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Abstract: The development of supramolecular chemistry has always been accompanied by the inno-
vation of macrocyclic hosts. The synthesis of novel macrocycles with unique structures and functions
will bring new development opportunities for supramolecular chemistry. As a new generation of
macrocyclic hosts, biphenarenes have customizable cavity sizes and diverse backbones, overcoming
the limitation that the cavities of traditionally popular macrocyclic hosts are generally smaller than
10 Å. These features undoubtedly endow biphenarenes with distinguished host–guest properties,
which have attracted more and more attention. In this review, the structural characteristics and
molecular recognition properties of biphenarenes are summarized. In addition, the applications
of biphenarenes in adsorption and separation, drug delivery, fluorescence sensing and other fields
are introduced. Hopefully, this review will provide a reference for the study of macrocyclic arenes,
especially biphenarenes.
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1. Introduction

In the middle of the last century, the discovery of crown ethers laid the foundation for
the development of synthetic molecules that could engage in non-covalent interactions [1].
Then, the concepts of supramolecular chemistry and host–guest chemistry came into
being [2–4]. In the development of supramolecular chemistry, the synthesis of novel
macrocyclic hosts with special properties is an enduring topic [5–8]. Macrocyclic hosts,
including crown ethers [9,10], cyclodextrins [11–15], calixarenes [16], cucurbiturils [17–19],
pillararenes [20–26], coronarenes [27] and oxatubarenes [28], are attractive supramolecular
hosts with inherent cavities. Thanks to their excellent host–guest properties, macrocyclic
hosts play important roles in the fields of chemistry [29–32], materials science [33–36],
biology [37–41], etc.

In 2015, Li and co-workers constructed a series of customizable macrocycles named
biphenarenes using a modular synthetic strategy [42]. Since then, the host–guest properties,
supramolecular assembly behaviors and functional applications of biphenarenes have been
widely explored [43–46]. On the one hand, it is easy to obtain biphenarene derivatives
containing alkoxy, hydroxy and anionic/cationic groups due to the easy synthesis and
derivatization of biphenarenes. The selective complexation of cationic, anionic and neutral
guest molecules with biphenarenes can be achieved in different solvents [47–50]. On the
other hand, biphenarenes with large cavities can be prepared by reasonably adjusting the
number of structural units, overcoming the limitation of traditional macrocycles with small
cavities (≤10 Å). Customizable cavity sizes make it possible to encapsulate large guests
or molecules, which will effectively expand the application range of biphenarenes. The
discovery of biphenarenes has greatly enriched the toolbox of synthetic macrocyclic hosts
and will also promote the further development of supramolecular chemistry.
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To date, there are few reviews on biphenarenes and they mainly focus on the synthesis
and structure of biphenarenes [49]. In this review, the structures and molecular recognition
properties of biphenarenes are discussed in detail. In addition, applications of biphenarenes
in adsorptive separation, drug delivery and fluorescence sensing are summarized. Owing
to their interesting structural characteristics and rich host–guest properties, biphenarenes
have broad development prospects in the construction of functional materials. It is ex-
pected that this review will provide reference for the study of biphenarenes and their
functional materials.

2. Structures of Biphenarenes

Macrocyclic hosts are useful tools for the research of non-covalent interactions [51–53].
Host–guest properties of traditional macrocycles (such as crown ethers, cyclodextrins,
calixarenes, cucurbiturils and pillararenes) have been widely studied in the past few
decades [54–58]. However, traditional macrocycles typically have cavity sizes of less
than 10 Å (Table 1), and it is very challenging to prepare giant macrocycles. This makes
them generally suitable for binding small- or medium-sized guests, but it is difficult to
accommodate large guest molecules. Increasing the number of structural units is a common
way to increase the cavity size of macrocycles. However, the simple addition of structural
units tends to distort the structures of macrocycles, and it is difficult to obtain macrocycles
with large cavities. This severely limits the further applications of macrocyclic hosts. In
addition, for traditional macrocycles, functional groups are usually introduced through
their portals rather than the skeleton.

