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Abstract: In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were de-
signed and synthesized based on compounds previously reported, and their antibacterial activity was
investigated. Then their antibacterial activity was investigated for the first time. Preliminary screen-
ing results showed that all these compounds exhibited antibacterial activity against gram-positive
bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j
exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration
(MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode
between active compound 7j and the target. Interestingly, these compounds could not only hamper
the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments.
All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the
potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.

Keywords: 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives; antibacterial activity; molecular
docking; antibiofilm activity; drug resistance

1. Introduction

Bacterial infections can lead to skin suppuration, bacteremia, local and systemic inflam-
mation, and other serious diseases [1]. With the discovery and development of antibiotics,
revolutionary changes have taken place in the treatment of bacterial infections, effectively
reducing infection rates and mortality. However, the irregular use of antimicrobial drugs
has led to the emergence of various drug-resistant strains, which are considered dangerous
and stubborn clinical pathogens that cause difficult-to-treat, life-threatening illnesses [2].
Furthermore, it has been found in clinical studies that many pathogenic bacteria can adhere
to the surfaces of objects, secrete metabolites, and generate extracellular polymeric sub-
stances (EPS), thus forming biofilms with a “cell population-metabolite” structure, which
can effectively protect strains and produce drug resistance, leading to a high incidence
of nosocomial infection and a high treatment cost [3,4]. Although great efforts have been
made to create novel and effective antimicrobial methods, the pace of development is too
slow to meet clinical needs [5–8].

At present, many pharmaceutical chemists are trying to develop new antibacterial drugs
with novel structures, unique mechanisms of action, and long-term effectiveness [9–11]. Ox-
azolidinones are a class of chemosynthetic antibacterial drugs with a brand-new chemical
structure, similar to sulfonamides and quinolones, which are used to treat skin and tissue
infections, pneumonia, untreatable bacterial infections, and other infectious diseases caused
by gram-positive bacteria [12]. Oxazolidinones have been widely used and studied because of
their unique antibacterial mechanism, that is, inhibition of protein synthesis at the initial stage
and no cross-resistance with other antibacterial drugs [13–16]. Moreover, some oxazolidinone
analogues have been marketed previously [17–19]. Although the initial effect is satisfactory,
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drug resistance appears after long-term use, accompanied by thrombocytopenia and other
adverse reactions [20]. This has prompted pharmaceutical chemists to continue to improve
oxazolidinone antimicrobials with higher antimicrobial activity and sustained sensitivity [21–29].

Our research group previously modified the structure of linezolid (Figure 1) [30–34],
found that compounds 1 and 2 have efficient antibacterial activity for S. aureus, Streptococcus
pneumoniae, Enterococcus faecalis, etc. (MICs = 4~64 µg/mL) and exciting antibiofilm activity
(MBIC = 0.5~8 µg/mL). The vinyl structure in these molecules is retained and cyclized
to form a new aromatic heterocyclic ring. Considering the unique electronegativity of
pyrimidines and their ability to form hydrogen bonds [35], pyrimidine aromatic rings
were introduced into the structure [36]. Accordingly, a series of 3-(5-fluoropyridine-3-yl)-2-
oxazolidinone derivatives were synthesized and tested for antibacterial activity (Figure 2).

Molecules 2023, 28, x FOR PEER REVIEW 2 of 17 
 

 

skin and tissue infections, pneumonia, untreatable bacterial infections, and other infec-
tious diseases caused by gram-positive bacteria [12]. Oxazolidinones have been widely 
used and studied because of their unique antibacterial mechanism, that is, inhibition of 
protein synthesis at the initial stage and no cross-resistance with other antibacterial drugs 
[13–16]. Moreover, some oxazolidinone analogues have been marketed previously [17–
19]. Although the initial effect is satisfactory, drug resistance appears after long-term use, 
accompanied by thrombocytopenia and other adverse reactions [20]. This has prompted 
pharmaceutical chemists to continue to improve oxazolidinone antimicrobials with higher 
antimicrobial activity and sustained sensitivity [21–29]. 

Our research group previously modified the structure of linezolid (Figure 1) [30–34], 
found that compounds 1 and 2 have efficient antibacterial activity for S. aureus, Streptococcus 
pneumoniae, Enterococcus faecalis, etc. (MICs = 4~64 µg/mL) and exciting antibiofilm activity 
(MBIC = 0.5~8 µg/mL). The vinyl structure in these molecules is retained and cyclized to form 
a new aromatic heterocyclic ring. Considering the unique electronegativity of pyrimidines and 
their ability to form hydrogen bonds [35], pyrimidine aromatic rings were introduced into the 
structure [36]. Accordingly, a series of 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives 
were synthesized and tested for antibacterial activity (Figure 2). 

 
Figure 1. The structure of linezolid. 

 
Figure 2. Optimization strategy of novel oxazolidinone derivatives. 

Figure 1. The structure of linezolid.

Molecules 2023, 28, x FOR PEER REVIEW 2 of 17 
 

 

skin and tissue infections, pneumonia, untreatable bacterial infections, and other infec-
tious diseases caused by gram-positive bacteria [12]. Oxazolidinones have been widely 
used and studied because of their unique antibacterial mechanism, that is, inhibition of 
protein synthesis at the initial stage and no cross-resistance with other antibacterial drugs 
[13–16]. Moreover, some oxazolidinone analogues have been marketed previously [17–
19]. Although the initial effect is satisfactory, drug resistance appears after long-term use, 
accompanied by thrombocytopenia and other adverse reactions [20]. This has prompted 
pharmaceutical chemists to continue to improve oxazolidinone antimicrobials with higher 
antimicrobial activity and sustained sensitivity [21–29]. 

Our research group previously modified the structure of linezolid (Figure 1) [30–34], 
found that compounds 1 and 2 have efficient antibacterial activity for S. aureus, Streptococcus 
pneumoniae, Enterococcus faecalis, etc. (MICs = 4~64 µg/mL) and exciting antibiofilm activity 
(MBIC = 0.5~8 µg/mL). The vinyl structure in these molecules is retained and cyclized to form 
a new aromatic heterocyclic ring. Considering the unique electronegativity of pyrimidines and 
their ability to form hydrogen bonds [35], pyrimidine aromatic rings were introduced into the 
structure [36]. Accordingly, a series of 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives 
were synthesized and tested for antibacterial activity (Figure 2). 

 
Figure 1. The structure of linezolid. 

 
Figure 2. Optimization strategy of novel oxazolidinone derivatives. Figure 2. Optimization strategy of novel oxazolidinone derivatives.

2. Results and Discussion
2.1. Chemistry

According to the steps described in the literature [37], intermediate 4 was produced
through a multi-step reaction by commercially purchased compound 3. After removing the
Boc protection group, compound 4 was coupled with 2,4-dichloropyrimidine to produce
intermediate 5. The intermediate 5 was linked with different amines to generate the final
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products 6a-m, as displayed in Scheme 1. Furthermore, the final products 7a-n were
obtained by a similar method.
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Scheme 1. Synthesis of target compounds 5, 6a-m and 7a-n.

