
744–754 Nucleic Acids Research, 2000, Vol. 28, No. 3 © 2000 Oxford University Press

Positional characterisation of false positives from
computational prediction of human splice sites
T. A. Thanaraj*

European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

Received September 20, 1999; Revised and Accepted December 3, 1999

ABSTRACT

The performance of computational tools that can
predict human splice sites are reviewed using a test
set of EST-confirmed splice sites. The programs
(namely HMMgene, NetGene2, HSPL, NNSPLICE,
SpliceView and GeneID-3) differ from one another in
the degree of discriminatory information used for
prediction. The results indicate that, as expected,
HMMgene and NetGene2 (which use global as well as
local coding information and splice signals) followed
by HSPL (which uses local coding information and
splice signals) performed better than the other three
programs (which use only splice signals). For the
former three programs, one in every three false posi-
tive splice sites was predicted in the vicinity of true
splice sites while only one in every 12 was expected
to occur in such a region by chance. The persistence
of this observation for programs (namely FEXH,
GRAIL2, MZEF, GeneID-3, HMMgene and GENSCAN)
that can predict all the potential exons (including
optimal and sub-optimal) was assessed. In a high
proportion (>50%) of the partially correct predicted
exons, the incorrect exon ends were located in the
vicinity of the real splice sites. Analysis of the distri-
bution of proximal false positives indicated that the
splice signals used by the algorithms are not strong
enough to discriminate particularly those false
predictions that occur within ± 25 nt around the real
sites. It is therefore suggested that specialised
statistics that can discriminate real splice sites from
proximal false positives be incorporated in gene
prediction programs.

INTRODUCTION

Computational gene prediction tools are now essential compo-
nents of genome sequencing projects. The publicly available
tools for human gene prediction include HMMgene (1,2),
GeneID (3,4), FGENEH (5), FGENESH (6), GENSCAN (7,8),
Genie (9,10), GeneParser (11), GeneBuilder (12) and many
others (see 13). Previously, Burset and Guigo created a test
data set of vertebrate genes and systematically evaluated the
performance of available tools (14). Their results indicated that
the sensitivity of prediction at the nucleotide level ranged from

60 to 77% and the fraction of actual exons identified was in the
range of 40–60%. Upon subsequent improvements, the authors
of the individual tools claimed increased performance on the
above-mentioned test set. GENSCAN correctly predicted 78%
of exons at a specificity of 81% (8) and HMMgene predicted
74% of exons at a specificity of 78% (2). These programs
predicted 90–93% of coding nucleotides at a specificity of 90–
93%. However, when the programs were benchmarked with a
newly determined and experimentally annotated genomic
region (namely the human BRCA2 region) of 1.4 Mb size, the
best performing tool could identify only 69% of the exons at a
specificity of 65% (15).

The above observations suggest that the current programs
need to be improved in their prediction of the exact boundaries
of exons. Such an improvement is essential before attempts are
made to predict alternative splicing, which is exhibited by at
least 35% of human genes (16). For successful prediction of
such splice variants, it is essential that the programs can predict
not only a single set of optimal exons, but also reliable sub-
optimal exons. It is recognised that the overall performance of
the gene prediction programs depends upon the ability to
pinpoint the correct splice sites (17). For the above reasons, we
undertook to review the methods that predict all the potential
splice sites and exons, rather than just the integrated methods
that find a single best-predicted gene. We recently created a
data set of EST-confirmed splice sites from human sequences
(18). In this data set, 50 nt length regions upstream and down-
stream of real splice sites were checked for the absence of
alternative splice sites. This high quality data set was used in
this study.