In order to solve these problems, many macrocyclic compounds with large, rigid
cavities have been developed. For example, cycloparaphenylenes, consisting of a simple
string of benzene, have attracted scientists because of their simple and beautiful structure
and potential applications in materials science and supramolecular chemistry [59,60]. In
2015, Li and co-workers synthesized a new macrocyclic host named biphenarenes, which
including basic biphen[n]arenes, functional biphen[n]arenes, and cage compounds [42].
Typically, biphenarenes are made up of 4,4′-biphenol or 4,4′-biphenol ether units linked by
methylene bridges at the 3- and 3′-positions. The synthesis of biphenarenes is based on the
linking of reaction modules to form macrocycles by Friedel–Crafts alkylation. In addition,
modular synthetic strategy is a versatile method for the synthesis of biphenarenes, which
can increase the cavity sizes by changing the structural units (Figure 1) [48,49]. For example,
the cavity sizes of biphenarenes can be easily increased using long and rigid structural
units or increasing the number of structural units. Meanwhile, gram-scale synthesis of
biphenarenes is easily achieved in a laboratory. The purification of biphenarenes can be
achieved by column chromatography and recrystallization. Furthermore, biphenarenes
are easy to prepare since they can be obtained by a one-step condensation reaction using
commercial reagents. Biphenarenes show good performance in adsorptive separation,
sensing and drug delivery, and have broad application prospects in chemistry, biology,
materials science and other fields.

Compared with traditional macrocycles, the structures of biphenarenes have
two advantages:

(i) Large cavity. Like many other structurally related macrocyclic hosts, biphenarenes
are formed from suitable electron-rich aromatic building blocks and formaldehyde by
repeated Friedel–Crafts alkylation. The normal strategy to increase cavity size involves
increasing the number of subunits along the ring, but this can concomitantly lead to an in-
crease in conformational flexibility accompanied by a collapse of the cavity. In contrast, the
cavity size of biphenarenes is increased by incorporating spacers (or functional modules)
between the terminal aromatic units of the building blocks, making macrocycles with large
cavity easily accessible. Because the structural units of biphenarenes are independent of
each other, the cavity sizes can be easily expanded using long and rigid structural units
without affecting the cyclization reaction. For example, Li and co-workers synthesized
macrocyclic hosts of terphen[n]arenes (TPns, n = 3–6) and quaterphen[n]arenes (QPns,
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n = 3–6) [61]. TPns and QPns have larger cavities and better self-assembly properties com-
pared to traditional macrocycles because of their longer and more rigid structural units
(Table 2). Among them, the largest macrocyclic molecule QP6 has a cavity size of more
than 30 Å, which is much larger than that of classic macrocyclic hosts. The customizable
cavity sizes of biphenarenes facilitate the encapsulation of large guest molecules (such as
polypeptides or other biomacromolecules) and effectively enrich their host–guest prop-
erties. Due to these advantages, biphenarenes have potential applications in the field of
supramolecular self-assembly.
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Table 1. Cont.

Macrocyclic Host Chemical Structure Diameter (Å) Ref.
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Table 2. Chemical structures and diameters of typical biphenarenes.

Macrocyclic Host Chemical Structure Diameter (Å) Ref.

Terphen[3]arene
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Table 2. Cont.
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(ii) Easy functionalization. Furthermore, the development of new applications of
macrocyclic hosts is inseparable from the functionalization of macrocycles [62–64]. Whereas
the skeletons of most macrocycles cannot be changed, their functional substituents can be
introduced on their portals [65–67]. The synthesis of biphenarenes is achieved through
modular synthetic strategy, and the functionalization can not only introduce functional
substituents on their portals, but also realize functionalization by changing the functional
modules. By changing the functional modules of biphenarenes by modular synthesis,
endo-functionalized macrocycles can be easily synthesized (Figure 2) [47]. This method not
only expands the cavity sizes of biphenarenes, but also enriches their host–guest properties
and functions. In this way, phenyl, naphthyl, benzofuranyl, benzothiophyl and even π-
electron-rich donors (e.g., anthryl, pyrenyl, azophenyl) can also be introduced into the
macrocyclic backbones of biphenarenes.

The structural properties of biphenarenes make the synthesis of functional macrocycles
more economical and efficient. It is possible to integrate different functional building
units into a macrocycle, greatly expanding the toolbox of biphenarenes. The diversity of
structures and functions of biphenarenes show extensive binding abilities and extraordinary
self-assembly behaviors, laying the foundation for their vigorous development in the field
of supramolecular chemistry.



Molecules 2023, 28, 4422 7 of 25Molecules 2023, 28, x FOR PEER REVIEW 7 of 27 
 

 

 

Figure 2. (A) Cartoon representation of modular introduction of endo-binding sites in macrocyclic 

cavity. (B) Modular synthesis of macrocycles with customizable endo-binding sites. Reproduced 

from ref. [47] with permission from John Wiley and Sons. 

