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Abstract: Hydrangea serrata is a plant grown in Korea and Japan with a particular natural compound,
hydrangenol. H. serrata has been researched for its anti-fungal properties, and ability to attenuate
allergies and promote muscle growth. Its ability to reduce skin dryness is poorly understood. For that
reason, we investigated whether H. serrata hot water extracts (Hs-WE) can moisturize keratinocytes. In
clinical studies (Approval Code: GIRB-21929-NY and approval Date: 5 October 2021), skin wrinkles
and skin moisturizing levels were improved in subjects applying 0.5% Hs-WE compared to the
placebo group. We confirmed the components of Hs-WE from the LC/MS-MS analysis. Hs-WE
and hydrangenol did not show cytotoxicity in HaCaT cells at all concentrations. Cell growth was
also promoted by Hs-WE (5–20 µg/mL) and hydrangenol (15–60 µM) in a wound healing assay.
Skin moisturizing factors were upregulated by the presence of Hs-WE or hydrangenol, and the
hyaluronidases (HYAL) were inhibited at the mRNA level. Meanwhile, COL1A1 was increased by
the presence of Hs-WE or hydrangenol. MAPK, AP-1, and Akt/PI3k signaling proteins, which are
associated with cell proliferation and moisturizing factors, were increased by the administration of
Hs-WE and hydrangenol. Has-1, 2, and 3 levels were enhanced via JNK when using the inhibitors of
MAPK proteins and Hs-WE and hydrangenol, respectively. Taken together, Hs-WE could be used as
cosmeceutical materials for improving skin conditions.

Keywords: Hydrangea serrata; hydrangenol; clinical trial; wrinkles; moisturizing; AP-1

1. Introduction

Aging is a high-profile issue due to increasing skin water loss, wrinkles, dryness, and
dermal atrophy [1–3]. Aging can be categorized based on two main causes: extrinsic and
intrinsic aging [4]. While extrinsic aging is accelerated by external environmental factors
such as air pollution, reactive oxidative species (ROS), fine dust, and UV exposure [5,6],
intrinsic aging progresses are due to physiological and genetic factors. Skin will always
be exposed to external conditions in life, and humans cannot prevent physiological aging
over time with current technologies. Therefore, aging is considered an inevitable natural
phenomenon. However, it would be desirable to arrest accelerated aging [7]. There are
numerous research efforts focused on anti-aging or reversing aging. Most of these studies
have focused on improving the symptoms of aging such as skin hydration, and decreasing
collagen and skin junctions. Skin hydration is one of the major indicators of intrinsic aging.
It is related to intracellular moisture levels in the skin, and skin dryness is the main cause of
skin wrinkles. Methods for retaining skin moisture include upregulating skin moisturizing
factors like hyaluronic acid synthase 1, 2, and 3 (Has-1, 2, and 3) and the factors associated
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with skin tight junctions, such as involucrin (INVN), occludin (OCLN), transglutaminase1
(TGM1), and filaggrin (FLG), or downregulating hyaluronidase (HYAL). These factors can
be increased via the activator protein1 (AP-1) pathway [8,9].

AP-1 is the transcription factor composed of c-Fos and c-Jun, and these subunits
bind to AP-1 binding sites [10,11]. This dimeric complex synthesizes the genes involved
in cell proliferation, differentiation, and survival through the transcription process [12].
Moreover, these proteins are activated by the upper signaling factor, mitogen-activated
protein kinase (MAPK) pathway proteins. p38, extracellular signal-regulated kinases
(ERK), and c-Jun NH2-terminal kinases (JNK) have been identified in the eukaryotic MAPK
pathway. Cell differentiation and proliferation like the AP-1 pathway play an important
role in cell transduction [13–17]. According to the results of a previous study, plant extracts
containing phytochemicals can exert a skin moisturizing effect through the AP-1 protein
pathway [18,19].

Dermal change is also one of the representative aging symptoms. The remarkable
phenomena such as the degradation of collagen and elastin fibers or low synthesis of
procollagen co-occur in the dermis. For that reason, fine wrinkles are formed in the skin
over time [20–22]. The collagen fibers could be degraded by matrix metalloproteinases
(MMPs) which can proceed in aged skin [23–26]. Furthermore, senescent fibroblasts cannot
renew the new collagen fibers as collagen synthesis is degraded in aged fibroblasts [27,28].
For that reason, we investigated the effects of plant extracts on the skin, focusing specifically
on whether they help in the synthesis of pro-collagen and moisturize the skin.

