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Significance: Given their capacity for self-renewal, multilineage differentia-
tion, and immunomodulatory potential, mesenchymal stem cells (MSCs) rep-
resent a promising modality of clinical therapy for both regenerative medicine
and immune diseases. In this study, we review the key approaches and pop-
ular methods utilized to boost potency and modify functions of MSCs for clin-
ical purposes as well as their associated limitations.
Recent Advances: Several major domains of cell modification strategies are
currently employed by investigators to overcome these deficits and augment
the therapeutic potential of MSCs. Priming MSCs with soluble factors or
pharmacologic agents as well as manipulating oxygen availability in culture
have been demonstrated to be effective biochemical methods to augment MSC
potential. Distinct genetic and epigenetic methods have emerged in recent
years to modify the genetic expression of target proteins and factors thereby
modulating MSCs capacity for differentiation, migration, and proliferation.
Physical methods utilizing three-dimensional culture methods and alternative
cell delivery systems and scaffolds can be used to recapitulate the native MSC
niche and augment their engraftment and viability for in vivo models.
Critical Issues: Unmodified MSCs have demonstrated only modest benefits
in many preclinical and clinical studies due to issues with cell engraftment,
viability, heterogeneity, and immunocompatibility between donor and recipi-
ent. Furthermore, unmodified MSCs can have low inherent therapeutic poten-
tial for which intensive research over the past few decades has been dedicated
to improving cell functionality and potency.
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SCOPE AND SIGNIFICANCE
Mesenchymal stem/stromal cells

(MSCs) are pluripotent cells with a
wide variety of independent func-
tions and modulatory effects on
other cells in their tissue microenvi-
ronment.1 Thus, MSCs are a major
source of preclinical and clinical
study to improve treatment options
for diseases ranging from ische-
mic pathologies such as myocardial

infarction and critical limb ische-
mia, respiratory diseases such as
pulmonary failure from COVID-19,
and autoimmune diseases, including
Crohn’s disease and multiple scle-
rosis (Fig. 1).1–7

The aim of this review is to discuss
popular strategies employed to aug-
ment MSC therapeutic actions for
preclinical and clinical applications
and their associated limitations.
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TRANSLATIONAL RELEVANCE

MSC tissue regenerative functions, encompass-
ing their ability for self-renewal and differentia-
tion, have profound implications for future clinical
applications. MSCs further enact a variety of para-
crine effects in their local environment through
the secretion of soluble factors and extracellu-
lar vesicles.1 Moreover, their immunosuppressive
properties and low immunogenicity contribute to a
reduced or weakened immune response elicited by
the implantation of allogeneic MSCs compared with
other cell types.8,9 Any method to improve stem
cell potency and therapeutic efficacy as well as
their survival and viability can have profound
implications for improving stem cell-based ther-
apy for a myriad of disease applications.

CLINICAL RELEVANCE

Despite their numerous benefits and acceptable
safety profiles, unmodified MSCs have demonstra-
ted only modest benefit in clinical trials compared
to placebo treatments.10–12 For example, MSC ther-
apy for patients with critical limb ischemia has
demonstrated little to no improvement in outcomes
such as amputation-free survival rates, which many
theorize may be due to low potency in the MSCs
given.10–12 Therefore, optimizing modifications of
MSCs to overcome these challenges has become an
intensified area of medical research in recent years.

BACKGROUND

Given their capacity for self-renewal, multiline-
age differentiation, and immunosuppressive prop-
erties, MSCs represent a promising modality of

clinical therapy for both regenerative medicine and
immune disease treatments (Fig. 2). These fea-
tures of MSCs aid in the endogenous tissue repair
machinery by replenishing resident cells in the
wound bed, secreting a variety of soluble factors,
and recruiting other cells involved in immunomod-
ulation and tissue repair.13 However, the effec-
tiveness of stem cell therapy depends on efficient
engraftment of cells to sites of disease to restore
homeostasis and function, and thereby accomplish
the desired therapeutic effect. Even when admin-
istered locally to diseased tissue sites, MSC ther-
apy is significantly limited by the retention of
administered cells, poor survival and viability, and
indiscriminate or decreased migratory capacity.13

Furthermore, significant heterogeneity in MSC
donor cell populations can exist, which can result
in issues with immunocompatibility between the
donor and recipient.1

These challenges are further compounded by
the local tissue microenvironment, which in dis-
eased states can be inhospitable to MSCs due to
reduced blood flow, tissue hypoxia, and widespread
local inflammation in many disease states.13,14 As
a result, current methods have attempted to opti-
mize both MSCs’ nascent properties and their
delivery conditions with consideration of the host
environment to which they are transplanted to
maximize their efficacy (Fig. 3).

