the leading causes of morbidity and mortality, both within the United States and worldwide. 

Commensal microbiota are implicated in the development of cardiometabolic disease. Evidence 

suggests that the microbiome is relatively variable during infancy and early childhood, becoming 

more fixed in later childhood and adulthood. Effects of microbiota, both during early development, 

and in later life, may induce changes in host metabolism that modulate risk mechanisms and 

predispose towards development of cardiometabolic disease. In this review, we summarize factors 

that influence gut microbiome composition and function during early life, and explore how 

changes in microbiota and microbial metabolism influence host metabolism and cardiometabolic 

risk throughout life. We highlight limitations in current methodology and approaches, and outline 

state of the art advances which are improving research, and building towards refined diagnosis and 

treatment options in microbiome-targeted therapies.
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Introduction

Gut microbiota have been associated with a wide variety of diseases1, with cardiometabolic 

diseases and their risk factors being repeatedly identified as having a microbial component. 

Exposure to commensal microbes and their products begins at or before birth, and microbial 

metabolism may modulate pathways that can initiate early metabolic reprograming that can 

be pathogenic or protective, depending on specific circumstances. While microbiota across 
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various body sites have potential relevance to disease, the gut microbiome represent the 

most abundant and the most well-studied, and serves as the focus for this review. Within the 

following sections, we summarize the known determinants of gut microbiome composition 

(Figure 1), examine potential mechanisms linking microbial metabolism to disease (Figure 

2), highlight known microbiome-disease relationships, and discuss developments in the field 

that may ultimately lead towards clinical utility.

Gut microbiome composition is highly variable during infancy and 

childhood.

Early life represents a highly variable period for microbial colonization. While some 

evidence has suggested that microbiota may be transferred to the developing fetus prior 

to delivery2–4, the majority of current evidence points towards birth as the major event 

triggering large-scale microbial colonization5–7. Colonization of the infant gut occurs 

opportunistically, with initial contributions from vaginal, fecal, and skin microbiota, 

depending on delivery method, in addition to contributions from species present in the local 

environment8–13. Of these early strains, only a small subset are later found to successfully 

colonize14, and it has not yet been firmly established whether the initial source of microbiota 

during delivery has a significant effect on any long-term outcomes15–17. Engraftment 

of specific microbes occurs during the months following birth, and is influenced by 

source of nutrition18,19. Infants who are fed human milk have been reported to have 

higher proportions of Bifidobacterium, Actinobacteria and Firmicutes compared to higher 

levels of Atopobium, Proteobacteria, and Bacteroides in infants fed with formula18,19. 

However, human milk feeding has also been associated with higher relative abundances 

of Bacteroides compared with formular feeding, in addition to lower proportions of 

Clostridium, Lachnospiraceae, Streptococcus, Enterococcus, and Veillonella20. These data 

highlight the challenges that remain in characterizing specific taxa that associate with 

environmental exposures, and suggest the need for more functional characterization. Human 

milk contains microbiota21–23, and additionally contains prebiotics, oligosaccharides, and 

antibodies, which can preferentially support growth of specific microbiota, including 

Bifidobacterium, and protect against pathogens24–30. Further, there is some evidence of 

reciprocal interaction of oral microbiota and other signaling molecules which may occur 

during breastfeeding31–35. However the composition of human milk is highly variable36–39, 

suggesting that effects of human milk feeding on infant microbiome composition and any 

long-term outcomes may not be uniform. Microbiome composition becomes more stable 

after age 3, resembling the composition seen in adults14, with predominant representation 

by Firmicutes phylum, and Prevotella and Bacteroides genera14,40. Overall, this pattern 

of high variability suggests that infancy and early childhood is a critical period where 

sub-optimal colonization may determine later predisposition towards dysbiosis. There is 

some evidence linking early life microbiota to later inflammatory and immune-mediated 

disease, and to childhood obesity41. However, longitudinal studies are required to establish 

whether microbiome composition in childhood and early adulthood impacts long-term adult 

cardiometabolic health.
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Bi-directional relationships between diet-derived nutrients and microbiota.