The programs reviewed here are either stand-alone applica-
tions or are part of gene prediction tools. They use different
degrees of discriminatory information conforming to one or
more of the following steps of the current methodologies for
gene prediction: (i) the donor and acceptor splice sites are
predicted; (ii) combinations of the predicted donor and
acceptor sites in conjunction with coding potential and length
are used to predict putative exons; (iii) the in context (a term
coined by Burge and Karlin; 17) information such as the
compatibility in reading frame among adjacent exons and with
other gene structural elements are used to identify the most
probable exons; (iv) the optimal exons, which upon assembly
give the single best-predicted gene that maximises the
combined associated probabilities of constituent elements, are
obtained.

Of the six splice site prediction programs tested in this study,
a set of three programs that utilised coding potential in addition
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to splice signals emerged as the best performing programs.
One in every three of their predicted false positive splice sites
was found to be located in the vicinity of a real splice site. The
results of another set of six programs that predict putative
(including optimal and sub-optimal) exons were checked to see
if this observation persisted. In a high proportion of the
partially correct predicted exons (a major form of false posi-
tive), the incorrect splice sites were found to be located in the
vicinity of real splice sites. Analysis of the distribution of prox-
imal false positives indicated that the splice signals used by the
algorithms are not strong enough to discriminate particularly
those false predictions that occur within ± 25 nt around the real
sites.

MATERIALS AND METHODS

Programs and test data sets used for splice site predictions

Programs. Six programs were used in this report: HMMgene
(1,2), NetGene2 (19,20), NNSPLICE (21,22), HSPL (15,23),
SpliceView (24,25) and GeneID-3 (4). Since HMMgene and
GeneID-3 are gene prediction programs, they were executed
with the option of listing all the potential splice sites. The
programs can be classified as belonging to two classes:
HMMgene, NetGene2 and HSPL use both splice signals and
coding information while the other three programs use only
splice signals. While SpliceView uses a classification
approach based on a set of consensus sequences, other
programs use methods such as discriminant functions, neural
network approaches and hidden Markov models. NetGene2
differs from HSPL in that it is not truly a local splice predictor
but uses a longer range of the surrounding sequences
(extending as far as 200–600 nt) and also uses global coding
potential information such as the distances between potential
splice sites. HMMgene differs from NetGene2 and HSPL in
that only those splice sites that can fit in one of the many
possible gene structures are listed.

Test data set. We had earlier reported a set of human EST-
confirmed splice sites comprising 619 donor and 623 acceptor
sites (18). Gene sequences comprising these splice sites were
considered as test sequences. Of these sequences, we ignored
those that showed alternative functional splice sites in the
vicinity (–50 to +50 nt region) of real splice sites. Since certain
sequences possessed such splice variants at either the donor
site or the acceptor site but not both sites, it resulted in separate
test sets of sequences for studies dealing with donor sites or
with acceptor sites. The test set for donor sites comprised 125
sequence entries with 474 annotated sites of which 414 had
EST confirmation, and that for acceptor sites comprised 114
sequence entries with 452 annotated sites of which 382 had
EST confirmation.

Measures of prediction performance. Performances of splice
site prediction programs were assessed by the following
parameters: (i) sensitivity (Sn), i.e. the proportion of true splice
sites that are correctly predicted by the program; (ii) specificity
(Sp), i.e. the proportion of predicted splice sites that are actually
true splice sites; (iii) corrected specificity (CSp), i.e. the specif-
icity as calculated by considering from every gene only those

false positives that had a score greater than or equal to that of
true positive splice sites of the gene.

Characterisation of positional distribution of false positive
sites. The positional distribution of false positive sites along
the gene was characterised by examining their relative loca-
tions on the gene with reference to real splice sites. A region of
–50 to +50 nt around a real splice site was termed ‘proximal’
or ‘in the vicinity’ and the region outside these limits was
termed ‘distal’. The total length of such proximal regions for
the 474 test donor junctions was 47 400 bases and that for the
452 test acceptor junctions was 45 200. The total length of
sequences used for donor site prediction was 557 287 and that
for acceptor site prediction was 541 579. If the false positives
are randomly distributed along the length of the gene, then
8.5% (= 47 400/557 287) of the predicted false positive donor
sites would be expected to occur by chance in the vicinity of
real donor sites. The equivalent figure in the case of acceptor
sites is 8.4%.