BIOCHEMICAL APPROACHES
Priming with soluble factors

A well-studied strategy for improving MSCs
potential is cell priming through exposure to

Figure 1. Examples of clinical disease applications for MSC therapy. MSC, mesenchymal stem cell.
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bioactive molecules before use (Fig. 4). For exam-
ple, one limitation of adult stem cell treatment in
the realm of cardiac disease has been due to these
cells’ limited plasticity and difficulty in isolating
cardiac stem cells.15 One study demonstrated that
priming MSCs through culture in cardiogenic
media enhanced MSC differentiation toward car-
diomyogenic lineages thought to be related to the
upregulation of molecular targets, including pro-
teins Cx-43 and sarcomeric alpha-actinin.2 Infu-

sion of MSCs primed toward a cardiomyogenic
program promoted myocardial protection com-
pared to unprimed cells in a rodent model of acute
myocardial infarction.2 Priming MSCs can also be
an effective method to improve MSC therapeu-
tic potential in inhospitable or diseased tissue
microenvironments.

Castilla et al16 demonstrated that culturing
bone marrow-derived MSCs (BM-MSCs) from dia-
betic mice in the presence of stromal cell-derived

Figure 2. Overview of mesenchymal stem cell properties.

Figure 3. Schematic of common methods to augment mesenchymal stem cells for therapeutic applications.
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factor 1 alpha (SDF1-a) improved neovascularization,
endothelial progenitor cell recruitment, and the rate
of wound healing compared to unprimed BM-MSCs
in a murine model of diabetic wound healing. Simi-
larly, others have demonstrated that adipose-derived
MSCs (AD-MSCs) from diabetic mice exposed to
platelet-derived growth factor (PDGF) displayed
improvement in their trilineage differentiation po-
tential and migratory capacity through PDGF-
associated signaling receptor pathways.17

Recruitment of bone marrow-derived circulating
stem/progenitor cells, including MSCs, to diseased
tissue relies on critical interactions between cir-
culating stem/progenitor cells and hyaluronan
(HA) present in the extracellular matrix of wound
tissues, which can also be improved through
priming of molecular targets by exposure to soluble
factors.18 One previous preclinical study demon-
strated that inducing overexpression of CD44 in
rat-derived MSCs during exposure to PDGF en-
hanced in vitro migration through CD44-HA
binding interactions and could be inhibited by anti-
CD44 neutralizing antibodies.19

Modulation of the inflammatory milieu can be
another method to prime MSCs toward their anti-
inflammatory and immunomodulatory paracrine
actions.9 Previous studies have demonstrated that
in vitro exposure of MSCs with interferon gamma
can result in protrophic and anti-inflammatory
changes to the MSC secretome.9,20 Stimulation
with similar cytokines can also improve MSC abil-
ity to empower resident cells through their para-
crine effects.21

One study utilizing BM-MSCs demonstrated that
preconditioning cells with interleukin 1 (IL-1) re-
sulted in an upregulation of granulocyte colony-

stimulating factor.21 Exposure of microglial cells to
the culture media of IL-1-preconditioned human
MSCs resulted in an upregulation of the anti-
inflammatory factor IL-10 compared to exposure
with media from unprimed MSCs.21 Thus, manip-
ulating MSC exposure to differential inflammatory
conditions and soluble factors can prove an effective
strategy to augment their therapeutic potential.