2.2. Antibacterial Activity Assay
2.2.1. Minimum Inhibitory Concentration against Standard Strains

Intermediate 5 and further derivatives 6a-m were synthesized and tested against a
panel of gram-positive bacteria using the double dilution method. As shown in Table 1, all
these compounds had moderate antibacterial activity against all six tested gram-positive
bacteria but no activity against gram-negative bacteria (E. coli). The MICs of compounds
6a-m were 2~32 µg/mL against gram-positive bacteria, while the MIC was 1~2 µg/mL
when R1 = Cl (5), which had better antibacterial activity. It was speculated that the cavity
of the target near the R1 side chain was not large enough for these substituent groups.

Table 1. The MICs (µg/mL) of compounds 5, 6a-m against 7 standard strains. (MIC: minimal
inhibit concentration).
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centration). 
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a Sa, Staphylococcus aureus (ATCC25923); b Sp, Streptococcus pneumoniae (ATCC49619); c Ef, Enterococcus fae-
calis (ATCC29212); d Bs, Bacillus subtilis (ATCC6633); e Sx, Staphylococcus xylosus (ATCC35924); f Lm, Listeria
monocytogenes (ATCC19111); g Ec, Escherichia coli (ATCC25922).

After that, a series of pyrimidine derivatives, 7a-n without a further substituted
group, was synthesized, and their antibacterial activity was tested (Table 2). All these
compounds, except 7m, had better antibacterial activity than compounds 1 and 2, but
these compounds still exhibited no effect against gram-negative bacteria. Among them,
compound 7j exhibited the best activity with a MIC of 0.25~1 µg/mL. First, while keeping
X1 = N, three substituent groups on the pyrimidine ring (R1 = Cl, NH2, or R1 = R3 = Cl) were
examined (5, 7e and 7h). All of them exhibited better activities than the compounds with
X1 = C (7b, 7f and 7g). Then, by comparing the activity of chlorine-substituted compounds
5, 7a, 7h, 7j and 7n, it was found that the number of chlorine atoms had no significant
influence on activity. Meanwhile, keeping X1, X2, R1, and R3 constant (X1 = N, X2 = C,
R1 = Cl, and R3 = H), F, Cl, Br, and methyl substituent groups on R4 were examined. All
these derivatives displayed similar biological activities (MICs = 0.25~4 µg/mL), indicating
that F, Cl, Br, or methyl were acceptable as substituents.
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Table 2. MICs (µg/mL) of compounds 7a-n against 7 standard bacteria. (MIC: minimal inhibit
concentration).
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7b C N Cl H H - 2 1 2 2 2 8 >128
7c C N H CH3 H - 2 2 4 2 1 1 >128
7d C N H Br H - 2 4 2 4 2 2 >128
7e N C NH2 - H H 0.5 0.5 1 1 1 0.5 >128
7f C N NH2 H H - 2 1 1 1 2 4 >128
7g C N Cl H Cl - 2 4 8 16 2 2 >128
7h N C Cl - Cl H 2 2 1 2 1 2 >128
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7l N C Cl - H CH3 0.5 1 4 4 2 0.5 >128

7m N C CH3S - H C2H5OCO 32 32 32 32 32 32 >128
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a Sa, Staphylococcus aureus (ATCC25923); b Sp, Streptococcus pneumoniae (ATCC49619); c Ef, Enterococcus fae-
calis (ATCC29212); d Bs, Bacillus subtilis (ATCC6633); e Sx, Staphylococcus xylosus (ATCC35924); f Lm, Listeria
monocytogenes (ATCC19111); g Ec, Escherichia coli (ATCC25922).

2.2.2. Minimum Inhibitory Concentration against Drug-Resistant Strains

After evaluating the antibacterial potential of these derivatives, they were further
tested against clinically isolated resistant bacteria. As shown in Table 3, these MIC results
show that compounds 7i-l had significant antibacterial activity against MRSA and VRE but
no effect against linezolid-resistant strains.

Table 3. The MICs (µg/mL) of compounds 7i-l against four drug-resistance bacteria. (MIC: minimal
inhibit concentration).

Compound MRSA a VRE b LRSA c LRSP d

7i 1 1 >128 >128
7j 1 1 >128 >128
7k 1 1 >128 >128
7l 1 1 >128 >128

linezolid 2 2 >128 >128
a MRSA, Methicillin-resistant Staphylococcus aureus; b VRE, Vancomycin-resistant Enterococcus; c LRSA, Linezolid-
resistant Staphylococcus aureus; d LRSP, Linezolid-resistant Streptococcus pneumoniae.

2.3. Molecular Docking Study

To understand binding site, state, conformation, and interaction, the promising com-
pound 7j was selected for further docking study with the 50S ribosomal subunit from
Haloarcula Marismortui (PDB ID: 3CPW) [38,39]. As shown in Figure 2, the compound that
expanded linearly bound to the peptidyl transferase center (PTC) of the 50S ribosomal
subunit. The potential compound existed in the cavity of PTC, which was composed by
U2619, U2540, G2539, U2583, U2538, C2486, G2101, and A2485. Moreover, the H atom and
O atom on the 5-side chain amide group of the oxazolidinone ring formed a hydrogen bond
with A2485 and A2636, respectively. In addition, the pyrimidine ring of compound 7j and
the pyrimidine ring formed π-π conjugations with C2486 and U2538.

As can be seen from Figure 3, the 2-Cl atom on the pyrimidine substituent extended
into a shallow pocket, which was too small to accommodate other groups on the pyrimidine.
That was probably the reason why compounds 6a-m had worse antibacterial activity.
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Meanwhile, there was a larger space between the 5-Cl atom on the pyrimidine substituent
and the surface of the cavity, which might be the reason why compounds 7i-m had a better
antibacterial effect.
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2.4. Inhibition of Biofilm Formation

Using the microtiter dish biofilm formation assay [40], four potent compounds were
selected for further evaluation of their effects on bacterial biofilm formation against four
drug-resistant strains. As shown in Table 4, the results show that all these compounds
significantly inhibited the formation of biofilms, with the minimum biofilm inhibitory
concentrations (MBICs) of 0.5 µg/mL against MRSA and VRE and 1~4 µg/mL against
LRSA and LRSP. The above results indicate that these compounds can significantly inhibit
the growth of biofilm, and it could be speculated that they have stable effects and do not
easily develop resistance to bacteria. Meanwhile, the results show that all compounds
are more effective than linezolid against four drug-resistant strains, which indicates all
compounds have different mechanisms with linezolid.

Table 4. MBICs (µg/mL) of compounds 7i-l against 4 drug-resistant bacteria.

Compound MRSA a VRE b LRSA c LRSP d

7i 0.5 0.5 2 4
7j 0.5 0.5 1 4
7k 0.5 0.5 1 4
7l 0.5 0.5 2 4

Linezolid 64 16 128 128
a MRSA, Methicillin-resistant Staphylococcus aureus; b VRE, Vancomycin-resistant Enterococcus; c LRSA, Linezolid-
resistant Staphylococcus aureus; d LRSP, Linezolid-resistant Streptococcus pneumoniae.