Programs and test set used for predicting all potential
exons independently of the method for finding the single
best-predicted gene

Programs. Six different programs that can predict putative
exons were used in this study. Of these, three are stand-alone
exon prediction programs: FEXH (15,23), GRAIL2 (26,27)
and MZEF (28,29). The other three are gene prediction
programs: GeneID-3 (4), HMMgene (1,2) and GENSCAN
(7,8). These three programs can also list either all the potential
exons (e.g. GeneID-3), all the sub-optimal exons (e.g.
GENSCAN) or the exons from a given number of best-
predicted genes (e.g. HMMgene). MZEF can predict overlap-
ping exons in addition to the set of most probable exons.
MZEF was executed with the option of listing 10 overlapping
exons, HMMgene with the option of listing the top five best-
predicted genes, GENSCAN with the option of listing all the
sub-optimal exons and GeneID-3 with the option of listing all
the potential exons. FEXH and GRAIL2 do not allow users to
input a threshold value for exon probability. MZEF lists only
those exons with a posterior probability greater than 0.5. The
general method adopted by the programs to predict the exons is
to identify an open reading frame bounded by acceptor/donor
sites. GeneID-3 first forms all possible exons using the previ-
ously predicted splice sites. Subsequently, the exons are
ordered by using coding information. In the case of other
programs, the coding information is an integral part of the exon
prediction. The sub-optimal exons from GENSCAN and
HMMgene are conceptually different from those listed by the
other programs. These sub-optimal exons can participate in
one of the many possible genes that can be predicted from the
sequence and thus these exons have been checked for in-frame
compatibility.

Test data set. From the EST-confirmed data set, we selected
only those genes in which the proximal regions around a donor
site as well as the corresponding acceptor site did not possess
alternative splice sites. This resulted in 90 genes with a total
number of 391 exons, of which only 198 had both the bounda-
ries as coding. Since the above-mentioned programs identify
only the coding exons, these 198 internal exons alone were
used to measure prediction accuracy.
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Programs and test data set used to assess the prediction of
optimal exons as extracted from the single best-predicted
gene

Five programs were considered in the assessment of exon
prediction accuracy as extracted from the single best-predicted
gene: GeneID-3, HMMgene, GENSCAN, FGENES (6) and
FGENESH (6). The test data set is the same as that described
above.

RESULTS

Performance of the splice site prediction programs

Sensitivity and specificity calculations were made at different
threshold values. Resultant values are shown by solid lines in
Figure 1a for donor site predictions and in Figure 1b for
acceptor site predictions. The figures indicate that at a given
specificity value, HMMgene and NetGene2 exhibited higher
sensitivity values than the other four programs and (except at
lower values of specificity) HSPL showed higher sensitivity as
compared to the remaining three programs. HMMgene showed
consistently high sensitivity values for a large range of specif-
icity values. The data pertaining to sensitivity and specificity
for donor site prediction are summarised below.
(i) NNSPLICE showed a maximum specificity of only 47%

(at a sensitivity of 56%). At this sensitivity level,
HMMgene exhibited a specificity close to 100% and
NetGene2 exhibited as high as 92%, while HSPL had the
next highest value of 70%.

(ii) At a sensitivity of 90%, HMMgene and NetGene2 showed
a specificity of ~60% while other programs showed a
maximum of 27% (for NNSPLICE). At a sensitivity of
~75%, HMMgene showed a specificity of 97%, NetGene2
showed 81%, while the other programs showed a
maximum of 54% with HSPL.

Similar data for acceptor site prediction are summarised
below.
(i) NNSPLICE attained a maximum specificity of only 36%

(with a corresponding sensitivity of 41%). At this sensi-
tivity level, HMMgene showed a specificity close to
100%, NetGene2 showed 95% and HSPL exhibited the
next highest value of 71%.