One of the most well-studied determinants of human microbiome composition is diet. 

Significant differences have been observed in gut microbiota from individuals consuming 

different diets based on geographical or traditional distinctions, such as hunter-gatherer, 

pastoralist, agriculture or urban14,42–50. However, even within local populations, microbiota 

differ between individuals based on dietary choices, such as vegetarian or vegan51–55, 

low-carbohydrate “paleo”56–58, low fat59, or gluten free60,61. Non-digestible carbohydrates, 

including starches and fiber, are abundant in certain plant-based foods, and serve as a 

substrate for fermentation by colonic microbiota, leading to their designation as prebiotics. 

Prebiotics are generally defined as substances which are metabolized by commensal 

microbes and promote health62, which contrasts with probiotics, defined as the beneficial 

microbes themselves63. Presence or absence of prebiotic nutrients provides a selective 

pressure which may favor specific microbes64–67. Further, metabolism of these nutrients 

produces short-chain fatty acids (SCFAs), which serve as a primary fuel source for colonic 

epithelial cells, and act as important signaling molecules68, as discussed further in a 

later section. In the setting of sub-optimal diet, supplementation with pre- or probiotics 

may be an effective means of promoting microbial diversity. Supplementation with the 

prebiotic fiber inulin has been shown to lead to increases in Bifidobacterium, Anaerostipes, 

Faecalibacterium and Lactobacilus, with reduction in Bacteroides69. However, whether this 

leads to changes in SCFAs is unclear69. Further, given the complexity and inter-individual 

variability in microbiomes, there may be risks associated with probiotic and prebiotic 

supplementation, which remain to be fully explored70. Other dietary components with 

potentially large effects on microbiota include non-nutritive sweeteners71,72, and probiotic-

containing fermented foods73–78.

In addition to host dietary intake influencing microbial abundance, the presence and 

action of specific microbes also modulates nutrient availability to the host79. This is one 

mechanism whereby microbiota can influence host health status, and may be of particular 

relevance to obesity. Many studies have identified differences in microbiome composition 

based on body weight or adiposity, starting in childhood80–82, and fecal microbiota 

transplant (FMT) studies in animals and humans suggest that microbiota by themselves can 

promote obesity83–85. Because microbiota both consume and produce energy and nutrients 

within the intestines, there can be considerable variability in energy and nutrient availability 

to individuals consuming the same diet79,84,86,87. However, identifying effective strategies 

to reduce obesity through modulation of the gut microbiota have proven challenging88,89, 

and considerable additional research is required to understand the complex host:microbe 

relationships modulating energy and nutrient metabolism.

Environmental determinants of microbiome composition and drug:microbe 

interactions.

Local environment plays an important role in determining microbiome composition, 

particularly during childhood, but also throughout the lifespan. Differences have been 

reported in microbiota within individuals in rural or urban environments90–92. Within 
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the home, exposure to older siblings93, and to pets has been associated with increased 

bacterial diversity in children94,95. Use of antibiotics has a significant impact on commensal 

microbes, particularly in the case of broad-spectrum oral antibiotics, generally leading 

to a reduction in diversity and reduction in microbes through to be beneficial96. The 

gut microbiota generally recover following a course of antibiotics, however it can take 

several weeks, and may never completely restore to pre-antibiotic diversity97. Repeated 

courses of antibiotics, particularly in children, may have more long-standing effects98, 

including increased risk of antibiotic resistance99, in addition to obesity and cardiometabolic 

disease100–107. This is likely mediated by antibiotic-induced alterations in microbiota which 

alter the function of the microbiome, and may lead to altered production of metabolites, 

and persistent downstream host metabolic dysregulation98,107–109. Other medications also 

interact bidirectionally with the microbiome, and may alter microbiota, in addition to being 

differentially metabolized based on presence or absence of specific microbes110–114. These 

include commonly used anti-hypertensive and cardiometabolic drugs, including angiotensin 

II receptor blockers115,116, statins117, proton-pump inhibitors118, and anti-diabetic 

medication119, both individually and in combination120, as well as neuropsychiatric121 and 

gastrointestinal medications122. Microbiota may also alter vaccine responses in children and 

adults123–126.

