Skip to main content
. 2023 May 27;23(11):5126. doi: 10.3390/s23115126
Algorithm 2: Supervoxel-based projection
  • Input: 

    Lower-view RGBD image (I[0,255]H×W×3 and D[0,255]H×W), upper-view 3D semantic reconstruction (including point cloud PupperRN×3 and labels Lupper{0,1,,L}N, where LN denotes the number of semantic labels).

  • Output: 

    Lower-view semantic segmentation (S{0,1,,L}H×W)

1 Create a colored 3D point cloud (Plower) from the lower-view RGB (I) and depth image (D).
2 Downsample the point cloud (Plower) and keep track of each point’s original location.
3 Convert the lower-view point cloud (Plower) to a voxel grid (Vlower).
4 Utilize SLIC on the voxel grid (Vlower), using masking to obtain supervoxels (SV).
5 Match the lower-view point cloud (Plower) with the upper-view 3D semantic reconstruction (Pupper,Lupper), determining the semantic label (Llower) of each supervoxel (SV).
6 Project the semantic labels of the lower-view point cloud (Llower) onto the image plane to obtain the semantic segmentation (S).