(ii) At a sensitivity value of 84%, HMMgene had already
attained a specificity of 92% and NetGene2 a specificity of
58%, while the other programs showed a maximum of
only 17%. At a sensitivity level of 65%, HMMgene
showed a specificity close to 100%, NetGene2 showed
87%, while the next highest value was 45% for HSPL.

Performance of splice site predictions in terms of scores
attributed to real sites relative to false positives

Above a given threshold value for splice site prediction, the
predicted splice sites have different scores. One would typi-
cally be interested only in the top scoring predicted splice sites
and hence it is appropriate to calculate the percentage of false
sites that have scores at least that of real sites. Such values
were calculated by considering for every gene only those false
sites that have a score at least that of real splice sites in the
gene. The values are shown in Figure 2a for donor site predic-
tion and in Figure 2b for acceptor site prediction. It can be seen
from the figures that the proportion is generally lower for

HMMgene and NetGene2 followed by HSPL as compared to
the other programs. Thus the assignment of scores for splice
sites is more meaningful and decisive in the cases of
HMMgene, NetGene2 and HSPL.

It is also appropriate to calculate a ‘corrected specificity’ by
considering for every gene only those false positives that have
a score at least that of real splice sites from the gene. Perform-
ance of the programs in terms of corrected specificity (as
shown by solid lines in Fig. 3a and b) again pointed to
HMMgene and NetGene2 as the best performing programs,
followed by HSPL. At every given corrected specificity value,
these programs showed higher sensitivity values than other
programs.

The data on corrected specificity and sensitivity for donor
site prediction are summarised below.
(i) NNSPLICE obtained a maximum corrected specificity of

only 63% at a sensitivity of 56%. At this sensitivity level,
HMMgene and NetGene2 showed a corrected specificity
close to 100%, with HSPL following suit with a corrected
specificity of 87%. Other programs showed a value of
~65%.

(ii) At a high sensitivity of 90%, HMMgene showed a
corrected specificity of 91%, NetGene2 showed 82% and
HSPL showed 42%.

Similar data for acceptor site prediction are summarised
below.
(i) Maximum corrected specificity as displayed by

NNSPLICE was only 55% at a sensitivity of 41%. At this
sensitivity level, HMMgene and NetGene2 showed a
corrected specificity close to 100%, with HSPL following
suit with a value of 87%. Other programs showed a value
of ~55%.

(ii) At a high sensitivity of 91%, HMMgene showed a
corrected specificity of 89%, NetGene2 showed 60%,
while other programs showed a specificity of ~20%.

Top performing splice site prediction programs

The previous observations indicated that the three programs
that use only the splice signals (i.e. NNSPLICE, SpliceView
and GeneID-3) were grouped together (see Figs 1–3) and their
performances were lower than the other three programs. Of the
three programs that use coding information in addition to
splice signals, HMMgene was the top performer, along with
NetGene2, followed by HSPL. This is expected since they use
a higher degree of information than the other three programs
(see Materials and Methods). The observation that the
programs that use coding information plus splice signals
perform better than the programs that use only splice signals
has been discussed earlier in the literature (17).

Positional location of false positive splice sites relative to
that of real splice sites