Genetic determinants of microbiome composition.

Several studies have investigated the impact of host genetic variation on gut microbial 

composition, primarily through genome-wide association studies (GWAS). These have 

identified close to 1,000 single nucleotide polymorphisms (SNPs) that associate with 

specific bacterial taxa127–136. However, given the inherent heterogeneity in metagenomic 

profiling between studies, and presence of confounding, robust replication and validation 

of suggested GWAS associations remains a challenge137. Several microbe-associated SNPs 

also associate with disease phenotypes, suggesting that one mechanisms linking human 

genetic variation with disease may be through modulation of commensal microbes138–141. 

Suggested associations include Ruminococcus flavefaciens and hypertension, Clostridium 
and platelet count142, and Lachnospiraceae and several autoimmune diseases138, however 

these associations require more validation, and remain to be proven experimentally. While 

human genetic variation may contribute to inter-individuality in gut microbiota, this may be 

relatively minor compared with other determinants of microbial composition143.

Mechanisms linking gut microbiota to development of cardiometabolic 

disease.

Gut microbiome composition has been found to associate with numerous complex 

diseases, including cardiometabolic disease144. However, the potential pathways linking 

gut microbiota to cardiometabolic health are not fully understood. There are likely several 

distinct mechanisms whereby commensal microbes can influence disease pathogenesis, 

including through 1) modulation of nutrient and energy availability, as described above; 

2) activation of immune responses; 3) modulation of gut barrier integrity; and 4) systemic 

effects via microbe-mediated signaling molecules.
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Commensal microbiota and innate immune function:

The interaction between microbes and the host immune system is complex. In a healthy gut, 

multiple factors allow the intestinal immune system and commensal microbes to coexist in 

a mutually tolerant state145. Dysregulation of this balance, leading to uncontrolled immune 

activation, may partly underlie the chronic systemic low-grade inflammation associated with 

cardiometabolic diseases146. Immune activation occurs through direct interaction between 

host cells and microbes, and through microbe-generated signaling molecules. Intestinal 

host:microbe homeostasis is thought to be promoted through a balance of effector and 

suppressor arms of the adaptive immune system; commensal microbes target multiple 

antigen-presenting cells, promoting expansion of anti-inflammatory T regulatory cells (Treg), 

or pro-inflammatory T helper 17 (TH17) depending on the setting147–149. This is mediated 

through multiple mechanisms. Specific species, including segmented filamentous bacteria, 

activate TH17 cells, which increases intestinal inflammation, and protects against intestinal 

pathogens150. However other species, including Lactobacillus murinus, have been suggested 

to inhibit pathogenic TH17 cell activation, but are depleted in the setting of a high-salt 

diet151. While TH17 activation in some settings may improve host immune responses 

and healing152,153, there may also negative consequences on host immune function 

from pathogenic TH17 activation, including hypertension, inflammatory and autoimmune 

disease154,155. Clostridium species have been found to induce Treg cells156,157. The SCFA 

butyrate induces tolerogenic dendritic cells and promotes Treg cells158–161. Other microbe-

derived molecules may similarly affect T cell activity, including bile acids162,163. Innate 

immune system and T cell development during early life may have particular importance in 

establishing antigen tolerance164–166, further highlighting the importance of early microbial 

colonization in infancy and childhood on lifelong health167. Changes in immune function 

occurring at subsequent life stages including pregnancy168, may also disrupt the balance 

between microbes and the innate immune system. In addition, dietary factors, including 

intake of sodium, can affect host:microbe homeostasis, leading to activation of TH17 

cells, promoting formation of pro-inflammatory isolevuglandins and increased risk of 

hypertension169,170.