The structural properties of biphenarenes make the synthesis of functional macrocy-

cles more economical and efficient. It is possible to integrate different functional building 

units into a macrocycle, greatly expanding the toolbox of biphenarenes. The diversity of 

structures and functions of biphenarenes show extensive binding abilities and extraordi-

nary self-assembly behaviors, laying the foundation for their vigorous development in the 

field of supramolecular chemistry. 

3. Molecular Recognition 

Molecular recognition plays an important role in biological systems, ion detection, 

environmental pollution control, etc. [68–71]. Macrocyclic hosts are widely used in molec-

ular recognition because of their high affinity and selectivity for cationic or neutral guests 

[72–75]. Compared with traditional macrocyclic hosts, the unique structure and easy func-

tionalization of biphenarenes give them excellent abilities to selectively bind various types 

of guests [76–78]. These features provide a useful platform for the construction of inter-

esting supramolecular systems. In addition, biphenarenes are easy to obtain and function-

alize, which provides flexibility for building efficient recognition systems, and is expected 

to become popular macrocyclic hosts in the future. 

Since most biological functions and processes occur in aqueous media, molecular 

recognition in water is extremely important [71]. Li and co-workers designed and synthe-

sized anionic water-soluble biphen[3]arenes (H1) and investigated their host–guest com-

plexation with a series of cationic guests of different sizes and shapes (G1–G10) (Figure 

3A) [78]. The cleavage of the ether groups in perethylated biphen[3]arene and perethyl-

ated biphen[4]arene by reaction with excess BBr3 in CH2Cl2 could quantitatively produce 

H2 and H3, respectively. The binding strength of H1-H3 to these guests was quantitatively 

Figure 2. (A) Cartoon representation of modular introduction of endo-binding sites in macrocyclic
cavity. (B) Modular synthesis of macrocycles with customizable endo-binding sites. Reproduced
from ref. [47] with permission from John Wiley and Sons.

3. Molecular Recognition

Molecular recognition plays an important role in biological systems, ion detection, en-
vironmental pollution control, etc. [68–71]. Macrocyclic hosts are widely used in molecular
recognition because of their high affinity and selectivity for cationic or neutral guests [72–75].
Compared with traditional macrocyclic hosts, the unique structure and easy functional-
ization of biphenarenes give them excellent abilities to selectively bind various types of
guests [76–78]. These features provide a useful platform for the construction of interesting
supramolecular systems. In addition, biphenarenes are easy to obtain and functionalize,
which provides flexibility for building efficient recognition systems, and is expected to
become popular macrocyclic hosts in the future.

Since most biological functions and processes occur in aqueous media, molecular
recognition in water is extremely important [71]. Li and co-workers designed and syn-
thesized anionic water-soluble biphen[3]arenes (H1) and investigated their host–guest
complexation with a series of cationic guests of different sizes and shapes (G1–G10)
(Figure 3A) [78]. The cleavage of the ether groups in perethylated biphen[3]arene and
perethylated biphen[4]arene by reaction with excess BBr3 in CH2Cl2 could quantitatively
produce H2 and H3, respectively. The binding strength of H1-H3 to these guests was
quantitatively estimated by 1H NMR titration (Table 3). The 1H NMR spectra showed
that all protons of G2 were shielded in the presence of H1, indicating that H1 formed a
host–guest inclusion complex with G2 (Figure 3B). At the same time, the color change of the
solution before and after the complexation also indicated the occurrence of the host–guest
complexation (Figure 3C). This phenomenon also made H1 a good material for the detection
of G2, indicating the potential application of H1 in the detection of guest molecules such
as paraquat.
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Huang, Yu and co-workers studied the molecular recognition of a series of water-
soluble biphenarenes [77,79]. They found that G11 could act as an axis through the cavity
of H1, forming a 1:1 complex (Figure 4A) [77]. The existence of host–guest complexation
was confirmed by 1H NMR (Figure 4B). Interestingly, under the appropriate molar ra-
tio, H1 and G12 showed an obvious Tyndall effect in aqueous solution, and there were
abundant aggregates (Figure 4C). By adjusting the pH value, the conversion between
micelles formed by G12 and vesicles based on G12⊂H1 was realized. Subsequently, they
also investigated the host–guest complexation of cationic water-soluble biphen[3]arene
with sodium 1-hexanesulfonate, and further used it to alter the aggregation behavior of
amphiphilic guests in water [79]. In addition, they synthesized [2]calix[1]biphenyl-type hy-
brid[3]arene with a biphenyl unit, showing good complexation with 1-dihexylammonium
hexafluorophosphate [80]. Recently, they constructed the first nonporous adaptive crys-
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tals of [2]calix[1]biphenyl-type hybrid[3]arene for the efficient separation of benzene and
cyclohexane [81].