Hypoxic preconditioning
An alternative method of MSC priming is

through stimulation in hypoxic conditions. Unlike
the normoxic conditions that MSCs are typically
cultured in, the native MSC tissue microenviron-
ment in adipose and bone marrow has an oxygen
tension as low as 1–7%.22 Furthermore, MSCs in
clinical therapeutics are often conveyed to ische-
mic and hypoxic tissue sites that can be inhospi-
table to unmodified MSCs.23 As a result, it is
reasonable to expect that recapitulating the hyp-
oxic MSC niche can optimize MSCs before cell-
based therapy applications. One study found that
incubation of MSCs under low oxygen tension
stimulated the expression of glucose-regulated
protein 78 through hypoxia-inducible factor-1
alpha (HIF-1a) molecular signaling, which resul-
ted in improved proliferation and migratory
potential.24 Hypoxic preconditioning of MSCs fur-
ther promoted their survival and angiogenic cyto-
kine secretion when transplanted into ischemic
tissues in a murine model of hindlimb ischemia.24

HIF-1a can also enhance MSCs’ therapeutic ef-
fect by augmenting their resistance to hypoxic
stress and decrease the generation of reactive ox-
ygen species in hypoxic-ischemic tissue such as in
applications for radiation-induced lung injury.25

Figure 4. Effects of MSCs modified by differential priming methods.
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Others have demonstrated that hypoxic stimula-
tion of MSCs improve cell retention and viability by
augmenting their metabolic potential, which can
improve their functional capacity in tissue envi-
ronments with limited nutrition and oxygen
availability.26,27 As a result, hypoxia serves as a
simple method to increase the survival and reten-
tion of transplanted MSCs.

Chemical and pharmacological treatment
Another promising strategy of altering MSC

function to improve their therapeutic actions and
engraftment is through pretreatment of cells with
pharmacologic and chemical agents before trans-
plantation. An additional advantage of using such
agents in vitro is achieving a modification of MSCs
at doses that would be toxic or produce off-target
side effects if administered systemically. For
example, one significant obstacle to utilizing MSCs
is the culture and expansion of sufficient quanti-
ties of cells to produce clinically relevant effects.

All-trans retinoic acid (ATRA) is a vitamin A
metabolite and retinoic acid isomer and acts as a
significant transcriptional regulator that has been
used for a variety of diseases.28 Pourjafar et al28

demonstrated that pharmacologic treatment of
MSCs with ATRA at varying concentrations im-
proved MSC survival and proliferation in vitro
through the upregulation of genes and trophic
factors, including HIF-1a, C-X-C chemokine re-
ceptor type 4 (CXCR4), vascular endothelial
growth factor (VEGF), and angiopoietin-2 and
angiopoietin-4. Subsequent exposure of MSCs to
ATRA stimulated their ability to induce angio-
genesis and tube formation of endothelial cells
derived from the modulation of these genes, as well

as upregulation of prostaglandin E2 production
and signaling pathways.28 These proangiogenic
and proliferative effects translated to increased
collagenization and epithelialization, as well as
increased vascular density of wounds treated
with MSCs preconditioned with ATRA in a rat
model of excisional wound healing.28

Other studies have demonstrated the benefit of
pharmacologic agents to modulate the immuno-
modulatory potential of MSCs. Using a mouse
model of asthma through constitutive overexpres-
sion of IL-13, one study demonstrated that human
umbilical cord-derived MSCs pretreated with a
ferroptosis inhibitor, Liproxstatin-1, were able
to downregulate T helper Type 2 cells to reduce
macrophage infiltration and chronic airway
inflammation.29 Although the exact mechanism
was not described, Liproxstatin-1-primed MSCs
were demonstrated to have multiple direct inter-
actions with the inflammatory milieu, including
suppression of M2 macrophage activation and re-
duced eosinophil infiltration.29 As more pharma-
cologic and chemical agents continue to be
discovered, future studies should characterize
their effects on MSCs as potential targets for cell-
based therapy applications.