Host:microbe interaction in gut barrier integrity:

In a healthy intestine, colonic goblet cells produce a thick mucus barrier which provides 

some separation between host cells and microbes171. The mechanisms determining mucus 

secretion remain incompletely defined, but are in part regulated by activation of autophagy 

and consequent reduction of endoplasmic reticulum (ER) stress, in a microbiota-dependent 

manner172. The presence of butyrate-producing bacteria promotes mucus production by 

goblet cells173. However, in the absence of sufficient SCFA availability, potentially due to 

low-fiber diet or dysbiosis, there is reduction in the mucosal barrier, linked both to reduced 

mucus production173 and digestion of the mucosal barrier by commensal microbes174. 

While a certain amount of mucus digestion by microbes is expected and may even be 

beneficial to the microbial ecosystem and epithelial health175, excessive degradation can 

promote inflammation within the intestinal wall, in addition to reduction in epithelial tight 

junctions, leading to a “leaky” gut barrier and increased risk of pathogenic infection and 

translocation of intestinal products176–178. The presence of bacteria or bacterial products 

such as lipopolysaccharide (LPS) entering through the portal vein then activates systemic 
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immune responses, leading to a pro-inflammatory state with altered LPS-responsiveness, 

and increased risk of cardiometabolic disease, heart failure, and adverse outcomes179–182.

Microbial Metabolism:

Commensal microbes produce a large variety of metabolites, some of which have already 

been demonstrated to be of relevance to human health. However, our understanding of 

the specific pathophysiological relevance of the full spectrum of microbial-metabolites 

is still in its infancy. Several microbe-derived metabolites have been identified as being 

of particular importance to cardiometabolic health and disease149,183,184. Trimethylamine 

N-oxide (TMAO) is a metabolite produced collaboratively by the host and microbiota, 

where microbes generate trimethylamine (TMA) from dietary precursors (including choline, 

phosphatidylcholine, carnitine and betaine)185, and the host then converts TMA into 

TMAO, which has been shown to increase atherosclerosis186–188 and other cardiovascular 

diseases183. The production of TMA is dependent on the presence of microbial genes, 

collectively known as the gbu gene cluster, which catalyze intermediate steps, such 

as the conversion of carnitine to TMA via γ-butyrobetaine189,190. Another microbe-

dependent metabolite, phenylacetylglutamine (PAG), which is derived from phenylalanine, 

has also been shown to associate with cardiovascular disease191,192. Production of this 

metabolite is dependent on the presence of microbial genes encoding enzymes in the 

phenylpyruvate:ferredoxin oxidoreductase (PPFOR) and phenylpyruvate decarboxylase 

(PPDC) pathways191. PAG has been shown to modulate adrenergic receptor signaling, 

and is linked to increased risk of thrombosis and heart failure192,193. Indole-3-propionic 

acid (IPA) is a microbe-derived metabolite of tryptophan, which acts as an antibiotic, 

and has been suggested to be protective in disease, exhibiting anti-inflammatory and 

antioxidant function194,195, and modulation of cholesterol efflux196. Higher IPA has 

been associated with higher gut microbiome diversity197. Other tryptophan metabolites, 

including kynurenine, are also modulated by microbiota198 and may associate with 

cardiometabolic disease199,200 as well as with neuropsychiatric disease201, highlighting 

potential mechanistic underpinnings of the known comorbidity of cardiovascular and 

neuropsychiatric disease202. The production and abundance of IPA and other indole-derived 

tryptophan metabolites is dependent on the presence of specific microbial genes203. Host-

derived bile acids are important for nutrient metabolism within the digestive tract, but 

also alter microbial composition and function204. Bile acids are modified by microbiota 

into secondary bile acids205, which can act as systemic signaling molecules modulating 

inflammation and metabolism206,207. The production of secondary bile acids, and potential 

downstream pathogenicity, are dependent on the presence of microbial species possessing 

bile salt hydrolase activity208,209. Several microbe-derived metabolites act as uremic 

toxins, including TMAO and IPA, in addition to other protein-derived metabolites210,211. 