2.5. Cytotoxicity Determination

When a chemical substance is used to treat infection, it may affect the physiological
activity of both cells and bacteria, thereby reducing the cell’s survival rate [41]. Therefore, it
was necessary to evaluate the toxicity of active derivatives. The cytotoxicity of compound
7j against the Hela cell line was detected via the MTT colorimetric assay, as shown in
Table 5. The result shows that the cytotoxicity of the tested compound increased in a
dose-dependent manner, and cell survival at 256 µg/mL and lower concentrations was
higher than 85%. Considering that the cytotoxicity only appeared above 256 µg/mL, which
was 64~512 times that of its MICs. Consequently, the compound 7j has the potential to be
further developed as an antibacterial drug.
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Table 5. Analyzing the toxicity of compound 7j against human cervical-cancer cells (Hela) using the
MTT assay.

Concentration (µg/mL) 32 64 128 256 500 1000

cell viability (%) 100 97.5 96.9 93.5 33.3 7.3

3. Experimental Section
3.1. Materials and Methods

All the chemicals and solvents used in this study were of analytical grade. All the
reagents were purchased from Tianjin Tianli Chemical Reagent Co., Ltd., Tianjin, China.
All solvents and chemicals were purified by standard methods. Unless otherwise stated,
the synthesis of all compounds was monitored by thin layer chromatography (TLC) and
purified by rapid column chromatography. Thin layer chromatography (TLC) was per-
formed on silica gel G plates (Taizhou Luqiao Sijia Biochemical Plastic Products Factory,
Taizhou, China). The melting point (m. p.) of all products was measured by the SGW X-4A
micro-melting point meter apparatus. All compounds were tested to verify their purity by
HPLC (Shimadzu Corporation, Kyoto, Japan). Using the Diamonsil C18 column, the mobile
phase was acetonitrile and water of different gradients at a flow rate of 1.0 mL•min−1.
The column temperature was set at 35 ◦C and the injection volume of each sample was
10 µL. Every sample was quantitatively diluted with methanol to 1 mg•mL−1. 1H NMR
spectra (600 MHz) and 13C NMR spectra (150 MHz) were recorded on a Bruker Advance
spectrometer with tetramethyl-silane (TMS) as the internal standard and DMSO-d6 as
the solvent. The used standard strains were purchased from the American Type Culture
Collection (ATCC), and the drug-resistant strains were isolated from clinical sources. The
Hela cells were donated by Dr. Tao Wang (Qiqihar Medical University).

3.2. Chemistry
3.2.1. Synthesis of (S)-N-((3-(6-(4-(2-chloropyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-
yl)-2-oxooxazolidin-5-yl)methyl)acetamide(5)and(S)-N-((3-(6-(4-(4-chloropyrimidin-2-
yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazolidin-5-yl)methyl)acetamide (7b)

A solution of compound 4 (218 mg, 0.5 mmol) in DCM (5 mL) at 0 ◦C was dropwise
added to TFA (1 mL) and then stirred for 2 h. After the reaction was complete, TEA
was added to the solution at 0 ◦C to adjust pH. The filtrate was concentrated in vacuo.
To a solution of the concentrate in ethanol (3 mL) was added TEA (0.14 mL, 1 mmol)
and 2, 4-dichloropyrimidine (97 mg, 0.65 mmol), and then stirred at reflux overnight.
After the reaction was complete and concentrated, the mixture was extracted with DCM
(5 mL × 3). The organic phase was washed with brine and concentrated in vacuo. The
residue was purified by silica gel column chromatography (DCM/MeOH/TEA = 50:1:1) to
yield compounds 5 and 7b.

Compound 5 was white solid; yield 5.8%. m. p. 171.1–173.1 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ 8.32 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 8.11 (d, J = 6.0 Hz, 1H), 7.94
(dd, J = 14.4, 2.4 Hz, 1H), 6.88 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.13 − 4.10 (m, 1H),
3.79 − 3.72 (m, 5H), 3.46 − 3.40 (m, 6H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.6,
163.0, 160.0, 158.0, 154.8, 149.1 (d, JC-F = 257.1 Hz), 145.6, 133.0, 130.0, 115.4, 102.9, 72.6,
55.4, 47.6, 47.4, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for C19H21ClFN7O3:
449.87; Found: 450.129.

Compound 7b was white solid; yield 40.4%. m. p. 160.0–161.1 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ 8.35 (d, J = 5.4 Hz, 1H), 8.25 (t, J = 6.0 Hz, 1H), 8.13 (d, J = 2.4 Hz, 1H), 7.93
(dd, J = 14.4, 2.4 Hz, 1H), 6.77 (d, J = 5.4 Hz, 1H), 4.89 − 4.63 (m, 1H), 4.21 − 4.02 (m, 1H),
3.82 − 3.79 (m, 4H), 3.75 − 3.67 (m, 1H), 3.44–3.33 (m, 5H), 1.84 (s, 3H). 13C NMR (150 MHz,
DMSO-d6) δ 170.5, 161.5, 160.5, 154.8, 149.1 (d, JC-F = 257.1 Hz), 145.9, 133.0, 130.0, 128.7,
115.4, 109.7, 72.6, 47.7, 46.1, 43.7, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for
C19H21ClFN7O3: 449.87; Found: 450.119.
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Raw data for the above products are presented in Supplementary Materials (Figures
S1–S3 and S46–S48).

3.2.2. General Procedure for the Synthesis of 6a and 6b

A solution of compound 5 (200 mg, 0.44 mmol) in an amine solution (4 mL) was
stirred at room temperature for three days. After the reaction was complete, the filtrate
was concentrated in vacuo. The mixture was extracted with DCM (5 mL × 3). The organic
phase was washed with brine and concentrated in vacuo. The residue was purified by silica
gel column chromatography (DCM/MeOH = 30:1) to yield compounds 6a and 6b.
(S)-N-((3-(5-fluoro-6-(4-(2-(methylamino)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-5-
yl)methyl)acetamide (6a).

Compound 6a was a yellow solid; yield 40.5%. m. p. 193.3–195.1 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ 8.27 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4,
2.4 Hz, 1H), 7.86 (d, J = 6.6 Hz, 1H), 7.31 − 7.30 (s, 1H), 6.31 (d, J = 6.6 Hz, 1H), 4.78 − 4.73
(m, 1H), 4.13 − 4.10 (m, 1H), 3.84 − 3.78 (s, 4H), 3.75 − 3.73 (m, 1H), 3.43 − 3.42 (m, 6H),
2.82 (d, J = 4.8 Hz, 3H), 1.84 (s, 3H).13C NMR (150 MHz, DMSO-d6) δ 170.5, 162.0, 154.8,
149.1 (d, JC-F = 257.1 Hz), 145.7, 145.7, 133.0, 133.0, 130.0, 115.6, 115.5, 72.6, 47.7, 47.6, 43.9,
41.9, 28.1, 22.9. HRMS (ESI) (positive mode) m/z calculated for C20H25FN8O3: 444.47;
Found: 445.150.
(S)-N-((3-(5-fluoro-6-(4-(2-(isopropylamino)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-
5-yl)methyl)acetamide (6b).