Locations of the predicted false positive sites along the gene
were compared to those of true splice sites and were accord-
ingly classified as either ‘proximal’ or ‘distal’. Percentages of
false positives that are proximal at different specificity values
were calculated (as shown by dashed lines in Fig. 1a and b).
The expected percentage of proximal false sites is shown by a
baseline at 8.5%. It can be observed in both donor site and
acceptor site predictions that a higher than expected number of
false positive sites as predicted by HMMgene, NetGene2 and
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Figure 1. (a) Performance of donor site prediction programs in terms of specificity and sensitivity (shown by solid lines). Also shown are percentage of false
positive donor sites that are proximal (shown by dashed lines). (b) Performance of acceptor site prediction programs in terms of specificity and sensitivity (shown
by solid lines). Also shown are percentage of false positive acceptor sites that are proximal (shown by dashed lines).
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Figure 2. (a) Proportion of false donor sites with a score ≥ that of real donor sites. (b) Proportion of false acceptor sites with a score ≥ that of real acceptor sites.
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HSPL are proximal. In the case of the other three programs that
used only splice signals, a lower than expected number of false
positives are proximal. The observation was persistent even
when only those false positives having a score at least that of
real sites were considered (see Fig. 3a and b). The values for
the percentage of false sites that are proximal are shown in
Table 1a and b and are summarised below.
(i) For each of the three programs, the average of the values

for the percentage of false splice sites that are proximal
was calculated by using the criteria that the specificity
should be >30% and the observed number of false sites
should be more than 25. Such values for donor site (or
acceptor site) predictions were 28% (31%) for
HMMgene, 25% (39%) for NetGene2 and 30% (35%) for
HSPL. The values when only the false sites with a score at
least that of real sites were considered were 30% (27%)

for HMMgene, 28% (34%) for NetGene2 and 16% (35%)
for HSPL.

(ii) In the case of donor site prediction with HMMgene, at
specificity levels of 60–90% the percentage of proximal
false sites ranged from 28 to 31% (average 30%). At
corrected specificity levels of 90–95% the value ranged
from 31 to 35% (average 33%).

(iii) In the case of acceptor site prediction with HMMgene, at
specificity levels of 70–94% the percentage of proximal
false sites ranged from 28 to 35% (average 33%). At
corrected specificity levels of 87–95% the value ranged
from 29 to 57% (average 43%).

(iv) In the case of donor site prediction with NetGene2, at
specificity levels of 55–93% the percentage of proximal
false sites ranged from 23 to 44% (average 33%). At
corrected specificity levels of 76–94%, the value ranged
from 25 to 44% (average 33%).

aThe percentage of false positive donor sites that would occur in the vicinity by chance is 8.5%. The percentage of false positive acceptor sites that would occur
in the vicinity by chance is 8.4%.

Table 1. Proportion of false positive (a) donor sites and (b) acceptor sites that are ‘proximal’ to a real splice sitea
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(v) In the case of acceptor site prediction with NetGene2, at
specificity levels of 14–97% the percentage of proximal
false sites ranged from 25 to 48% (average 36%). At
corrected specificity levels of 46–97% the value ranged
from 25 to 44% (average 36%).

(vi) In the case of donor site prediction with HSPL, at specifi-
city levels of 41–86%, the percentage of proximal false
sites ranged from 15 to 56% (average 30%). At the corre-
sponding corrected specificity levels of 63–96% the value
ranged from 14 to 23% (average 16%).

(vii) In the case of acceptor site prediction with HSPL, at
specificity levels of 13–82% the percentage of proximal
false sites ranged from 16 to 58% (average 32%). At the
corresponding corrected specificity levels of 37–97% the
value ranged from 21 to 59% (average 35%).

The above observations indicate that in the case of these
three programs, a higher than expected proportion of the false
positive splice sites were located in the vicinity of real splice
sites and such a proportion increased as the specificity of
prediction increased. This observation was more prominent in
the case of acceptor site prediction. On average, one in every
three false positive splice sites is located in the vicinity of a real
one, while one in every 12 is expected to occur in the vicinity
by chance.

Assessment of the observations with programs that predict
all potential exons

All putative exons (not only those that form the single best
optimal gene) as predicted by GENSCAN, HMMgene,
GeneID-3, MZEF, FEXH and GRAIL2 were determined. The
predicted exons were checked against the test set of 198
internal exons. Only those predicted exons with either one or
both ends correct were considered further. The predicted exons
with one end correct are termed ‘partially correct predicted
exons’ and they were considered as illustrative examples of
false positives. Since only the proximal regions in the test set
had been checked for the absence of alternative splice sites, the
other types of false positive (e.g. incorrectly predicted and
overlapping exons) were not considered. The locations of the
predicted incorrect ends in the false positive exons were
compared to the correct exon positions along the gene.
Accordingly, they were classified as proximal or distal false
positives.