Communication between the host and microbial metabolism can occur at any point 

throughout the lifetime, but may be particularly important during early life. As mentioned 

earlier, the evidence supporting pre-natal microbial colonization is limited. However, 

maternal microbes may affect fetal development through metabolic signaling that crosses 

the placenta212. SCFAs were shown to act on embryonic receptors (GPR41 and GPR43), 

altering cell differentiation and development across multiple tissues, with long-lasting 

effects on metabolism212. Other microbial metabolites, including amino acid-derived 
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metabolites may also cross the placenta, with potential effects on fetal development213,214. 

Further, there is growing evidence for a wide variety of other metabolites, produced through 

the action of microbiota on dietary nutrients, that may affect host health, including amino 

acids215, soy-derived isoflavones216–219, cannabinoids220, and phenolic acids221, in addition 

to a large number of pharmacological and host metabolites that may be modulated by 

microbiota110,222–225.

Association between microbial metabolism and early development of 

cardiometabolic disease.

Effects of microbiota on gut barrier integrity and inflammation, both local and systemic, 

have the potential to alter cardiometabolic disease risk broadly, through modulation of 

body weight and energy metabolism, insulin and glucose homeostasis, hypertension, 

dyslipidemia, and vascular function. As described below, microbiota have been linked to 

multiple risk mechanisms underlying cardiometabolic disease226, many of which likely 

precede overt CVD or diabetes. However, the relative importance of each mechanism 

remains to be further understood, and there may be considerable heterogeneity in effects, 

potentially linked to host genetic background or other factors.

The effects of gut microbiota on body weight regulation, inflammation, and insulin 
homeostasis:

Obesity and inflammation are recognized as important contributors to the development of 

subsequent cardiometabolic diseases, and may be one of the earliest symptoms of metabolic 

dysregulation227. Cross-sectional studies have identified differences in gut microbiota 

between lean and obese individuals across the lifespan80,81,83,228,229, and in the setting 

of diabetes230–232. Further, FMT experiments suggest causality, with microbiota from obese 

individuals promoting obesity in recipients84,85,233. Fecal transplants have also been shown 

to modulate insulin sensitivity in humans, however whether these effects persist over the 

long-term is unknown234,235. As discussed, the mechanisms are incompletely understood, 

but may relate in part to the effects of microbiota on energy harvesting capacity79,86,87,236. 

Further, effects of microbiota on inflammation may, by itself, be sufficient to promote 

metabolic dysregulation and obesity146,227,237. In particular, interaction between microbes 

and the gut immune system during critical periods of development, including early life, may 

have long-lasting effects on immune programming165–167,238–240.

Relationship between gut microbiota and hypertension:

Gut microbiota have been reported to modulate blood pressure through several potential 

mechanisms. Blood pressure elevation in response to dietary sodium has a contribution 

by gut microbiota, including Lactobacillus species, through modulation of TH17 cells and 

production of isolevuglandins151,169,170,241.Multiple bacterial species have been associated 

with hypertension, including Lactobacillus, Klebsiella, Parabacteroides, Desulfovibrio, and 
Prevotella241,242, although more validation and functional work is needed to delineate causal 

associations. Specific microbiota, including Romboutsia, Turicibacter, Ileibacterium, and 
Dubosiella, have affinity to prompt host immunoglobulin A (IgA) binding, which may 

promote the development of hypertension, potentially through the gut-brain axis243–245. 
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Many of the aforementioned diet-derived and microbe-mediated metabolites, including 

TMAO and SCFAs, also play a role in modulating blood pressure246. For example, microbe-

derived SCFAs bind to olfactory and G protein-coupled receptors (Olfr78 and Gpr41) 

in the kidney and vascular endothelium to modulate vasodilation, heart rate and blood 

pressure247–249.

Effects of gut microbiota on lipid metabolism:

Observational studies have identified potential relationships between gut microbiota and 

circulating lipids and lipoproteins250–254, with microbiota accounting for an estimated 4–

6% of the variation in TG and HDL cholesterol255, and individual microbiota associating 

with specific lipoprotein subclasses in obese individuals256. Gut microbiota may affect lipid 

metabolism directly through modulation of lipids within the gut and systemically257, with 

gut microbial production of SCFAs serving as the precursor for hepatic synthesis of longer-

chain monounsaturated fatty acids and glycerophospholipids258. Microbiota have also been 

shown to mediate transformation of cholesterol259. Mendelian Randomization analysis has 

also been used to support a potential causal pathway between specific gut microbiota and 

dyslipidemia260. In contrast, a reverse relationship is not supported, and elevated plasma 

lipid levels may not significantly affect gut microbiota; however bile acids may mediate 

relationships between microbiota and lipids261.