Table 3. Association constants (Ka) for the host–guest complexes of biphenarenes with differ-
ent guests.

Host Guest Solvent Ka (M−1)

H1 G1 D2O (1.1 ± 0.2) × 104

H1 G2 D2O (2.4 ± 0.1) × 104

H1 G3 D2O (5.1 ± 0.3) × 104

H1 G4 D2O (4.7 ± 0.4) × 103

H1 G5 D2O (9.6 ± 1.7) × 103

H1 G6 D2O (1.5 ± 0.2) × 103

H3 G7 acetone-d6 (0.32 ± 0.04) × 102

H3 G8 acetone-d6 (1.6 ± 0.2) × 102

H3 G9 acetonitrile-d3 (2.4 ± 0.3) × 102

H3 G10 acetone-d6/CD2Cl2
(1:1, v/v) (3.1 ± 0.3) × 103
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Figure 4. (A) Structures of H1, G11 and G12. (B) 1H NMR spectra: (a) G11; (b) H1 and G11; (c) after
addition of 2 µL of aqueous DCl solution (35 wt%) to (b); (d) after addition of 3.5 µL of aqueous
NaOD solution (30 wt%) to (c); (e) H1 (1.00 mM) (Red boxes, 1H NMR spectra change of H1 before
and after addition of DCl and NAOD). (C) Self-assembling behaviors of H1⊃G12 (i) DLS data of
H1⊃G12 aggregates; TEM images: (ii) H1⊃G12 aggregates; (iii) H1⊃G12 aggregates after the solution
pH was adjusted to 4.0; (iv) illustration of the formation of the aggregates and the process of pH-
responsive release of pyrene molecules. Reproduced from ref. [77] with permission from the Royal
Society of Chemistry.
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The electron-rich cavities of biphenarenes have a strong affinity for various cationic
and electron-deficient neutral guests, and show excellent molecular recognition abilities.
This renders them useful as sensors, nanomaterials, ion or molecular transporters and
supramolecular amphiphiles. In particular, research on water-soluble biphenarenes will
help to understand and model biological processes. Because of the easy modification,
water-soluble biphenarenes have been widely studied and have shown great potential in
molecular recognition.

4. Adsorption and Separation

Adsorption and separation are fundamental technologies in many industrial fields [82].
They can be used to efficiently extract, concentrate and refine compounds, and play a
role in separation and purification in the production process [83–89]. Adsorption and
separation are widely used in the fields of environmental protection [89,90], the chemical
industry [36,91,92], water treatment [93] and nuclear waste concentration [94–96]. As
important chemical raw materials, hydrocarbons are separated and purified mainly by
distillation and fractionation in traditional petrochemical production. However, traditional
separation technologies suffer from high costs and low efficiency, while accounting for a
large part of the world’s energy consumption [86].

In recent years, a variety of porous materials have been used for adsorption and sepa-
ration in order to develop economical and efficient adsorption and separation technologies.
For instance, zeolites [97,98], metal–organic frameworks (MOFs) [98–103] and covalent
organic frameworks (COFs) [104,105] have rigid structures, high specific surface areas and
regular adjustable pores. They are widely used in the fields of adsorption and separation,
environmental improvement, industrial production and biomedicine. However, these
porous materials also have drawbacks that cannot be ignored. The structures of MOFs
are easily destroyed in high temperature or acid–base environments, and their chemical
stability is weak. Furthermore, the rigid structures of these materials lead to poor solubility
and lack of solution processing properties [106,107].

Macrocyclic hosts such as crown ethers, cyclodextrins, calixarenes, cucurbiturils and
pillararenes are widely used for adsorption and separation of gases, organic pollutants, nu-
clear wastes and hydrocarbons [108–113]. With the rapid development of macrocyclic hosts,
excellent results have been obtained in the field of adsorption and separation of hydrocar-
bons [114–117]. For example, Huang and co-workers reported the application of nonporous
adaptive crystal (NAC) materials based on pillararenes in adsorptive separation of im-
portant hydrocarbons and nuclear waste pollution [118,119]. Compared with traditional
porous materials, NACs are nonporous in the initial crystalline state, but transformations
of intrinsic or extrinsic pores along with crystal structures are induced by preferential guest
molecules [120,121]. More importantly, NACs are able to return to their original nonporous
structures after the removal of the guest molecules. Macrocycle-based NAC materials are
uniquely attractive in the field of hydrocarbon adsorption and separation because of their
excellent adsorption and separation properties, recyclability and stability.