Limitations
Unfortunately, priming with bioactive soluble

factors, hypoxic culture conditions, and chemical
agents can produce unintended, off-target down-
stream effects in cell populations and can be asso-
ciated with only transient expression of the
therapeutic targets (Fig. 5).30 One such off-target
effect can be the induction of differential major
histocompatibility complex II expression, which

Figure 5. Drawbacks of utilizing biochemical methods to prime MSCs.
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can result in reduced immunocompatibility and
rejection of transplanted MSCs.8,31 Furthermore,
priming strategies can often be costly due to the
price of producing soluble factors and pharmaco-
logic agents and can be difficult to scale-up to
manufacture sufficient quantities of cells for clini-
cal applications.32

GENETIC MODIFICATION
Supercharging MSCs with therapeutic
molecules by viral transduction

One of the most common methods of genetic
engineering of MSCs is through the use of viral
transduction. Adeno-associated viruses (AAV)
have a favorable therapeutic profile and are one
such safe FDA-approved vector currently utilized
for gene therapy in humans, which have been suc-
cessfully applied for MSCs.33 Quiroz et al14 dem-
onstrated that modifying MSCs to overexpress an
adhesion molecule, E-selectin, through an AAV
vector improved their ability to induce neovascu-
larization and functional recovery, and reduce
muscle atrophy in a murine model of hindlimb
ischemia. E-selectin overexpression as a target not
only improved MSC engraftment but may also play
roles in augmenting MSC ability to induce angio-
genesis and beneficial immunomodulation in ische-
mic tissue.14

Other targets to augment MSC proliferative
capacity have included viral transduction to over-
express growth regulators such as thioredoxin-1.34

Suresh et al34 demonstrated that MSCs transduced

with AAV containing thioredoxin-1 displayed
augmented cardiac function and angiogenesis for
the treatment of myocardial infarction. Numerous
studies have demonstrated promise of AAV for
modification of MSCs to develop therapeutic prop-
erties for clinical applications.

Boosting MSCs with therapeutic factors
by CRISPR/Cas9 genome editing

Another strategy becoming increasingly popular
for genetic modification is the use of CRISPR/Cas9
technology. For stem cell therapy applications,
CRISPR/Cas9 allows for highly specific and effi-
cient genetic manipulation of MSCs for both gene
silencing and activation.35 Previous investigators
have performed CRISPR/Cas9 gene editing to
induce upregulation of HIF-1a, to improve the
viability and potency of MSCs before transplanta-
tion into recipient sites with variable or low oxygen
tension.36 This improved the therapeutic efficacy
of HIF-1a-modified MSCs and decreased disease
burden in a murine model of Alzheimer’s disease
without affecting these cells’ trilineage differenti-
ation potential or viability thought to be derived
from the improved retention and survival of these
MSCs.36 Others have demonstrated that targeted
gene knock-in of factors such as PDGF of MSCs
can improve their differentiation and regenerative
capacity.37

Limitations
Several significant drawbacks exist with the use

of genetic modification (Fig. 6). Both viral vectors

Figure 6. Common limitations of genetically modifying MSCs for clinical therapy using viral vectors and genome editing.
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and transfection/transduction methods to deliver
CRISPR/Cas9 constructs can result in low or
transient gene expression, as well as risks associ-
ated with introducing genetic packages, including
insertional mutagenesis and chromosomal insta-
bility.38 However, for some clinical applications
such as the induction of wound healing and aug-
mentation of tissue vascularity, a transient genetic
effect such as AAV-induced overexpression of MSC
surface membrane-bound E-selectin can be a clin-
ically desirable therapeutic design.14,39 This is
due to the fact that transient E-selectin over-
expression avoids long-term chronic activation of
healing and angiogenesis pathways.14,39

Such persistent activation beyond the point of
complete healing and/or normal tissue perfusion
would be counterproductive to the desired regen-
erative medicine benefit in MSC therapies and
could lead to therapy with unwanted side effects.
Genetic insertion can further result in epigenetic
changes and inadvertent proto-oncogene activa-
tion.38 Viral vectors can also propagate adverse
immune reactions, which can limit the stability of
transgene expression.40,41