Hydrangea serrata (Acumina) is a plant grown in Korea and consumed as a tea in
Korea and Japan [29]. The extract of this plant has been known to display anti-obesity
and anti-photoaging activities [30,31]. It has been reported that H. serrata has phytochemi-
cals including hydrangenol, macrophylloside, phyllodulcin, and phyllodulcin [32,33]. Of
these, hydrangenol was found to display anti-allergic, anti-fungal, anti-inflammatory, anti-
diabetic, and anti-angiogenic effects as one of the natural dihydroisocoumarins [34–38].
Moreover, the effects of Hydrangea serrata hot water extract have also been researched
including their anti-inflammation activity, anti-aging effect, anti-obesity activity, and abil-
ity to aid in muscle synthesis [39–43]. However, there is no study about intrinsic aging;
through our study, we investigated the skin moisturizing and anti-wrinkle potential of
Hydrangea serrata extracts.

2. Materials and Methods
2.1. Preparation of Extract, Chemicals, and Antibodies

Leaves of H. serrata (1 kg) were extracted for 5 h from 15 L of distilled water at 98 ◦C.
The extracts were filtered through a 10 µm filter and were concentrated using a decom-
pression concentrator at 180–200 ◦C to produce dried powder concentrates. The powder
was dissolved in DMSO at a concentration of 100 mg/mL. A Human keratinocyte cell line
(HaCaT cells) was purchased from the American Type Culture Collection (ATCC, Rockville,
MD, USA). Dulbecco’s modified eagle’s medium (DMEM), and penicillin/streptomycin
solution (PC/SM) were obtained from Hyclone (Logan, UT, USA). Phosphate-buffered
saline (PBS) was purchased from Samchun Pure Chemical Company (Seoul, Republic
of Korea). Trypsin-EDTA (0.25%), lipofectamine 2000, minimal essential medium (opti-
mem), and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, NY, USA).
Sigma Aldrich (St. Louis, MO, USA) was the source for dimethyl sulfoxide, D-luciferin,
β-galactosidase, isopropanol, and 1-bromo-3-chloropropane. Trizol reagent® was pur-
chased from Molecular Research Center, Inc. (Cincinnati, MA, USA). Macrogen (Seoul,
Republic of Korea) synthesized the primer used in the qRT-PCR assay. The primary anti-
bodies, including JNK, ERK, p-ERK, p38, p-p38, c-Jun, p-c-Jun, p-c-Fos, c-Fos, PI3K, p-PI3K,
PDK-1, p-PDK-1, AKT, p-AKT HAS-1,2,3, p-JNK, b-actin, and COL1A1, were purchased
from Santa Cruz Biotechnology (Dallas, TX, USA), Cell Signaling Technology (Beverly, MA,
USA), or Novus Biological (Toronto, ON, Canada). The HRP-conjugated goat anti-rabbit
antibody and horse anti-mouse antibody were obtained from Abcam (Cambridge, UK). Ab
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Frontier (Seoul, Republic of Korea) was the source for the enhanced chemiluminescence
Western blotting substrate (ECL).

2.2. Cell Culture

The HaCaT cells and human dermal fibroblast (HDF) cells were cultured in DMEM
media containing 10% fetal bovine serum and 1% antibiotics (PC/SM). The cells were
incubated with 5% CO2 at 37 ◦C. At 70% confluency, the cells were harvested using a
trypsin–EDTA solution and were cultured at an appropriate density on plates.

2.3. Cell Viability

HaCaT cells were plated at a density of 5 × 104 cells in each well of 96-well plates
filled with 100 µL of media and were incubated at 5% CO2 and 37 ◦C for 24 h. The cells
were treated with Hs-WE (0 to 200 µg/mL) or hydrangenol (0 to 40 µg/mL) for 24 h. After
24 h of incubation, the cells were treated with 10 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) solution (5 mg/mL in distilled water). MTT stopping
solution (0.1N HCl in 10% SDS solution) was added to a tenfold volume of MTT solution to
stop the reaction of the mitochondria. The absorbance was detected through a spectrometer
at 570 nm.

2.4. Wound Healing Assay

The HaCaT cells were plated in 48-well plates at a density of 5 × 104 cells in 500 µL of
media per well and were incubated for 24 h. The cells were scratched by a plastic scratcher
and treated with WHS extract (0 to 20 µg/mL) or hydrangenol (0 to 60 µg/mL). Pictures
were taken with the microscope after incubating with the extract for 0, 24, and 48 h.

2.5. qRT-PCR

The qRT-PCR assay was conducted to estimate the mRNA levels of moisturizing
factors, including HAS-1, HAS-2, and HAS-3; skin barrier factors, such as INVN, TGM-1,
OCLN, and FLG; hyaluronidases, such as HYAL-1, HYAL-2, HYAL-3, and HYAL-4; keratins,
such as Ker5, Ker6, and Ker16; and pro-collagen Type 1, such as COL1A1. The HaCaT cells
and HDF cells were plated and treated as described above. To isolate the mRNA, the
TRIzol reagent was added to each cell. The qRT-PCR experiment was performed using our
previous study’s protocols [18]. The primers used in this experiment are listed in Table 1.

Table 1. The sequences of primers used in qRT-PCR.