As a new generation of macrocyclic hosts, biphenarenes also play an indispensable role
in adsorption and separation. In 2016, Yang and co-workers first synthesized [2]biphenyl-
extended-pillar[6]arenes ([2]Bp-ExP6) with rigid nanocavities [122]. m-xylene and toluene
could be efficiently bound in the cavity of [2]Bp-ExP6, indicating that [2]Bp-ExP6 has great
potential in the purification of hydrocarbons. Later, Li and co-workers efficiently synthe-
sized 2,2′,4,4′-biphen[3]arenes (H4) for the separation of cis- and trans-1,2-dichloroethylene
(cis-DCE and trans-DCE) isomers (Figure 5A) [44]. They found that H4α exhibited selective
adsorption to cis-DCE (Figure 5B). The time-dependent solid–vapor adsorption of H4α
with cis-/trans-DCE mixtures showed that the uptake of cis-DCE was very rapid, almost
reaching saturation after only 10 min. At the same time, H4α showed excellent selectivity
for cis-/trans-DCE mixtures. The adsorption capacity of H4α for cis-DCE was close to 0.7
equivalent, while that for trans-DCE was only 0.05 equivalent (Figure 5C). Repeatedly
performing the experiment showed that the adsorption selectivity and adsorption capacity
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of H4α toward cis-DCE did not change significantly (Figure 5D). Activated H4α crystals
had good separation efficiency and recyclability. The simple synthesis, excellent selectivity
and recyclability of biphenarenes make them be one of the most promising NAC materials.
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In order to meet the growing demand for energy and mitigate the greenhouse effect,
scientists are stepping up research into clean and efficient nuclear energy [123,124]. How-
ever, the contamination of nuclear waste is a major challenge facing the development of
nuclear energy. One is radioactive iodine, a volatile contaminant of nuclear waste. 129I
has a particularly long half-life (~107 years) and is a dangerous isotope of iodine. 131I
has a short half-life (8.02 days), but is highly volatile and can interfere with metabolic
processes in the human body. Therefore, it is very important to develop materials that
capture highly volatile iodine. Li and co-workers designed and synthesized H5-H12 with
different cavity sizes (Figure 6A) [61]. Interestingly, cyclic pentamers and hexamers (H7,
TP6, QP5 and QP6) could easily form supramolecular organogels (G-H7, H8, G-H11 and
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G-H12) in dichloromethane/hexane solutions. Among them, G-H7 could be used as an
excellent material for iodine capture, not only effectively adsorbing iodine molecules in
water, but also efficiently capturing iodine vapor (Figure 6B). When G-H7 was exposed to
iodine vapor, the adsorption amount of iodine increased gradually with time, indicating
that G-H7 had a good adsorption ability for iodine vapor (Figure 6C). After exposure to
iodine vapor, the color of the xerogel gradually changed from white to almost black. At the
same time, approximately 92% of the iodine in G-H7 was rapidly absorbed within 30 min
(Figure 6D). In addition, G-H7 had high recyclability and chemical stability (Figure 6E).
Therefore, H5-H12 hold broad application prospects in pollutant sequestration.
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In addition, many biphenarene analogues also show excellent adsorption and separa-
tion properties. Yang and co-workers obtained an elongated-geminiarene by replacing the
xylylene units with biphenylene units [125]. With large-scale synthesis, a nano-sized cavity
and excellent solid-state host–guest properties, elongated-geminiarene combines the advan-
tages of both geminiarenes and biphenarenes. The elongated-geminiarene-based crystalline
materials showed high efficiency in the separation of aromatic and cyclic aliphatic com-
pounds. They also found that [2]biphenyl-extended pillar[6]arene derivatives could effec-
tively separate carbon dioxide [126]. In addition, Huang and co-workers reported the syn-
thesis of hybrid[3]arene by 4,4′-biphenol diethyl ether and 1,3,5-trimethoxybenzene [118].
With the hybrid[3]arene-based NAC materials, benzene can be completely separated from
a mixture of benzene and cyclohexane.

Biphenarenes show a great development scope in the field of adsorption and separa-
tion due to the advantages of simple synthesis, stable structure and excellent properties. In
addition, biphenarenes with large cavities show great potential for adsorbing and separat-
ing large sizes of guests.

5. Drug Delivery

Drug delivery has enabled the development of many drug products [127–129]. Drug
delivery can enhance the delivery of drugs to target cells and minimize off-target effects.
As therapeutics evolve from small molecules to nucleic acids, peptides, proteins and
monoclonal antibodies, drug delivery also faces new challenges.