EPIGENETIC APPROACHES
Histone modification

As more advanced technologies and under-
standing of genomic alterations emerge, epigenetic
targets are becoming another area that holds major
potential to augment MSCs (Fig. 7). For example,
the role of Wnt signaling in regulating MSC dif-
ferentiation in osteoblastic cell lineages has been
previously characterized and implicated as a pos-
sible therapeutic target for orthopedic diseases

such as osteoporosis where Wnt signaling in MSCs
is suppressed.42,43 To exploit this signaling path-
way, Jing et al42 demonstrated that augment-
ing GCN5 expression, a histone acetyltransferase,
improved Wnt gene expression. In turn, this
resulted in restored BM-MSC osteogenic differ-
entiation and attenuated bone loss in mice with
osteoporosis.42

Other strategies such as chemical inhibitors of
histone demethylases have been utilized to rescue
the osteogenic differentiation ability of MSCs and
selectively induce their differentiation toward
osteoblast instead of osteoclast populations in
murine models of osteoporosis to prevent disease
progression.44 Influencing epigenetic regulation
has the additional advantages of being revers-
ible and stably passed down to subsequent cell
lineages.43,45

RNA therapies
Another mechanism to potentiate MSCs’ actions

and therapeutic efficacy is through modulation
of inhibitory RNAs such as small interfering,
long noncoding, and microRNAs (miRNAs). This
has been investigated in the arena of cardiac dis-
ease to examine miRNA targets related to VEGF
signaling, to promote postmyocardial infarction
angiogenesis.46 Wen et al46 demonstrated knock-
down of miRNA-377 in MSCs can promote VEGF
upregulation and postnatal vascularization in
diseased myocardial infarction tissue in rats.
Others have applied this methodology in exper-
imental models of vascular insult, including
intracerebral hemorrhage. Engineering MSCs to
overexpress miRNA-21 resulted in augmented
MSC survival and recovery of neurological function

Figure 7. Epigenetic approaches to modify MSCs with their associated limitations.
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in rats after intracerebral hemorrhage by acti-
vation of the nuclear factor-kappa B signaling
pathway.47

Limitations
Shortcomings associated with epigenetic meth-

ods to modify MSCs can include their instability
and destruction by in vivo nucleases (Fig. 7).43 This
can yield reduced treatment efficiency of carrier-
free gene therapies due to difficulty with intracel-
lular trafficking and degradation within lysosomal
compartments.43 As a result, modulation of epige-
netic targets can often still require delivery by viral
vectors or exosomes to achieve their therapeutic
effects, and significant scale-up and manufactur-
ing costs can still be incurred with these appr-
oaches.48 Furthermore, epigenetic strategies must
be carefully selected and constructed as they can
bind multiple effector domains and promoter
regions, which can result in off-target genetic
activation and repression.43

PHYSICAL METHODS
Three-dimensional culturing systems

One emerging alternative to improve expan-
sion and functionality of MSCs is 3D in vitro cell
culture methods.49 One drawback of traditional
MSC-based therapy is the extensive 2D in vitro
culture methods and resources needed to cultivate
a sufficient quantity of cells required to induce
a therapeutic effect. Furthermore, the time and
typical protocols utilized to expand MSCs can
result in cell populations with decreased stem cell

potency, which may have reduced clinical efficacy.
To more closely mimic the native MSC tissue
microenvironment, newer 3D culturing methods
have been introduced in the past decade. MSCs
possess the ability to organize into 3D spheroid
aggregates in vivo, which may recapitulate their
function as limb precursors during mesenchymal
condensation for early skeletal development.49

Cell aggregation in this manner enhances cell-
cell interactions, which can trigger differential
adhesion molecule expression, altered cell mor-
phology and polarization among cells.50 For
example, Lee et al51 demonstrated E-cadherin as
a major calcium-dependent adhesion molecule
playing a pivotal function in the formation of MSC
spheroids. Subsequent E-cadherin activation was
demonstrated to regulate both paracrine functions
and self-renewal of MSCs in spheroids through
ERK/AKT signaling.51 Cadherin expression has
been shown to mediate the immunomodulatory
effects of MSCs upon fibroblasts during inflam-
matory reactions.52,53 Furthermore, modified
cadherin surfaces in 2D culture have been dem-
onstrated to regulate MSC differentiation and cell-
cell adhesion in vitro.54

Three-dimensional culture methods include
both static and dynamic culture, and typically rely
more closely on manipulation of external gravi-
tational forces than manipulation of cell contact
with specific substrates (Fig. 8). Static culture
environments utilize low-attachment surfaces,
hanging-drop, forced aggregation, or magnetic lev-
itation methods to promote MSCs to coalesce into

Figure 8. Three-dimensional culture methods to produce MSC spheroids in vitro.
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spheroids by decreasing their interaction with tis-
sue culture plate surfaces.21,55,56 Dynamic culture
methods attempt to recapitulate the natural tur-
bulent tissue microenvironment through continu-
ous mixing using spinner flasks or rotating wall
vessels.