Compound 6b was a pink solid; yield 44.4%.m. p. 196.8–199.5 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.13 (d, J = 2.4 Hz, 1H), 7.93 (dd, J = 14.4, 2.4 Hz, 1H),
7.82 (d, J = 6.0 Hz, 1H), 6.31 (s, 1H), 6.04 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.12 − 4.10
(m, 1H), 4.04 − 3.95 (m, 1H), 3.74 − 3.72 (m, 1H), 3.68 − 3.66 (m, 4H), 3.49 − 3.36 (m, 5H),
1.84 (s, 3H), 1.12 (d, J = 6.6 Hz, 6H), 1.08 − 0.94 (m, 1H). 13C NMR (150 MHz, DMSO-d6) δ
170.5, 162.7, 161.7, 157.2, 154.8, 149.1 (d, JC-F = 256.3 Hz), 146.0, 133.0, 129.9, 115.5, 115.4,
72.6, 47.8, 47.7, 47.6, 43.5, 42.2, 41.9, 23.1, 22.9. HRMS (ESI) (positive mode) m/z calculated
for C22H29FN8O3: 472.53; Found: 473.189.

Raw data for the above products are presented in Supplementary Materials (Figures S4–S9).

3.2.3. General Procedure for the Synthesis of 6c–m

To a solution of compound 5 (150 mg, 0.33 mmol) in dioxane (4 mL), p-toluene sulfonic
acid monohydrate (11.4 mg, 0.066 mmol) and amine (1 mmol) were added and stirred at
reflux overnight. After the reaction was complete, the filtrate was concentrated in vacuo.
The mixture was extracted with DCM (5 mL × 3). The organic phase was washed with brine
and concentrated in vacuo. The residue was purified by silica gel column chromatography
(DCM/MeOH = 30:1) to yield compounds 6c–m.

(S)-N-((3-(6-(4-(2-((2,2-difluoroethyl)amino)pyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-
yl)-2-oxooxazolidin-5-yl)methyl)acetamide (6c).

Compound 6c was a pink solid; yield 66.7%.m. p. 228.1–231.2 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.13 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4 Hz, 1H),
7.87 (d, J = 6.0 Hz, 1H), 7.02 (s, 1H), 6.20 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.13 − 4.10
(m, 1H), 3.76 − 3.73 (m, 1H), 3.73 − 3.68 (m, 5H), 3.68 − 3.58 (m, 2H), 3.46 − 3.38 (m, 6H),
1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5, 162.5, 154.8, 149.1 (d, JC-F = 257.2
Hz), 145.9, 145.8, 133.1, 133.0, 129.9, 115.6, 115.4, 72.6, 47.7, 47.64, 43.9, 43.7, 43.6, 41.9, 22.9.
HRMS (ESI) (positive mode) m/z calculated for C21H25F3N8O3: 494.48; Found: 495.163.

(S)-N-((3-(6-(4-(2-(allylamino)pyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazolidin-
5-yl)methyl)acetamide (6d)

Compound 6d was a white solid; yield 68.1%.m. p. 182.1–184.6 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.25 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4 Hz, 1H),
7.85 (d, J = 6.6 Hz, 1H), 7.51 − 7.08 (m, 1H), 6.28 (d, J = 6.0 Hz, 1H), 5.92 − 5.86 (m, 1H),
5.19 (d, J = 17.4 Hz, 1H), 5.08 (d, J = 10.2 Hz, 1H), 4.77 − 4.73 (m, 1H), 4.13 − 4.10 (m, 1H),
3.93 − 3.91 (m, 2H), 3.78 − 3.75 (m, 4H), 3.74 − 3.72 (m, 1H), 3.43 − 3.39 (m, 6H), 1.84
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(s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5, 162.0, 154.8, 149.1 (d, JC-F = 257.5 Hz),
145.8, 138.1, 136.4, 133.0, 130.0, 128.5, 126.0, 115.6, 115.4, 72.6, 47.6, 43.9, 43.4, 41.9, 22.9, 21.2.
HRMS (ESI) (positive mode) m/z calculated for C22H27FN8O3: 470.51; Found: 471.133.

(S)-N-((3-(5-fluoro-6-(4-(2-(prop-2-yn-1-ylamino)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-
2-oxooxazolidin-5-yl)methyl)acetamide (6e)

Compound 6e was a white solid; yield 44.9%. m. p. 185.6–188.7 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.29 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4 Hz, 1H),
7.88 (d, J = 6.0 Hz, 1H), 7.22 (s, 1H), 6.23 (d, J = 6.0 Hz, 1H), 5.33 (s, 1H), 4.77 − 4.73 (m, 1H),
4.13 − 4.10 (m, 1H), 4.04 − 4.03 (m, 2H), 3.78 − 3.72 (m, 4H), 3.44 − 3.34 (m, 7H), 1.84 (s,
3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5, 162.4, 154.8, 149.1 (d, JC-F = 256.9 Hz), 145.9,
145.8, 133.1, 133.0, 130.0, 115.6, 115.4, 72.6, 63.1, 52.5, 47.7, 43.7, 41.9, 30.6, 22.9, 7.7. HRMS
(ESI) (positive mode) m/z calculated for C22H25FN8O3: 468.49; Found: 469.201.

(S)-N-((3-(5-fluoro-6-(4-(2-(4-methylpiperidin-1-yl)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-
yl)-2-oxooxazolidin-5-yl)methyl)acetamide (6f).

Compound 6f was a pink solid; yield 64.4%. m. p. 198.1–200.5 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.13 (d, J = 2.4 Hz, 1H), 7.93 (dd, J = 14.4, 2.4 Hz,
1H), 7.89 (d, J = 6.0 Hz, 1H), 6.08 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.62 − 4.59 (m,
2H), 4.13 − 4.10 (m, 1H), 3.74 − 3.72 (m, 1H), 3.68 − 3.66 (m, 4H), 3.43 − 3.41 (m, 2H),
3.41 − 3.37 (m, 4H), 2.77 − 2.73 (m, 2H), 1.84 (s, 3H), 1.64 − 1.56 (m, 2H), 1.04 − 0.98 (m,
2H), 0.91 (d, J = 6.6 Hz, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5, 162.7, 161.4, 157.1,
154.8, 149.1 (d, JC-F = 256.3 Hz), 146.0, 133.0, 129.9, 115.5, 115.4, 93.2, 72.6, 47.7, 44.0, 43.6,
41.9, 34.1, 31.3, 22.9, 22.4. HRMS (ESI) (positive mode) m/z calculated for C25H33FN8O3:
512.59; Found: 513.208.

