Skip to main content
. 2023 May 27;23(11):5126. doi: 10.3390/s23115126
Algorithm 1: Superpixel-based projection in 3D
  • Input: 

    Lower-view RGBD image (I[0,255]H×W×3 and D[0,255]H×W), upper-view 3D semantic reconstruction (including point cloud PupperRN×3 and labels Lupper{0,1,,L}N, where LN denotes the number of semantic labels).

  • Output: 

    Lower-view semantic segmentation (S{0,1,,L}H×W)

1 Run superpixel segmentation (SLIC) on the RGB image (I) to find coherent image regions (SP).
2 Using the depth image (D), project the superpixel segmentation (SP) onto 3D to obtain the lower-view point cloud (Plower).
3 Optional Downsample the point cloud (Plower).
4 Match the lower-view point cloud (Plower) with the upper-view 3D semantic reconstruction (Pupper,Lupper) and determine the corresponding semantic label of each superpixel (Llower).
5 Project the labels of the lower-view semantic point cloud (Llower) onto the image plane to obtain the semantic segmentation (S).