One study comparing 2D culture versus dynamic
culture systems demonstrated improved adipogenic
and osteogenic differentiation capacity of MSC
spheroids cultured in dynamic 3D environments.57

However, osteogenic differentiation potential was
reduced in these cells due to decreased type I collagen
expression and reduced integrin/type I collagen sig-
naling interactions between cell and the extracellu-
lar matrix.57,58 Future advances and therapies
utilizing MSCs should carefully consider the advan-
tages associated with 3D culture systems to augment
their intended clinical effects.

Alternative cell delivery systems and scaffolds
Another method of augmenting MSC potential

by physical means is through cell delivery sys-
tems to improve their engraftment and viability.
Scaffold-based platforms utilizing both natural
and synthetic biomaterials can be seeded with
MSCs to improve their integration in tissue sites
where they are applied, particularly if the recipient
tissue microenvironment is diseased or inhospita-
ble to donor MSCs. MSCs cultured on chitosan-
based scaffolds have been demonstrated to have
increased chondrogenic differentiation potential,
while still preserving markers of MSC stemness,
including Oct4, Sox2, and Nanog.59 However, these
substrates should be carefully selected as they
can also decrease the stemness of MSCs.

Wang et al60 demonstrated that MSCs exposed
to micropatterned polyethylene glycol demon-
strated upregulated genetic expression of markers
related to osteogenesis and adipogenesis, but
downregulated expression of genes related to stem-
ness such as THY1 and MEST. Chitosan and other
molecular substrates can also be utilized to create
hydrogels to enhance MSC delivery and survival.
A protein-based hydrogel (SHIELD-2.5) was cre-
ated by one group with a heightened degree of
mechanical stiffness to improve protection of
induced pluripotent stem cells from shear forces
experienced during injection.61 Utilizing this hyd-
rogel delivery system increased stem cell engraft-
ment and arteriogenesis.61

More recently, small-molecule hydrogels have
begun to show early promise with the advantages
of being more readily biodegradable and compat-
ible compared to standard hydrogels.62,63 In a
murine model of hindlimb ischemia, Huang et al

demonstrated that the use of a small-molecule
hydrogel using disulfide bond links improved
engraftment of human placenta-derived MSCs as
well as their paracrine and proangiogenic func-
tions, which resulted in the regeneration of muscle
cells and restored perfusion.59

Utilizing other autologous substrates such as
platelet-rich plasma (PRP) and fat grafting has
shown significant promise to improve the tissue
regenerative functions of MSCs. PRP holds poten-
tial as a substrate, given the regenerative properties
of hundreds of signaling factors and bioactive pro-
teins contained in platelet alpha granules, including
PDGF and VEGF, which can augment the environ-
ment and tissue repair function of MSCs.64–67

Moreover, tissue scaffolds containing HA and/or
collagen to approximate the cutaneous dermal
bed have long been utilized for surgical recon-
struction of soft tissue defects and wound repair
and represent another strategy to augment sub-
strates such as PRP.68–71 For example, PRP has
been combined with both HA and fat grafting for
clinical applications ranging from wound repair
to inflammatory diseases such as Hidradenitis
suppurativa.72–77 PRP can be further prepared
as leukocyte poor and with low or high levels of
fibrin, which can be optimized for the survival of
hair follicle stem cells to treat conditions such
as hair loss and androgenetic alopecia.78–85