The results of the above positional characterisation are
shown in Table 2 and the following observations could be
made.
(i) The percentage of exons (from the test set of 198 exons)

that were predicted correctly varied from 55% for
GRAIL2 to 99% for GENSCAN. The values for the other
programs are 93% for HMMgene, 87% for GeneID-3,
86% for MZEF and 73% for FEXH.

(ii) The number of predicted exons that were partially correct
varied from 32 to 585. The values for the individual

programs were: 135 for GENSCAN (with a ratio of
predicted exons being correct to predicted exons being
partially correct of 1:0.7), 91 for HMMgene (with a ratio
of 1:0.5), 585 for GeneID-3 (with a ratio of 1:3.4), 447 for
MZEF (with a ratio of 1:2.6), 32 for FEXH (with a ratio of
1:0.2) and 109 for GRAIL2 (with a ratio of 1:0.5). Of the
four top performing programs that had higher sensitivity,

Figure 3. (a) Performance of donor site prediction programs in terms of corrected specificity and sensitivity (shown by solid lines). Also shown are corrected
percentage of false positive donor sites that are proximal (shown by dashed lines). Only those false positive donor sites with a score ≥ that of real donor sites were
considered. (b) Performance of acceptor site prediction programs in terms of corrected specificity and sensitivity (shown by solid lines). Also shown are the
corrected percentage of false positive acceptor sites that are proximal (shown by dashed lines). Only those false positive donor sites with a score ≥ that of real
acceptor sites were considered.

Table 2. Positional characterisation of predicted partially correct exonsa

aThe test sequences contained 198 exons with both the boundaries as coding.
bThe gene prediction programs used can list all potential splice sites as well as
different possible exons. For calculations under ‘independent’, all predicted
potential exons (not necessarily from the single best-predicted gene) were
considered. MZEF was executed with the option of listing up to 10 overlap-
ping exons. The sub-optimal exons from GENSCAN differ from the potential
exons as predicted by other programs in that they are somewhat dependent
upon the context. The sub-optimal exon is in-frame in one of the possible
valid parses of the sequence. The sub-optimal exons from HMMgene are from
the top five best-predicted genes and thus they are dependent upon the con-
text.
cIn the case of MZEF, the predicted exon has a posterior probability value of
>0.50. Of a set of predicted overlapping exons, the one with the highest poste-
rior probability is selected as the optimal exon.
dOnly the internal exons from the predicted optimal gene were considered.
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GENSCAN and HMMgene showed lower values for the
ratio. This is due to these two programs listing only those
exons that are in-frame for at least one valid parse of the
sequence.

(iii) In the case of GeneID-3, 33% of the incorrect ends of
partially correct predicted exons were located in the
vicinity, while in the case of the other five programs as
high as 50% or more were located in the vicinity. The
observation that the incorrect ends of partially correct
predicted exons were often located in the vicinity of real
splice sites persisted for different ranges of exon probabil-
ities (see Table 2).

Performance of optimal exon prediction programs

The sensitivity of exon prediction was reduced when only the
optimal exons (as with MZEF) or the exons from a single best-
predicted gene (as with GENSCAN, HMMgene and GeneID-
3) were considered (see Table 2). While GENSCAN showed a
sensitivity of 92%, the others showed only 83 (HMMgene), 75
(MZEF) and 64% (GeneID-3). The overall number of partially
correct predicted exons was also reduced considerably in these
cases. However, in the case of Gene-ID3, 21 of the 36 incorrect
ends of partially correct predicted exons still occurred in the
vicinity of real sites.