Gut microbial signaling modulates the development of hepatic steatosis:

Non-alcoholic fatty liver disease (NAFLD) accounts for a growing share of chronic liver 

disease in children and young adults262. NAFLD has been linked with atherosclerosis and 

left ventricular dysfunction in children and adolescents263 and there is growing evidence that 

early-life NAFLD carries life-long cardiometabolic health implications. Maternal obesity 

is associated with the development of NAFLD in childhood and early adulthood, partly 

due to changes in the intestinal microbiota264–267. Offspring of obese mice had altered 

intestinal microbiota and a worsened NAFLD phenotype relative to offspring of lean 

mothers266. Mice that received fecal transplants from infants born of obese mothers had 

a higher intestinal Bacteroidetes-to-Firmicutes ratio and these intestinal microbiome changes 

were associated with higher hepatic expression of inflammatory genes and higher hepatic 

triglyceride accumulation268. Studies in later childhood showed that children with NAFLD 

had significantly different intestinal microbiota characterized by lower alpha diversity and 

higher Firmicutes-to-Bacteroidetes ratio, as well as higher abundance of Bradyrhizobium, 

Peptoniphilus, Anaerococcus, Propionibacterium acnes, Dorea and Ruminococcus and lower 

abundance of Oscillospira, Gemmiger and Rikenellaceae269–271. Additionally, Oscillospira, 
Gemmiger, and Bacteroidetes abundance as well as F/B ratio interact with PNPLA3 
polymorphisms to contribute to the severity of NAFLD in children and adolescents270. 

Similar pathogenic changes in microbiota are associated with obesity and high fat diet 

in later childhood272. Changes in intestinal microbiota contribute to NAFLD pathogenesis 

through a variety of mechanisms: increased intestinal permeability and translocation of 

proinflammatory bacterial products268, changes in bile acid metabolism273,274, endogenous 

alcohol production275 and altered microbial metabolism of lipids, carbohydrates and amino 

acids276–279.There are currently no FDA-approved treatments for pediatric NAFLD and 

dietary and lifestyle interventions remain the standard of care. Clinical trials targeting the 
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microbiome in children and adolescents with NAFLD have had promising results. Children 

with NAFLD treated with probiotics (VSL#3) for 4 months had significant improvement 

in hepatic steatosis compared to placebo controls280. Similarly, children with NAFLD 

treated with a probiotic containing Bifidobacterium and Lactobacillus spp. for 12 weeks 

had improvement in hepatic steatosis in addition to improvement in LDL and triglyceride 

levels and serum aspartate aminotransferase (AST)281.

Gut microbial effects on cardiovascular disease:

Several studies have reported associations between microbiota and atherosclerosis282,283. 

As mentioned previously, TMAO associates with atherosclerosis and cardiovascular events, 

through mechanisms linked to atherothrombotic effects on platelet hyperreactivity and 

vascular function284,285. Down-regulation of IPA has been found to associate with coronary 

artery disease and atherosclerosis196, as well as with peripheral artery disease286. However, 

in mice fed a Western Diet, supplementation with IPA did not ameliorate the development 

of cardiometabolic disease287. Beyond metabolites, microbial nucleic acids have been 

found within lipoproteins288, suggesting that bacteria or their products may be carried 

within the circulation. Further, analysis of atherosclerotic plaque has identified microbial 