Macrocyclic hosts have gained remarkable achievements in the field of drug deliv-
ery [130,131]. The non-covalent interactions between various hosts and guests enable
highly adjustable combinations and intelligent stimuli-response properties. The excellent
stimuli-responsive properties enable macrocyclic hosts to trigger drug release in response to
pH, light, chemical or electrochemical stimuli [132–135]. To meet the needs of supramolec-
ular nanomedicine, the cavities of macrocyclic hosts must be large enough to accommodate
various drug–drug coupling molecules. However, limited by the cavity size, traditional
macrocyclic hosts are excellent molecular containers for small- or medium-sized guests,
but cannot accommodate biomacromolecules. Biphenarenes can be modularized by the
selection of long and rigid structural units to obtain macrocycles with large cavities. As
the cavity size of macrocyclic hosts increases, large guest molecules can be encapsulated,
which effectively expands the application of macrocyclic hosts in drug delivery [136,137].

Li and co-workers found that two water-soluble quaterphen[n]arenes (H13, H14)
with large-sized cavities and interesting host–guest properties were able to achieve an
overall complexation towards peptides (Figure 7A) [138]. The host–guest inclusion modes
significantly inhibited the hemolytic toxicity of pexiganan (PXG) in rabbit red blood cells
(rRBCs) and improved its metabolic stability without affecting the antibacterial activity
(Figure 7B). When the concentration of PXG was 160 mM, the hemolysis rate of rRBCs
taking up PXG/H13 (80.51 ± 2.83%) was about 20% lower than that of rRBCs without H13.
More importantly, H14 significantly reduced the hemolysis rate of rRBC to 26.94 ± 0.96%
(Figure 7C,D), indicating that the strong complexation of H14 effectively blocked the
reaction of PXG with rRBCs. This typical example illustrates the potential application of
biphenarenes in the encapsulation of biological macromolecules such as peptides/proteins.

Li and co-workers further synthesized a water-soluble quaterphen[n]arenes bearing
dendritic multicarboxylate moieties (H15) (Figure 8A) [139]. Compound H15 was found to
have a high binding affinity for LyeTxI (LyeTxI is a high-molecular-weight biotoxin isolated
from Lycosa erythrognatha spider venom) and its association constant (Ka) was (7.01 ± 0.18)
× 107 M−1. They found that the cytotoxicity of H15 to cells was negligible (Figure 8B). On
the contrary, the cytotoxicity of LyeTxI was significantly reduced in the presence of H15
(Figure 8C). Host–guest complexation of LyeTxI and H15 protected the cell membrane by
destroying LyeTxI and significantly inhibited cytotoxicity and hemolysis of erythrocytes
(Figure 8D–F). In addition, the survival rate of LyetxI-poisoned mice was improved by
emergency administration of H15. This result indicates that a supramolecular strategy
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based on host–guest complexation by large-sized macrocycles is expected to be a general
method to detoxify macromolecular biotoxins.
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Figure 7. (A) Structure of quaterphen[n]arenes (H13, H14) (I) and PXG (II). (B) Schematic represen-
tation of H13/H14 improving the metabolic stability of a peptide. (C) Hemolysis of H13 and H14
toward rRBCs, rRBCs incubated with 1% Triton X-100 were used as a positive control. (D) Cytotoxi-
city of free PXG and PXG complex, IIII p < 0.0001. Reproduced from ref. [138] with permission
from John Wiley and Sons.

Recently, Li and co-workers designed and synthesized quaternary ammonium per-
functionalized biphen[n]arenes (H16, H17) with excellent biofilm resistance (Figure 9A) [140].
Compared with phosphate-buffered saline, cefazolin sodium (CFZ)/H16 and CFZ/H17
could effectively disrupt cell colonies in mature E. coli biofilms and reduce the bacterial den-
sity (Figure 9B). Furthermore, administration of CFZ/H16 or CFZ/H17 complexes induced
significant destruction of biofilms and a sharp reduction in E. coli bacteria (Figure 9C). At
the same time, the surface morphology of E. coli exposed to free CFZ showed membrane
lysis, and the complex of H16 or H17 retained the antibacterial effect of CFZ (Figure 9D).
This study demonstrated that biphenarene-based disruptors can effectively preserve the
broad-spectrum sterilizing effect of antibiotic agents.
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Figure 8. (A) Structure of quaterphen[n]arenes (H15) (I), schematic illustration of H15 as a supramolec-
ular antidote against LyeTxI (II) and structure of LyeTxI (III). (B) Viability of human normal renal
epithelial cells (293T) cells treated with different concentrations of H15. (C) Viability of 293T cells
administered with different concentrations of free LyeTxI and LyeTxI/H15. (D) LDH release of 293T
cells treated with LyeTxI in the absence and presence of H15. (E) Hemolysis of H15 toward rRBCs.
(F) Hemolytic activity of free LyeTxI and LyeTxI/H15. ns, not significant. I p < 0.05, II p < 0.01,
IIII p < 0.0001. Reproduced from ref. [139] with permission from John Wiley and Sons.