(S)-N-((3-(5-fluoro-6-(4-(2-morpholinopyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-
5-yl)methyl)acetamide (6g)

Compound 6g was a white solid; yield 46.1%. m. p. 191.3–192.1 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.13 (d, J = 2.4 Hz, 1H), 7.96 − 7.90 (m, 2H),
6.17 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.13 − 4.10 (m, 1H), 3.74 − 3.72 (m, 1H), 3.70
− 3.69 (m, 4H), 3.64 − 3.63 (m, 8H), 3.47 − 3.35 (m, 6H), 1.84 (s, 3H).13C NMR (150 MHz,
DMSO-d6) δ 170.5, 162.6, 161.6, 157.1, 154.8, 150.0 (d, JC-F = 256.7 Hz), 146.0, 133.0, 129.9,
115.5, 115.4, 94.1, 72.6, 66.6, 47.7, 44.4, 43.6, 41.9, 22.9. HRMS (ESI) (positive mode) m/z
calculated for C23H29FN8O4: 500.54; Found: 501.176.

(S)-N-((3-(5-fluoro-6-(4-(2-((3-morpholinopropyl)amino)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-
yl)-2-oxooxazolidin-5-yl)methyl)acetamide (6h)

Compound 6h was brown oil; yield 48.7%. 1H NMR (600 MHz, DMSO-d6) δ 8.28
(t, J = 6.0 Hz, 1H), 8.12 (d, J = 2.4 Hz, 1H), 7.92 (dd, J = 14.4, 2.4 Hz, 1H), 7.81 (d, J = 6.0 Hz,
1H), 6.57 (s, 1H), 6.03 (d, J = 6.0 Hz, 1H), 4.77 − 4.73 (m, 1H), 4.12 − 4.09 (m, 1H), 3.75 − 3.73
(m, 1H), 3.67 − 3.65 (m, 4H), 3.57 − 3.56 (m, 4H), 3.44 − 3.42 (m, 4H), 3.38 − 3.35 (m, 4H),
3.27 − 3.23 (m, 2H), 2.33 − 2.30 (m, 4H), 1.85 (s, 3H), 1.66 − 1.64 (m, 2H). 13C NMR (150
MHz, DMSO-d6) δ 170.6, 162.7, 162.3, 157.2, 154.8, 149.1 (d, JC-F = 257.1 Hz), 145.9, 132.9,
129.8, 115.5, 115.3, 72.6, 66.7, 56.7, 53.8, 47.7, 46.1, 43.5, 41.9, 26.5, 22.9, 7.6. HRMS (ESI)
(positive mode) m/z calculated for C26H35FN8O4: 557.63; Found: 558.256.

(S)-N-((3-(5-fluoro-6-(4-(2-(phenylamino)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-2-oxoo-
xazolidin-5-yl)methyl)acetamide (6i)

Compound 6i was a white solid; yield 43%. m. p. 190.6–194.4 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 9.17 (s, 1H), 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 8.00 (d, J = 6.0 Hz,
1H), 7.95 (dd, J = 14.4, 2.4 Hz, 1H), 7.73 − 7.68 (m, 2H), 7.30 − 7.24 (m, 2H), 6.92 (t, J = 7.2 Hz,
1H), 6.36 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.14 − 4.11 (m, 1H), 3.79 − 3.77 (m, 4H),
3.75 − 3.72 (m, 1H), 3.48 − 3.39 (m, 6H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ
170.5, 165.2, 162.5, 154.8, 149.1 (d, JC-F = 256.2 Hz), 145.7, 141.2, 140.8, 133.0, 129.8, 128.9,
121.8, 119.4, 117.3, 115.6, 95.8, 72.6, 47.7, 43.8, 41.9, 22.9. HRMS (ESI) (positive mode) m/z
calculated for C25H27FN8O3: 506.54; Found: 507.161.

(S)-N-((3-(6-(4-(2-(benzylamino)pyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxoo-
xazolidin-5-yl)methyl)acetamide (6j)



Molecules 2023, 28, 4267 10 of 16

Compound 6j was a white solid; yield 41.5%. m. p. 202.7–204.6 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.13 (d, J = 2.4 Hz, 1H), 7.93 (dd, J = 14.4, 2.4 Hz,
1H), 7.82 (d, J = 6.0 Hz, 1H), 7.32 − 7.24 (m, 5H), 7.22 − 7.16 (m, 1H), 6.07 (d, J = 6.0 Hz,
1H), 4.79 − 4.72 (m, 1H), 4.14 − 4.10 (m, 1H), 3.74 − 3.72 (m, 1H), 3.74 − 3.64 (m, 4H),
3.47 − 3.38 (m, 2H), 3.36 − 3.34 (m, 4H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ
170.5, 162.6, 162.3, 154.8, 150.0 (d, JC-F = 256.7 Hz), 146.0, 145.9, 141.7, 133.0, 129.8, 128.5,
127.6, 126.8, 115.5, 115.4, 72.6, 47.8, 44.5, 43.5, 41.9, 22.9. HRMS (ESI) (positive mode) m/z
calculated for C26H29FN8O3: 520.57; Found: 521.185.

(S)-N-((3-(5-fluoro-6-(4-(2-(naphthalen-1-ylamino)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-
2-oxooxazolidin-5-yl)methyl)acetamide (6k)

Compound 6k was a brown solid; yield 59.3%. m. p. 221.8–223.1 ◦C.1H NMR
(600 MHz, DMSO-d6) δ 8.95 (s, 1H), 8.24 (t, J = 6.0 Hz, 1H), 8.14–8.07 (m, 2H), 7.95 − 7.88
(m, 3H), 7.79 (d, J = 7.2 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.51–7.44 (m, 3H), 6.29 (d, J = 6.0 Hz,
1H), 4.77–4.72 (m, 1H), 4.15–4.06 (m, 1H), 3.76–3.70 (m, 1H), 3.69–3.64 (m, 4H), 3.43–3.40 (m,
2H), 3.39–3.36(m, 4H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.6, 162.1, 154.8,
152.4, 149.1 (d, JC-F = 257.1 Hz), 146.0, 145.7, 134.9, 134.4, 133.0, 130.0, 128.7, 128.6, 126.4,
126.1, 126.0, 125.1, 123.4, 121.7, 115.6, 115.4, 95.8, 72.6, 63.1, 52.5, 22.9, 7.7. HRMS (ESI)
(positive mode) m/z calculated for C29H29FN8O3: 556.60; Found: 557.197.

(S)-N-((3-(5-fluoro-6-(4-(2-(quinolin-5-ylamino)pyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-
2-oxooxazolidin-5-yl)methyl)acetamide (6l)

Compound 6l was a white solid; yield 43%. m. p. 226.2–232.2 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 9.15 (s, 1H), 8.87 (dd, J = 4.2, 1.8 Hz, 1H), 8.53 − 8.48 (m, 1H), 8.24 (t, J = 6.0 Hz,
1H), 8.15 − 8.12 (m, 1H), 7.99 − 7.90 (m, 2H), 7.87 (dd, J = 7.2, 1.2 Hz, 1H), 7.77 − 7.71 (m,
2H), 7.489 − 7.47 (m, 1H), 6.33 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.13 − 4.10 (m, 1H),
3.74 − 3.72 (m, 1H), 3.68 − 3.66 (m, 4H), 3.43 − 3.41 (m, 2H), 3.39 − 3.37 (m, 4H), 1.84 (s, 3H).
13C NMR (150 MHz, DMSO-d6) δ 170.5, 162.5, 161.1, 157.3, 154.8, 149.7 (d, JC-F = 259.1 Hz),
148.3, 145.9, 136.9, 133.0, 132.6, 129.9, 129.6, 124.7, 123.6, 120.7, 120.6, 115.6, 115.4, 107.8, 95.9,
72.6, 47.7, 43.5, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for C28H28FN9O3:
557.59; Found: 558.207.