To explore potential solutions for the treat-
ment of osteochondral lesions related to trauma
and joint degeneration, Scioli et al found that
administration of PRP and recombinant insulin
could enhance the osteogenic and chondrogenic
differentiation capacity of AD-MSCs independent
of insulin-like growth factor-1 receptor and mam-
malian target of rapamycin signaling.86 Fat graft-
ing has long been recognized for its clinical
applications in tissue regeneration and recon-
struction, in part, due to its significance as a
source of and delivery method for AD-MSCs.87–95

AD-MSC phenotype and viability can be influen-
ced by the method of fat graft preparation (enzy-
matic versus mechanical), as well as delivery with
the stromal-vascular fraction (SVF) from fat con-
taining a heterogeneous cell population of peri-
cytes, mast cells, endothelial cells, smooth muscle
cells, preadipocytes, and AD-MSCs.95–98

In particular, isolation and delivery of the SVF
offer the concerted benefits of these heterogeneous
cell types in maintaining an environment capable
of sustaining AD-MSCs, which may contribute
to their clinical uses for tissue reconstruction
and rejuvenation.99–103 Utilizing a similar concept
to deliver MSCs with their native tissue envi-
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ronment, others have demonstrated the potential
of skin micrografts containing HF-MSCs as a tar-
geted delivery method to regenerate hair and fol-
licle growth in patients with hair loss and
androgenetic alopecia.104–106 Overall, research
dedicated to optimizing scaffolds and delivery
methods for cell-based therapy hold significant
potential as another promising strategy to utilize
MSCs for a wide variety of clinical applications.

Limitations
Despite their novelty and functional resem-

blance to native MSCs, MSC spheroids generated
by 3D culture methods have several drawbacks
(Fig. 9). Given their spherical arrangement, the
environmental exposure to both oxygen and
nutrient supply is unevenly distributed between
cells at the outer versus inner layers, which can
result in necrosis of spheroid cores.107–109 This can
result in heterogenous morphology, cellular adhe-
sion molecule expression, paracrine activity, and
decreased cellular metabolism among coalesced
cells.107,108,110,111

Culturing with the effect of microgravitational
forces as in these static and dynamic culture sys-
tems can also cause unintended changes in MSCs
such as increased intracellular lipid deposition,
decrease in RhoA activity, and interrupted F-actin
fibers.112 Similar challenges are faced by cell de-
livery scaffolds. The substrates utilized for cell
delivery systems must be carefully selected with
regard to their ability to stimulate cell differenti-
ation, proliferation, retention, polarization, and
cell-cell communication.

CONCLUSIONS & PERSPECTIVES

Although many MSC therapies have not yielded
definitive, pronounced benefits in many clinical
trials, intensive clinical and preclinical investiga-
tions are underway to optimize aspects of stem cell
regenerative and immunomodulatory potential. As
more functional targets and pathways continue to
be discovered and refined to augment cell therapy
potency, strategies to modify MSCs through bio-
chemical, physical, genetic, and epigenetic meth-
ods will need to be continually optimized to achieve
these intended clinical applications.

Modification of molecular targets to optimize the
functional tissue repair and immunomodulatory
machinery of MSCs may uncover the optimal
method of utilizing MSCs to be a combination of
these aforementioned strategies. One study dem-
onstrated that the combination of a viral vector to
induce overexpression of CXCR4 on umbilical cord-
derived MSCs improved these cells’ ability to bind
a chitosan scaffold crosslinked to a bioactive factor
(brain-derived neurotrophic factor) (114).

The overexpression of CXCR4 substantially
augmented the ability of these MSCs to be seeded
onto this scaffold, and the transplantation of this
cell-scaffold implant into the brain cavity of rats
with traumatic brain injury resulted in improved
migratory and neuronal differentiation capacity of
MSCs at the site of injury.113 Similar strategies as
this one combining multiple approaches may serve
as an elegant method to harness the maximum
therapeutic potential of MSCs and provide future
hope for innumerable clinical therapeutics. How-
ever, future studies are still needed to address

Figure 9. Recognized limitations of MSCs exposed to physical methods of modification.
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limitations associated with cell-based therapy,
despite these modifications (Fig. 10). For all in vitro
manipulation and attempts at expansion of stem
cells, an important concern is the lifespan and
viability of MSCs before senescence.