In addition, a series of novel macrocyclic hosts named biphenyl-extended pillararenes
have been designed by Yang and co-workers [44,141]. These macrocycles have rigid
skeleton structures and multifunctional modification sites similar to pillararenes. Biphenyl-
extended pillararenes have the advantages of an electron-rich cavity structure with ex-
tended size and high synthesis yield due to the introduction of biphenyl units. Yao and co-
workers successfully synthesized anionic water-soluble [2]biphenyl-extended-pillar[6]arene
(H18) (Figure 10A) [142]. Based on the host−guest molecular recognition between H18
and chlorambucil (CB), a supramolecular nanoprodrug (SNP) was fabricated using H18
and the drug−drug conjugate guest (IR806-CB). In the acidic tumor cell microenviron-
ment with a high concentration of glutathione (GSH), SNP could be rapidly degraded
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and efficiently released to activate CB through the GSH cleavage of the disulfide linker.
Under the near-infrared irradiation, IR806 produced hyperthermia and ROS to kill tumor
cells. Near-infrared fluorescence imaging showed that the SNP nanoprodrug had excel-
lent tumor aggregation and drug retention (Figure 10B). The hyperthermia study further
demonstrated that SNP had significant photothermal conversion efficiency and tumor-
targeting ability (Figure 10C). By monitoring the tumor size, it was found that both IR806 +
NIR and SNP groups had significant inhibitory effects on tumor growth (Figure 10D–F).
These results proved that SNP formed by H18 and IR806-CB could significantly improve
therapeutic efficiency through synergistic photodynamic therapy, photothermal therapy
and chemotherapy.

Molecules 2023, 28, x FOR PEER REVIEW 17 of 27 
 

 

showed membrane lysis, and the complex of H16 or H17 retained the antibacterial effect 

of CFZ (Figure 9D). This study demonstrated that biphenarene-based disruptors can ef-

fectively preserve the broad-spectrum sterilizing effect of antibiotic agents. 

 

Figure 9. (A) Structures of H16, H17 and CFZ, and schematic illustration of supramolecular syner-

gistic antibacterial strategy. (B) Images of colony-forming units of E. coli after different treatments. 

(C) CLSM 3D images of E. coli biofilms after different treatments. (D) TEM images of ultrathin sec-

tions of E. coli after different treatments. Reproduced from ref. [140] with permission from John 

Wiley and Sons. 

In addition, a series of novel macrocyclic hosts named biphenyl-extended pil-

lararenes have been designed by Yang and co-workers [44,141]. These macrocycles have 

Figure 9. (A) Structures of H16, H17 and CFZ, and schematic illustration of supramolecular syner-
gistic antibacterial strategy. (B) Images of colony-forming units of E. coli after different treatments.
(C) CLSM 3D images of E. coli biofilms after different treatments. (D) TEM images of ultrathin
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Figure 10. (A) Schematic illustration of the fabrication of supramolecular nanoprodrug SNP and the
mechanism of PDT-PTT-CT combination therapy. (B) In vivo fluorescent imaging of HeLa tumor-
bearing mice after intravenous injection of IR806 and SNP at selected time intervals. (C) Near-infrared
thermal images and (D) temperature profiles of mice treated with free IR806 or SNP under NIR
irradiation. (E) Tumor volume changes and (F) tumor inhibition rates for different groups. II p < 0.01,
III p < 0.001. Reproduced from ref. [142] with permission from the American Chemical Society.

Overall, the fascinating structures and large cavities of biphenarenes lay the foundation
for drug delivery and cancer therapy.