(S)-N-((3-(6-(4-(2-((6-chloropyridin-3-yl)amino)pyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-
3-yl)-2-oxooxazolidin-5-yl)methyl)acetamide (6m)

Compound 6m was a white solid; yield 45.8%. m. p. 134.4–135.6 ◦C.1H NMR
(600 MHz, DMSO-d6) δ 9.46 (s, 1H), 8.74 (d, J = 3.0 Hz, 1H), 8.27 − 8.19 (m, 2H), 8.14 (d,
J = 2.4 Hz, 1H), 8.05 (d, J = 6.0 Hz, 1H), 7.94 (dd, J = 14.4, 2.4 Hz, 1H), 7.40 (d, J = 9.0
Hz, 1H), 6.40 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.14 − 4.11 (m, 1H), 3.78 − 3.71 (m,
5H), 3.47 − 3.42 (m, 6H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5, 162.5, 159.5,
157.1, 154.8, 149.1 (d, JC-F = 256.5 Hz), 145.8, 141.3, 140.2, 137.9, 133.0, 129.9, 129.2, 124.2,
115.6, 115.4, 96.6, 72.6, 47.6, 43.7, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for
C24H25ClFN9O3: 541.97; Found: 542.132.

Raw data for the above products are presented in Supplementary Materials (Figures S10–S42).

3.2.4. General Procedure for the Synthesis of 7a and 7c-n

A solution of compound 4 (130 mg, 0.3 mmol) in DCM (5 mL) at 0 ◦C was dropwise
added to TFA (1 mL) and then stirred for 2 h. After the reaction was complete, TEA was
added to the solution at 0 ◦C to adjust pH. The filtrate was concentrated in vacuo. To a
solution of the concentrate in ethanol (3 mL) was added TEA (83 µL, 1 mmol) and pyrimidine
derivative (0.4 mmol), and then stirred at reflux overnight. After the reaction was complete
and concentrated, the mixture was extracted with DCM (5 mL × 3). The organic phase was
washed with brine and concentrated in vacuo. The residue was purified by silica gel column
chromatography (DCM/MeOH = 30:1) to yield compounds 7a and 7c-n.

(S)-N-((3-(6-(4-(6-chloropyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazolidin-
5-yl)methyl)acetamide (7a)

Compound 7a was a white solid; yield 45.1%. m. p. 190.0–191.1 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.37 (s, 1H), 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4,
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2.4 Hz, 1H), 7.02 (s, 1H), 4.79 − 4.72 (m, 1H), 4.14 − 4.10 (m, 1H), 3.81 − 3.75 (m, 4H),
3.74 − 3.71 (m, 1H), 3.43 − 3.42 (m, 6H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6)
δ 170.5, 162.7, 159.7, 158.5, 154.8, 148.2 (d, JC-F = 256.7 Hz), 145.6, 133.0, 129.99, 115.6,
102.3, 72.6, 47.6, 47.5, 43.8, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for
C19H21ClFN7O3: 449.87; Found: 450.106.

(S)-N-((3-(5-fluoro-6-(4-(5-methylpyrimidin-2-yl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-5-
yl)methyl)acetamide (7c)

Compound 7c was a white solid; yield 49.4%. m. p. 195.1–197.3 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.26 − 8.23 (m, 3H), 8.13 (d, J = 2.4 Hz, 1H), 7.93 (dd, J = 14.4, 2.4 Hz, 1H),
4.77 − 4.73 (m, 1H), 4.13 − 4.10 (m, 1H), 3.85 − 3.80 (m, 4H), 3.76 − 3.70 (m, 1H), 3.43 − 3.37
(m, 6H), 2.10 (s, 3H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 160.7, 158.2, 154.8, 149.2
(d, JC-F = 255.3 Hz), 146.1, 133.0, 130.0, 119.1, 115.5, 115.4, 72.6, 47.9, 46.2, 43.9, 22.9, 14.1,
9.1. HRMS (ESI) (positive mode) m/z calculated for C20H24FN7O3: 429.46; Found: 430.181.

(S)-N-((3-(6-(4-(5-bromopyrimidin-2-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazolidin-
5-yl)methyl)acetamide (7d)

Compound 7d was a white solid; yield 47.6%. m. p. 196.1–196.3 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.50 (s, 2H), 8.24 (t, J = 6.0 Hz, 1H), 8.13 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4
Hz, 1H), 4.77 − 4.73 (m, 1H), 4.14 − 4.10 (m, 1H), 3.88 − 3.83 (m, 4H), 3.74 − 3.71 (m, 1H),
3.43 − 3.33 (m, 6H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5, 166.3, 160.0, 158.5,
154.8, 150.8 (d, JC-F = 253.7 Hz), 133.0, 129.9, 115.3, 106.1, 72.6, 47.6, 43.8, 41.9, 39.0, 22.9.
HRMS (ESI) (positive mode) m/z calculated for C19H21BrFN7O3: 494.33; Found: 496.095.

(S)-N-((3-(6-(4-(2-aminopyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazolidin-
5-yl)methyl)acetamide (7e)

Compound 7e was a white solid; yield 60.9%. m. p. 195.6–196.7 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.28 − 8.25 (m, 1H), 8.15 (d, J = 2.4 Hz, 1H), 7.97 − 7.88 (m, 3H), 7.89 (dd, J = 7.8,
2.4 Hz, 1H), 6.57 (d, J = 7.8 Hz, 1H), 4.78 − 4.74 (m, 1H), 4.14 − 4.11 (m, 1H), 3.75 − 3.72
(m, 1H), 3.47 − 3.46 (m, 4H), 3.43 − 3.41 (m, 4H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-
d6) δ 170.5, 161.7, 155.1, 154.8, 149.1 (d, JC-F = 256.4 Hz), 145.4, 143.4, 133.0, 130.1, 115.6,
115.5, 95.4, 72.7, 47.6, 47.5, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for
C19H23FN8O3: 430.44; Found: 431.144.

(S)-N-((3-(6-(4-(4-aminopyrimidin-2-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazolidin-
5-yl)methyl)acetamide (7f)

Compound 7f was a white solid; yield 60.9%. m. p. 196.6–197.7 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.25 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4 Hz, 1H),
7.77 (d, J = 6.0 Hz, 1H), 7.48 − 7.10 (m, 2H), 5.94 (d, J = 6.0 Hz, 1H), 4.79 − 4.72 (m, 1H),
4.13 − 4.10 (m, 1H), 3.80 − 3.78 (m, 4H), 3.75 − 3.72 (m, 1H), 3.43 − 3.40 (m, 6H), 1.84 (s,
3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5, 164.5, 154.8, 149.1 (d, JC-F = 256.7 Hz), 145.9,
138.1, 133.0, 130.0, 128.5, 126.0, 115.6, 72.6, 47.7, 43.9, 41.9, 22.9, 21.3. HRMS (ESI) (positive
mode) m/z calculated for C19H23FN8O3: 430.44; Found: 431.141.