We further checked the predictions with two more gene
prediction programs: FGENES (5,6) and FGENESH (6). These
programs gave a higher sensitivity than GENSCAN. The
values ranged from 91 to 95%.

DISCUSSION

Characterisation of the positional distribution of false positive
sites obtained from programs that can predict splice sites and
exons, independently of the method that finds a single best-
predicted gene, was carried out. The programs that were used
for splice site predictions were HMMgene, NetGene2, HSPL,
NNSPLICE, SpliceView and GeneID-3. The programs that
were used for exon predictions were GENSCAN, HMMgene,
GeneID-3, MZEF, FEXH and GRAIL2. Genes containing
EST-confirmed splice sites (whose proximal regions had been
checked for the absence of alternative splice sites) were used as
the test data set.

Splice site predictions

Performance of the programs was assessed under two situa-
tions: (i) all the predicted sites above a given threshold value
were considered; (ii) only the top scoring sites for each gene,
from the list of predicted sites above a given threshold, were
considered. Under both situations, HMMgene and NetGene2
turned out to be the best performing tools, followed by HSPL.
The comparatively poor performance of the other three tested
programs is as expected because they use only splice signals,
whereas the above-named programs use coding potential infor-
mation in addition. Characterisation of the positional location
of false positive sites from these three programs indicated that
one in every three false positive sites occurred in the vicinity of
real splice sites. Only one in 12 such sites was expected to
occur in this vicinity by chance. The fraction of proximal false
sites increased as the specificity of prediction increased. It is
interesting to note that this observation with HSPL (which uses
local coding information) persisted with NetGene2 (which

uses global coding information) and with HMMgene (which
further checks the suitability of the splice sites in the many
possible gene structures).

Exon predictions

Predictions independent of the methods that find the single
best-predicted gene. The stand-alone exon prediction
programs that were used in this study were FEXH, GRAIL2
and MZEF. In addition, the gene prediction programs GeneID-
3, HMMgene and GENSCAN were used with the option of
listing all potential exons. The percentage of correctly
predicted exons by these programs ranged from 55% for
GRAIL2 to 99% for GENSCAN. The corresponding values for
HMMgene, GeneID-3, MZEF and FEXH were 93, 87, 86 and
73%, respectively. The ratio of ‘predicted exons that are
completely correct’ to ‘predicted exons that are partially
correct’ was as high as 1:3.4 for GeneID-3. The ratios in the
case of the other three best performing programs, namely
GENSCAN, HMMgene and MZEF, were 1:0.7, 1:0.5 and
1:2.6, respectively. Since GENSCAN and HMMgene predict
only those exons that are in-frame for at least one possible
parse of the sequence, they showed lower values for the ratio.
Positional characterisation of the incorrect ends of the partially
correct predicted exons indicated that a high proportion of the
false positives were located in the vicinity of real splice sites:
33% for GeneID-3 and >50% for MZEF, HMMgene and
GENSCAN. Results from FEXH and GRAIL2 also pointed to
similar observations.

Predictions using methods that find a single best-predicted
gene. GENSCAN, HMMgene and GeneID-3, programs that
can predict the optimal exons that assemble to form a single
best-predicted gene, were assessed. The percentage of exons
predicted correctly is lower than when all the potential exons
are predicted. In the case of GeneID-3, the observed high
proportion of false positives in the vicinity of real sites still
persisted. The observed high performance with the prediction
of the single optimal gene for GENSCAN, FGENES and
FGENESH, which predicted 91–95% of the exons correctly, is
to be considered with caution for the following reasons. (i)
Only the predicted internal exons were checked in the study.
(ii) It is quite possible that the test set used in the study and the
training set used by these programs overlap. Thus, there is a
possibility that these programs are tuned to some of the genes
in the test set. (iii) As pointed out earlier, results of bench-
marking with a newly determined genomic region of BRCA2
(15) indicated lower performances. (iv) In order to predict
alternative spliced products, it is essential that the programs
show similar performances with the prediction of sub-optimal
exons.