The accumulation of age-related genomic chan-
ges can result in incremental loss of cellular func-
tions and homeostasis with increasing passage
numbers that future approaches could attempt
to limit through specific genetic targets.43 An equ-
ally important concern of cell-based therapy is
the associated tumorigenic risk associated with
implantation of modified, ectopic cells. Previous
work has acknowledged the ability of MSCs to
form teratomas at injection sites, and future
work should consider the risks of insertional
mutagenesis and alteration associated with prim-
ing of native cells to limit the generation of
tumorigenesis.114

The tissue source from which MSCs are derived
for therapy is another important technical consid-
eration for any future experimental investigations
into MSC modification. Stem cells derived from
common sources such as umbilical, adipose, and
bone marrow tissue contain heterogeneous gene-
tic landscapes and functional characteristics that
may not respond equivalently to the same thera-
peutic alterations.49 As a result, the optimal con-
ditions and stimuli must be tailored to each distinct
origin of stem cells to establish cell-specific proto-
cols and ensure the consistency of delivered stem
cells.

As important as the origin of the stem cells uti-
lized, clinical applications must also consider the
tissue microenvironment to which cells are deliv-
ered. For example, application to ischemic tissue
sites in extremities with critical limb ischemia
should consider the relative hypothermia and
lack of nutrient and blood supply in these areas.60

Cell-specific manipulations to improve MSC pro-
angiogenic effects and cell engraftment as well as
the scaffolds with which they are delivered in can
be optimized to overcome these factors in diseased
host tissue.14,60,115

These alterations should also take into account
the resultant immunogenic profile of MSCs to
produce the most immunocompatible profile of
donor cells to limit a robust recipient immune
response.31 One such emerging arena of medical
research, given their favorable immunologic phe-
notype and lack of genomic materials, is the use
of MSC-derived exosomes from modified MSCs.47

As future investigations continue to delineate the
advantages and disadvantages of both MSC and
MSC-derived exosome therapy for both regenera-
tive medicine and immunomodulatory applica-
tions, standard application-based assays will need
to be developed to measure their desired clinical
responses. Despite the significant limitations that
still need to be overcome in scaling up and apply-
ing these methods to augment MSCs, MSC-based
therapy holds tremendous promise in improving
patient outcomes for a wide variety of regenerative
purposes and disease treatments.

Figure 10. Factors for consideration in designing future MSC modification protocols for clinical applications.
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TAKE-HOME MESSAGES

� MSCs represent a promising modality of clinical therapy for both
regenerative medicine and immune diseases.

� Unmodified MSCs have demonstrated only modest benefits in many
preclinical and clinical studies due to issues with cell engraftment,
viability, heterogeneity, and immunocompatibility between donor and
recipient.

� Priming cells with soluble factors or pharmacologic agents as well as
changing oxygen availability are effective biochemical methods to
augment MSC potential.

� Both genetic and epigenetic methods have emerged in recent years to
modify the genetic expression of target proteins and factors to modify or
‘‘supercharge’’ MSC capacity for differentiation, migration, proliferation,
angiogenesis, and tissue repair.

� 3D culture methods and alternative cell delivery scaffolds can be utilized
to recapitulate the native MSC environment and augment their retention
and viability for clinical therapy.

� Future studies are still needed to address limitations associated
with cell-based therapy, including cell expansion, immunocompatibility,
tumorigenic risks, tissue sources of MSCs, and the host microenviron-
ment to which MSCs are delivered.
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Abbreviations and Acronyms

3D ¼ three dimensional
AAV ¼ adeno-associated virus

AD-MSC ¼ adipose-derived mesenchymal
stem cell

ATRA ¼ all-trans retinoic acid
BM-MSC ¼ bone marrow-derived MSC

CXCR4 ¼ C-X-C chemokine receptor type 4
HA ¼ hyaluronan

HIF-1a ¼ hypoxia-inducible factor-1 alpha
IL ¼ interleukin

miRNA ¼ microRNAs
MSC ¼ mesenchymal stem cell
PDGF ¼ platelet-derived growth factor

PRP ¼ platelet-rich plasma
SDF1-a ¼ stromal cell-derived factor 1 alpha

VEGF ¼ vascular endothelial growth factor
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