(S)-N-((3-(6-(4-(4,6-dichloropyrimidin-2-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazolidin-5-
yl)methyl)acetamide(7g)and (S)-N-((3-(6-(4-(2,6-dichloropyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-
3-yl)-2-oxooxazolidin-5-yl)methyl)acetamide (7h)

Compounds 7g and 7h were both white solids, yields were 13.8% and 44.7% respec-
tively, m. p. 191.3–192.5 ◦C and m. p. 195.2–197.1 ◦C respectively.

Compound 7g, 1H NMR (600 MHz, DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz,
1H), z7.94 (dd, J = 14.4, 2.4 Hz, 1H), 6.98 (s, 1H), 4.77 − 4.73 (m, 1H), 4.14 − 4.10 (m, 1H),
3.88 − 3.84 (m, 4H), 3.75 − 3.72 (m, 1H), 3.44 − 3.41 (m, 6H), 1.84 (s, 3H). 13C NMR (150
MHz, DMSO-d6) δ 170.5, 161.6, 160.5, 154.8, 148.2 (d, J = 256.7 Hz), 145.7, 132.9, 130.0,
115.4, 108.2, 72.6, 47.6, 47.5, 43.9, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for
C19H20Cl2FN7O3: 483.10; Found: 484.103.

Compound 7h, 1H NMR (600 MHz, DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d,
J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4 Hz, 1H), 7.08 (s, 1H), 4.77 − 4.74 (m, 1H), 4.13 −
4.10 (m, 1H), 3.87 − 3.71 (m, 5H), 3.44 − 3.42 (m, 6H), 1.84 (s, 3H). 13C NMR (150 MHz,
DMSO-d6) δ 170.5, 163.4, 159.6, 159.0, 154.8, 149.1 (d, JC-F = 257.1 Hz), 145.5, 133.0, 130.0,
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115.4, 101.4, 72.6, 47.6, 47.4, 43.7, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for
C19H20Cl2FN7O3: 483.10; Found: 484.104.

(S)-N-((3-(6-(4-(2-chloro-5-fluoropyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxoo-
xazolidin-5-yl)methyl)acetamide (7i)

Compound 7i was a white solid; yield 70.1%. m. p. 204.4–205.5 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.25 − 8.21 (m, 2H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4 Hz, 1H),
4.79 − 4.72 (m, 1H), 4.14 − 4.10 (m, 1H), 3.90 − 3.86 (m, 4H), 3.75 − 3.71 (m, 1H), 3.48
− 3.46 (m, 4H), 3.43 − 3.41 (m, 2H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5,
154.8, 153.5, 152.5, 149.1 (d, JC-F = 257.0 Hz), 147.1 (d, JC-F = 256.4 Hz), 145.6, 144.7, 133.0,
130.0, 115.6, 72.6, 47.6, 45.8, 41.9, 40.5, 22.9. HRMS (ESI) (positive mode) m/z calculated for
C19H20ClF2N7O3: 467.86; Found: 468.113.

(S)-N-((3-(6-(4-(2,5-dichloropyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxooxazo-
lidin-5-yl)methyl)acetamide (7j)

Compound 7j was a white solid; yield 48.6%. m. p. 193.5–194.2 ◦C.1H NMR (600 MHz,
DMSO-d6) δ 8.35 (s, 1H), 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4,
2.4 Hz, 1H), 4.77 − 4.73 (m, 1H), 4.14 − 4.10 (m, 1H), 3.91 − 3.86 (m, 4H), 3.75 − 3.72 (m,
1H), 3.51 − 3.46 (m, 4H), 3.43 − 3.41 (m, 2H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6)
δ 170.5, 160.4, 159.1, 157.1, 154.8, 148.3 (d, JC-F = 256.7 Hz), 133.0, 130.0, 115.5, 115.1, 72.6,
47.6, 47.6, 47.0, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for C19H20Cl2FN7O3:
483.10; Found: 484.099.

(S)-N-((3-(6-(4-(5-bromo-2-chloropyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxoo-
xazolidin-5-yl)methyl)acetamide (7k)

Compound 7k was a white solid; yield 82.8%. m. p. 196.7–197.6 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ 8.46 (s, 1H), 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H),
7.94 (dd, J = 14.4, 2.4 Hz, 1H), 4.77 − 4.73 (m, 1H), 4.14 − 4.10 (m, 1H), 3.87 − 3.83 (m,
4H), 3.75 − 3.72 (m, 1H), 3.50 − 3.46 (m, 4H), 3.43 − 3.41 (m, 2H), 1.84 (s, 3H). 13C NMR
(150 MHz, DMSO-d6) δ 170.5, 162.7, 161.8, 157.8, 154.8, 149.1 (d, JC-F = 257.1 Hz), 145.6,
133.0, 130.0, 115.5, 104.1, 72.6, 47.6, 47.6, 47.3, 41.9, 22.9. HRMS (ESI) (positive mode) m/z
calculated for C19H20BrClFN7O3: 528.77; Found: 530.054.

(S)-N-((3-(6-(4-(2-chloro-5-methylpyrimidin-4-yl)piperazin-1-yl)-5-fluoropyridin-3-yl)-2-oxoo-
xazolidin-5-yl)methyl)acetamide (7l)

Compound 7l was a white solid; yield 58.9%. m. p. 198.8–200.8 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 8.06 (s, 1H), 7.93 (dd, J = 14.4,
2.4 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.14 − 4.10 (m, 1H), 3.74 − 3.72 (m, 1H), 3.70 − 3.65
(m, 4H), 3.48 − 3.44 (m, 4H), 3.43 − 3.41 (m, 2H), 2.24 (s, 3H), 1.84 (s, 3H). 13C NMR (150
MHz, DMSO-d6) δ 170.5, 165.0, 160.0, 157.2, 154.8, 149.1 (d, JC-F = 257.1 Hz), 145.8, 133.0,
130.0, 116.2, 115.4, 72.6, 47.8, 47.6, 46.9, 41.9, 22.9, 17.3. HRMS (ESI) (positive mode) m/z
calculated for C20H23ClFN7O3: 463.90; Found: 464.117.