6. Fluorescence Sensing

Fluorescence sensors are widely used to detect various analytes because of their
high sensitivity, strong specificity and fast response speed [143]. Organic luminescent
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materials with high quantum efficiency have attracted wide attention due to their applica-
tions in sensors, bioimaging, laser displays, light-emitting diodes and anti-counterfeiting
technologies [144–147]. It is important to design organic luminescent materials with a
simple molecular structure, adjustable properties and excellent thermal stability for the con-
struction of high-performance fluorescence sensors. However, most organic luminescent
materials suffer from quenching effects in the aggregate state due to the formation of detri-
mental aggregates such as excimers and exciplexes. This severely limits their applications in
fluorescence sensing and organic luminescent materials. In contrast, aggregation-induced
emission (AIE) molecules are non-emissive in dilute solutions, but their luminescence
is significantly enhanced when the molecules are aggregated [148]. AIE materials with
high solid-state luminescence efficiency are expected to fundamentally solve the ACQ
problem of traditional organic luminescent materials [149,150]. Therefore, there is an ur-
gent requirement to develop a new fluorescence enhancement strategy. This not only
contributes to the construction of excellent fluorophores and materials, but also plays an
important role in understanding the relationship between luminescence mechanisms and
molecular structures.

Based on this, Li and co-workers proposed an effective and universal strategy for
enhancing solid-state emission of luminophores, known as macrocyclization-induced emis-
sion enhancement (MIEE) [151]. A benzothiadiazole-based macrocycle (H19) with three
methylene bridges was obtained (Figure 11A). H19 exhibited redshift emission compared
to BT-M (Figure 11B). In addition, the photoluminescence spectra showed that H19 had
a higher solid state fluorescence quantum yield than BT-M. MIEE not only effectively im-
proved the fluorescence efficiency of organic luminophores, but also has good universality,
which is conducive to the development of organic luminophores.
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solid state. (reproduced with permission of Springer Nature from ref. [151]).

Recently, Li and co-workers developed a synthetic strategy for heterogeneous macrocy-
cles that aimed to integrate different functional groups into one macrocyclic backbone [152].
They successfully obtained isomeric macrocycles containing functional groups of fluo-
renone and fluorenol by both post-modification and one-pot methods (Figure 12A). Notably,
the photophysical characterization revealed that the fluorenol was part of the energy donor
and the fluorenone was part of the energy acceptor (Figure 12B). Macrocycles H20, H21 and
H22 showed similar photoluminescence spectra with the same yellow emission peak at 554
nm which was assigned to the emission of the fluorenone moiety, while H23 had a blue
emission peak at 393 nm (Figure 12C). Moreover, the emission intensity of the fluorenone
moiety followed the order of H22 > H21 > H20 (Figure 12D). Meanwhile, intramolecular
energy transfer had no effect on the radiation attenuation of fluorenone (Figure 12E). The
obtained isomeric macrocycles showed interesting intramolecular energy transfer and
fluorescence enhancement due to well-matched absorption/emission spectra and the close
distance between the energy donor and the acceptor. This work provides a new method for
the efficient synthesis of multiphase functional macrocycles.
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Figure 12. (A) Structures of heterogeneous macrocycles. (B) UV-vis spectra of H20, H23 and pho-
toluminescence spectra of H3. (C) Normalized photoluminescence spectra of H20, H21, H22 and
H23. (D) Photoluminescence spectra of H20, H21 and H22. (E) Time-resolved PL decay of fluorenone
monomer, H20, H21 and H22. Reproduced from ref. [152] with permission from the Royal Society
of Chemistry.
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It is not difficult to see that the modular synthetic strategy of biphenarenes is beneficial
to the development of functional macrocyclic hosts with different properties. In addition,
by integrating different structural units into one macrocycle, more interesting structures
and applications can be developed and explored.

7. Conclusions

In conclusion, the modular synthetic strategy gives biphenarenes rich functions and
host–guest properties. Compared with traditional macrocyclic hosts, biphenarenes have
unique advantages such as customizable cavity size, diverse skeletons and alternative
binding sites. As a kind of “young” macrocycle, biphenarenes have shown their brilliance
in the fields of supramolecular chemistry, and will have broad development space in the
future. Through the modular synthetic strategy, different building units can be used to
obtain macrocyclic hosts with large cavities. This opens up a broad perspective for the
complexation of macromolecules. At present, biphenarenes play important roles in drug
delivery, and cancer diagnosis and treatment. Furthermore, since biphenarenes can be
easily functionalized, supramolecular functional materials can be constructed by intro-
ducing functional modules or post-modification methods. The structures and properties
of biphenarenes are expected to be expanded greatly by the reasonable design of diverse
skeletons. We hope that this review will deepen the interest in supramolecular macrocyclic
chemistry and stimulate the research on biphenarenes and synthetic macrocyclic hosts.
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