Potential explanation for the observed clustering of false
positives in the vicinity of true splice sites

The study has indicated that a higher than expected number of
false positive sites as predicted by the splice site and exon
prediction programs are located in the vicinity (–50 to +50 nt
regions) of real splice sites. The average lengths of exons and
introns from the data set used were respectively 150 and 900
nt, in agreement with the reports in the literature (30). Given
such a length distribution, the above observation is significant.
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The two basic signals that are used to predict exons are those
of coding potential and splice strength. Since the gene predic-
tion programs perform better at detecting coding nucleotides
rather than the exact ends of exons, it can be inferred that the
coding potential signal often ends not too far from the exon
ends. In order to scrutinise this, we examined the distribution
of the proximal false positives by considering windows of 25
nt. The programs NetGene2 and MZEF were taken as illustra-
tive examples. The results, presented in Table 3, indicated an
uneven distribution and confirm the above opinion.

(i) On average, 67% of the proximal false positive donor sites
occurred in the region –25 to +25. A major proportion (42%,
NetGene2; 47%, MZEF) of the false positives occurred in
the region +1 to +25.

(ii) On average, 71 (NetGene2) and 53% (MZEF) of the prox-
imal false positive acceptor sites were located in the
region +1 to +25.

(iii) Only 33% of false positive donor sites and 23% (42%,
MZEF) of the false positive acceptor sites occurred in a
region encompassing the –50 to –26 and +26 to +50
windows. Results with windows of 10 nt indicated that
the number of false positives gradually reduced as we
moved away from the real sites starting at ± 30 nt (data
not shown).

In situations when the coding potential signal ends too far
away, they are taken care of by the splice signals and other
global information. This is substantiated by our findings that
the reported observation on proximal false positives, made
with the programs using only the coding potential information

and splice signals, persisted as well as occurred more promi-
nently with those that in addition use global information. This
indicated that the distal false positives were somehow elimi-
nated by the global information while the proximal false posi-
tives persisted. In order to examine such a proposition, we
calculated the ratio between the percentage distribution of false
positives and that of the dinucleotides GT (in the case of donor
sites) or AG (in the case of acceptor sites) for each of the
windows (see Table 3). The dinucleotides GT and AG consti-
tute the invariant components of donor and acceptor splice
signals, respectively. The value for such a ratio was substan-
tially higher than 1.0 when the –25 to –1 or +1 to +25 windows
were considered. The value was substantially lower than 1.0 in
the case of the other two windows. Such an observation may
lead to the following implications:
(i) the coding potential signal ends truly more often within ±

25 nt;
(ii) the splice signals used by the algorithms are not strong

enough, particularly when the coding potential signal ends
close to the exon boundaries, to eliminate such false
predictions.

It is possible that the programs tend to pick up exon bounda-
ries in the regions where the coding characteristics disappear.
Small shifts due to false predictions around real sites do not
change the characteristics that are normally associated with
real splice site sequences much, except for the consensus dinu-
cleotide sequences. Current programs are insensitive to such
subtle changes.

CONCLUSION

The study has indicated that one in every three false positive
splice sites, as predicted by programs that use coding informa-
tion as well as splice signals, is located in the vicinity of a real
splice site. In a similar manner, in 50% or more of the cases of
partially correct predicted exons from programs that use splice
signals, coding information, length, etc., the incorrect ends are
located in the vicinity of a real splice site. This observation was
also made with the prediction of sub-optimal exons by gene
prediction programs. Analysis of the distribution of such prox-
imal false positives indicated that the algorithms are misled to
predict wrong splice sites more often when the coding poten-
tial ends within ± 25 nt than when it ends at farther positions.
Thus it may be appropriate to incorporate additional special-
ised statistics that can discriminate real splice sites from prox-
imal false sites in the current programs.
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