Ethyl(S)-4-(4-(5-(5-(acetamidomethyl)-2-oxooxazolidin-3-yl)-3-fluoropyridin-2-yl)piperazin-
1-yl)-2-(methylthio)pyrimidine-5-carboxylate (7m)

Compound 7m was a white solid; yield 50.6%. m. p. 210.1–213.1 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ 8.45 (s, 1H), 8.26 (t, J = 6.0 Hz, 1H), 8.11 (d, J = 2.4 Hz, 1H), 7.92
(dd, J = 14.4, 2.4 Hz, 1H), 4.79 − 4.72 (m, 1H), 4.36 − 4.17 (m, 2H), 4.14 − 4.09 (m, 1H), 3.76
− 3.72 (m, 1H), 3.68 − 3.66 (m, 4H), 3.46 − 3.44 (m, 4H), 3.43 − 3.41 (m, 2H), 2.48 (s, 3H),
1.85 (s, 3H), 1.37 − 1.25 (m, 3H). 13C NMR (150 MHz, DMSO-d6) δ 172.6, 170.5, 165.9, 159.8,
159.3, 154.8, 149.0 (d, JC-F = 257.0 Hz), 145.6, 132.9, 129.8, 115.3, 105.7, 72.6, 61.4, 47.6, 47.5,
47.3, 41.9, 22.9, 14.5, 14.1. HRMS (ESI) (positive mode) m/z calculated for C23H28FN7O5S:
533.58; Found: 534.132.

(S)-N-((3-(5-fluoro-6-(4-(2,5,6-trichloropyrimidin-4-yl)piperazin-1-yl)pyridin-3-yl)-2-oxooxa-
zolidin-5-yl)methyl)acetamide (7n)

Compound 7n was a white solid; yield 71.4%. m. p. 210.0–211.1 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 7.94 (dd, J = 14.4, 2.4
Hz, 1H), 4.79 − 4.72 (m, 1H), 4.13 − 4.10 (m, 1H), 3.92 − 3.81 (m, 4H), 3.75 − 3.72 (m, 1H),
3.52 − 3.47 (m, 4H), 3.44 − 3.39 (m, 2H), 1.84 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 170.5,
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161.9, 159.0, 155.1, 154.8, 149.1 (d, JC-F = 255.8 Hz), 145.6, 133.0, 129.8, 115.4, 112.4, 72.6,
47.8, 47.6, 47.5, 41.9, 22.9. HRMS (ESI) (positive mode) m/z calculated for C19H19Cl3FN7O3:
518.76; Found: 520.066.

Raw data for the above products are presented in Supplementary Materials (Figures
S43, S45 and S49–S84).

3.3. MIC Determination

The antibacterial activity of the synthesized derivatives was determined by the broth
dilution method [42]. The strains, including Staphylococcus aureus (ATCC25923), Streptococ-
cus pneumoniae (ATCC49619), Enterococcus faecalis (ATCC29212), Bacillus subtilis (ATCC6633),
Escherichia coli (ATCC25922), Listeria monocytogenes (ATCC19111), Staphylococcus xylosus
(ATCC35924), methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococ-
cus faecalis, linezolid-resistant Staphylococcus aureus, and linezolid-resistant Streptococcus
pneumoniae, were incubated in Mueller-Hinton (MH) medium at 37 ◦C to mid-logarithm
(OD600 = 0.5). The bacteria were diluted to 105 CFU/ mL and added to the 96-well plate,
followed by a series of diluted synthesized derivatives (from 128 to 0.25 µg/mL). After
incubation at 37 ◦C for 16–18 h, the minimum inhibitory concentration (MIC) value was
the minimum drug concentration without bacterial growth.

3.4. Molecular Docking Studies

The 3D structure of the 50S ribosomal subunit (PDB code: 3CPW) [43] was obtained
from the Protein Data Bank and processed by PyMOL 2.5. The original ligand and protein
were deleted, and only the required RNA chains were retained and imported into the
Auto-Dock for use. The ligand was drawn with ChemOffice2010 Version and imported into
the Auto-Dock for later use. The Auto-Dock 4.2.6® software was used for the molecular
docking process, and the obtained results were imported into PyMOL 2.5 software in the
form of complexes for visual analysis.

3.5. Inhibition of Biofilm Formation Assay

Anti-biofilm activity inhibits biofilm formation and was measured by the crystal violet
method [44]. The strains to be tested were placed in a test tube containing 5 mL Tryptic
Soy Broth (TSB) and incubated at 37 ◦C for 24 h. Then the suspension was diluted to
106 CFU/mL and added to a sterile 96-well culture plate, filled with 100 µL per well.
All compounds were added to the well according to the selected concentration gradient
and incubated at 37 ◦C for 24 h. After the biofilm was grown, the culture medium was
removed from each well, washed twice with sterile PBS, fixed with methanol, and stained
with 150 µL 0.1% crystal violet solution at room temperature. Remove the excess solution,
wash it twice with water, and add 125 µL 33% acetic acid to each dyeing well for 5 min to
dissolve the dye. The microplate reader was used to read at 600 nm to assess the minimum
concentration of biofilm inhibition.

3.6. Cytotoxicity Assay

The MTT method was used to detect the effect of typical derivatives on Hela cell viabil-
ity [45]. Cells (5 × 104 cells/well) were added to a 96-well plate for 24 h in humidified 5% (V/V)
CO2/ air at 37 ◦C. A series of liquid medicines (8, 16, 32, 64, 128, 256, 500, and 1000 µg/mL)
were added and incubated for 48 h. Cells treated with equal volumes of DMSO were used as
controls. Add 10 µL MTT solution (0.5%) to each well and incubate for 4 h at 37 ◦C under dark
conditions. The culture medium in all wells was discarded. Then 100 µL DMSO was quickly
added to each wall and shaken at low speed to dissolve the formed crystals. The absorbance was
measured at 570 nm. The cell viability was calculated as follows: cell viability (%) = (treatment
sample OD570 − empty OD570)/(control OD570 − empty OD570).
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4. Conclusions

In summary, a library of 28 novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives
was designed, synthesized, and evaluated for their antibacterial properties. The results
show that most of the synthesized compounds have potential antibacterial activity against
gram-positive bacteria. Amongst them, compounds 7i-l exhibited a better antibacterial
effect. The molecular docking results of compounds 7j and PTC were studied to predict the
mechanism of action. Further results demonstrated that these compounds have excellent
ability to inhibit biofilm formation and meager cytotoxicity. These results provide a basis
and reference for the discovery of novel antibacterial compounds and the development of
new drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/molecules28114267/s1. Figure S1: 1H NMR Spectrum of 5; Figure S2: 13C NMR Spectrum of 5;
Figure S3: ES-MS for compound 5; Figure S4: 1H NMR Spectrum of 6a; Figure S5: 13C NMR Spectrum
of 6a; Figure S6: ES-MS for compound 6a; Figure S7: 1H NMR Spectrum of 6b; Figure S8: 13C NMR
Spectrum of 6b; Figure S9: ES-MS for compound 6b; Figure S10: 1H NMR Spectrum of 6c; Figure S11:
13C NMR Spectrum of 6c; Figure S12: ES-MS for compound 6c; Figure S13: 1H NMR Spectrum of
6d; Figure S14: 13C NMR Spectrum of 6d; Figure S15: ES-MS for compound 6d; Figure S16: 1H
NMR Spectrum of 6e; Figure S17: 13C NMR Spectrum of 6e; Figure S18: ES-MS for compound 6e;
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