DNA within plaque289, suggesting that translocation of microbiota or their products to 

the circulation, whether from intestinal or oral sources, may directly increase plaque 

formation. While intriguing, at present there is still limited evidence to suggest that live 

microbes themselves cause plaque formation directly290, and atherosclerosis occurs even 

in the absence of live microbes291,292. However, plaque formation or expansion may be 

mediated by microbe-derived small RNAs, which can be carried by LDL cholesterol, 

and activate macrophages, potentiating development of atherosclerosis293. Microbiota, as 

assessed through microbiome composition, have been implicated in multiple cardiovascular 

diseases, including pulmonary arterial hypertension294, abdominal aortic aneurysm295, heart 

failure296, heart failure with preserved ejection fraction (HFpEF)297, heart failure with 

reduced ejection fraction (HFrEF)298, and coronary artery disease299. However, most studies 

have included relatively small sample sizes, with little or no replication, leaving considerable 

uncertainty surrounding the clinical or mechanistic relevance of specific findings. While 

some of these associations are likely mediated by microbial metabolites, and effects on 

inflammation, lipid metabolism and vascular function, as previously discussed179,196,284, the 

specific pathways linking microbiota to individual CVDs remain to be established. There 

is also some evidence that presence or absence of microbiota can alter gene expression in 

kidney and other tissues300–302, which remains to be further characterized and explored. 

Much could be learned through increased efforts to characterize microbiome composition 

and function across disease development in robust metagenomic and metatranscriptomic 

studies with large sample sizes, including replication and validation of novel associations.

Interaction between the gut microbiome and viral infection in modulation of 

cardiometabolic risk.

There is evidence to suggest that the presence of viral pathogens may potentiate negative 

effects of gut microbiota on cardiometabolic disease. Persons with HIV (PWH) have a 

twofold greater risk of developing CVD relative to persons without HIV, independent 
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of Framingham cardiovascular risk factors303. HIV infection is associated with increased 

intestinal permeability304,305 that permits translocation of pro-inflammatory bacterial 

products306 that may increase systemic inflammation and cardiovascular disease risk. This 

may be due to lower production of microbiota-produced SCFA in PWH307 which are 

integral for maintaining intestinal barrier function308. Additionally, levels of the microbial 

metabolite TMAO increase with antiretroviral therapy (ART) initiation and are associated 

with carotid plaque burden in PWH309,310.

Following the emergence of SARS-CoV-2, several studies have focused on the role of 

the gut microbiota in COVID-19 and post-acute COVID-19 syndrome (PACS, or Long-

COVID). The gut microbiota of COVID-19 patients has been reported to be altered when 

compared with uninfected individuals311, and microbiota have been found to associate with 

severity of infection and outcomes within COVID-19 patients312–314. Specific microbes 

were reported to associated with PACS, and with various symptoms, including respiratory 

and neuropsychiatric315. Whether SARS-CoV-2 interacts with the gut microbiota to 

modulate COVID-19-related CVD risk remains unknown316,317.

Best practices and state of the art methods for microbiome clinical 

translation.

Microbiome research has undergone rapid expansion over the past two decades, but many 

existing microbiome studies suffer from limitations which have impeded interpretability and 

clinical translation. Some of these inherent limitations are easier to address than others. 

Early issues in methods and study design, and in reporting of results, are now largely 

addressable through adherence to best practices such as the Strengthening The Organization 

and Reporting of Microbiome Studies’ (STORMS) guidelines318, including careful study 

design, consideration of confounders, standardized protocols, and well-selected controls319. 

While early studies mostly applied 16S rRNA sequencing to approximate taxa, the costs 

for whole metagenome sequencing are now broadly equivalent to 16S profiling, and 

offer considerable advantages including more precise taxonomical classification to the 

species level, and the possibility to infer functionality based on microbial genes320,321. 

However, it remains important to also use direct measurement of microbial gene expression 

through metatranscriptomics, and metabolite measurement to accurately assess microbiome 

function322. Sample sizes in many clinical studies are still relatively small, often including 

fewer than 100 individuals, which limits power and generalizability. However, this issue 

may be one of the easiest to address: sequencing costs continue to drop, removing 

some of the financial considerations that previously limited the size of studies. Further, 

stool is a highly accessible tissue, and several studies have demonstrated that previous 

barriers relating to sample collection, transportation, and cold storage, can be eliminated 

using convenient collection and preservation methods that allow for non-invasive sample 

collection and room temperature transportation and storage323. This also alleviates an 

additional limitation, which relates to the variability of samples obtained cross-sectionally. 

