Skip to main content
. 2023 May 24;23(11):5021. doi: 10.3390/s23115021

Table 1.

Recent achievements in HCSELs.

Year Institution Band Output Power Slope Efficiency Divergence Angle Structure Ref
2005 University of Wisconsin 980 nm 20 units form an array: 1.6 W (continuous wave (C.W.)) Linear second-order grating [29]
2006 BinOptics Corporation 1.3 μm 30 mW ~0.3 W/A 15° × 36° mirror-type HCSEL [28]
2012 Alfalight Company 97x nm 68 W (C.W.) 0.8 W/A <8° curved second-order grating [30]
2014 Kyoto University 941 nm 1.5 W (C.W.) 0.66 W/A <3° Photonic crystals [31]
2016 Taiwan National Chiao Tung University 1.3 μm 2 mW 1° × 8~9° Linear second-order grating [32]
2016 Institute of Semiconductors of the Chinese Academy of Sciences 7 μm 2.29 W 500 mW/A 2.9° × 0.36° Linear second-order grating [33]
2017 Institute of Semiconductors of the Chinese Academy of Sciences 4.97 μm 248 mW 0.14° × 16° Linear second-order grating [34]
2018 Lehigh University 3.4 THz 170 mW 993 mW/A 5° × 25° Linear high-order grating [35]
2018 Kyoto University 940 nm 7 W (C.W.) 0.48 W/A <0.4° Double lattice [36]
2019 Changchun Institute of Optics, Fine Mechanics and Physics 1.3 μm 13.3 mW (C.W.) 40.9 mW/A Quantum-dot Photonic-crystals [37]
2019 Northwestern University 4.9 μm 6.7 W (peak power) mirror-type HCSEL [38]
2021 Changchun University of Science and Technology 976 nm 84 mW 2.6° × 6.1° Linear second-order grating [39]
2021 Kyoto University 940 nm 29 W (C.W.) ~0.66 W/A <0.4° Double lattice [40]