While there is relative stability in microbiome profiles over time, there are both stochastic 

and biological differences in gut microbiome samples obtained at different times. Inclusion 

of multiple samples over short and long-term follow-up can greatly improve the quality of a 
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study. While overall barriers relating to recruitment and cost of clinical and epidemiological 

studies remain, future studies can and should endeavor to maximize sample sizes and obtain 

repeated samples where possible for longitudinal analysis. However, some limitations are 

more difficult to overcome. As with other types of studies, there remains over-representation 

from certain population groups and geographical regions. Greater efforts are needed 

to ensure diversity in sampling and representation, including children and adolescents. 

Given the complexity of the relationships between microbiota and disease, there can be 

considerable confounding due to measured and unmeasured factors that affect microbial 

composition, and can lead to artifacts. These can be challenging to identify, but can be 

addressed in part through the strategies already discussed to maximize rigor and power, 

and by inclusion of external validation cohorts. Because microbes engage in horizontal 

gene transfer, there is a fundamental limitation in how accurately we can align sequence 

reads and define species, particularly when comparing across different studies324. Further, 

determining the relative importance of individual microbial species within the context of the 

holobiont remains a complex challenge. The use of complex synthetic microbiomes may be 

one way to bridge reductionist and holistic approaches325,326, and to allow for better-defined 

FMT-based therapeutics. In addition to metagenomic sequencing, additional approaches 

including metatranscriptomics can shift focus from presence or absence of specific species 

or microbial genes, towards functional read-outs that may have more biological relevance. 

Large-scale metabolomic profiling of stool, or of microbial metabolites in circulation using 

NMR or Mass Spectrometry may also shed more light on microbiome function, but may 

require rapid processing and careful handling of samples327–329. While animal studies and 

basic mechanistic studies are very important, to further advance clinical translation, we will 

require a greater emphasis on studies that test microbiome-targeted interventions, including 

those using pre- and probiotics, FMT, and targeted therapeutics to alter microbiome 

composition or function330–332. Pharmacological manipulation of microbes, to “drug the 

bugs” is a promising avenue that may have advantages in providing host benefit, with 

fewer side effects than traditional pharmacological approaches284,333,334. Overall, the field 

would be strengthened by a greater focus on translational studies that combine observational 

findings with mechanistic interrogation, or clinical implementation.

In summary, the emerging wealth of literature on gut microbiota and microbial metabolism 

support clear roles for microbiota in early development of cardiometabolic disease. While 

much remains unknown, improvements in clinical trial design and increased focus on rigor 

and reproducibility in microbiome studies are likely to support significant advances in the 

field, leading towards improved clinical utility of microbiome-related biomarkers, and future 

therapeutic implementation of microbiome-targeted therapies.
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Figure 1. Determinants of Gut Microbiome Composition.
Many factors influence the composition of the gut microbiota. Some of these are determined 

very early in life, and are not modifiable later in life, including individual genetic 

background, delivery method, and early infant feeding method (A). Other determinants are 

variable throughout life, and potentially modifiable, including diet and use of medications 

(B). Other factors are similarly variable throughout life, but potentially more difficult to 

modify, including persistent viral infection, the local environment and broader geographical 

environment (C).

HIV: Human Immunodeficiency Virus; SARS-CoV-2: Severe acute respiratory syndrome 

coronavirus 2.
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Figure 2. Mechanisms linking microbial metabolism to host physiology.
Gut microbiota may cause cardiometabolic disease through diverse mechanisms including 

A) modulation of energy and nutrient availability; B) activation of immune responses; C) 

modulation of gut barrier integrity; and D) systemic effects via microbe-mediated signaling 

molecules. TMAO: Trimethylamine N-oxide; IPA: Indole-3-propionic acid. TH17: T helper 

17 cells.
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