Gene Name Sequence (5′–3′)

HAS-1
Forward GTATCCTGCATCAGCGGTCC
Reverse TGCCGGTCATCCCCAAAAG

HAS-2
Forward CCTCCTGGGTGGTGTGATTT
Reverse GCGTCAAAAGCATGACCCAA

HAS-3
Forward CAAGTGCCTCACAGAGACCC
Reverse GGAAGAAACCCGTGACCACT

HYAL-1
Forward CAGAATGCAGCCTGATTGC
Reverse CCGGTGTAGTTGGGGCTTAG

HYAL-2
Forward TACACCACAAGCACGGAGAC
Reverse ATGCAGGAAGGGTACTGGCAC

HYAL-3
Forward CCAGGATGACCTTGTGCAGT
Reverse CCATCTGTCCTGGATCTCGC

HYAL-4
Forward TGACCTCTCTTGGCTCTGGA
Reverse AGGCAGCACTTTCTCCTATGG
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Table 1. Cont.

Gene Name Sequence (5′–3′)

Ker5
Forward GAGATCAGTGACTTGTGCGT
Reverse ATTGCTGAGTTGCTCAGGTG

Ker6
Forward TCCTCTTCGAGCCGTCAGA
Reverse TGGTAGAGGCAGCTCAGTTC

Ker16
Forward CCAGGGACTGATTGGCAGTGT
Reverse AAGGGTCTGGGAGGCAGAACT

TGM-1
Forward ACAGGCTCATCTGGTTGGTG
Reverse TTCCCGATGCTTGTGGTCTC

FLG
Forward TGAGGCATACCCAGAGGACT
Reverse CTGTATCGCGGTGAGAGGAT

OCLN
Forward TGGCCTACAGGAATACAAGAGC
Reverse AAAGGATGCTGTACCTCCACAG

IVLN
Forward CCAGAAGGTGCCTGTCGAG
Reverse TCAGGCAGTCCCTTTACAGC

COL1A1
Forward CAGGTACCATGACCGAGACG
Reverse AGCACCATCATTTCCACGAG

2.6. Luciferase Reporter Assay

The HaCaT cells were seeded in 24-well plates with 1 mL of cells in DMEM without
antibiotics. The cells were transfected with lipofectamine 2000 and 1 µg/mL of AP-1-Luc
plasmid with β-galactosidase in OPTI-MEM media. Next, the cells were treated with the
extract from 0 to 20 µg/mL and the compound from 0 to 60 µg/mL. A volume of 300 µL of
lysis buffer was added to each well for cell lysis. After freezing at −70 degrees for 3 h, the
cell lysis and β-galactosidase complex, and d-luciferin complex were detected through a
spectrometer at 405 nm or via luminescence.

2.7. Western Blotting

The HaCaT cells and HDF cells were plated at the same density as described above,
and the cell lysates were transferred to a new e-tube using PBS after treating with Hs-WE
and hydrangenol for 24 h. Then, the cells were centrifuged at 3000 rpm for 3 min. The
cell lysates were reacted with cell lysis buffer containing 2 mM EDTA, 150 mM NaCl,
20 mM Tris-HCl pH 7.5, 20 mM NaF, 2% NP-40, and 50 mM β-glycerol phosphate with
2 µg/mL of pepstatin, leupeptin, and aprotinin. The mixtures were then centrifuged at
12,000 rpm for 10 min after the reaction. The supernatants were used for Western blotting
and separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Bio-
Rad, Hercules, CA, USA). The samples were transferred to a PVDF membrane (Merck
Millipore) and blocked with a bovine serum albumin (BSA) 3% (w/v) solution. The mem-
brane was incubated overnight with primary antibodies (1:2500 dilution) at 4 ◦C and was
washed for 3 min three times with a TBST solution. Then, it was incubated for 2 h with
secondary antibodies at room temperature. The protein bands were detected with enhanced
chemiluminescence reagents.

2.8. Clinical Trial

This clinical study was conducted in a double-blind, randomized, and placebo-
controlled design. The Global Medical Research Center (Seoul, Republic of Korea) con-
ducted the clinical trial from 1 October 2021 to 16 November 2021 (NCT05872113). The
subjects were recruited as healthy females aged 30–59 years (n = 22 people, 9 persons in
their 40s and 12 persons in 50s with an average age of 49.238 years.) who fit the criteria. The
inclusion and exclusion criteria are given in Table 2. The subjects who met the following
criteria were excluded in the middle of the experiment: (1) the subject voluntarily presented
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her intention to discontinue participation in the study during the period, (2) observation of
skin disease or adverse reaction, (3) excessive UV exposure of the test site, (4) results were
judged to be impaired due to excessive drinking or smoking, and (5) subjects who had
difficulty continuing the test and attending follow up appointments due to the subject’s
circumstances. The cream was applied to the faces of subjects: the 0.5% Hs-WE cream
was applied to the left facial area, while the placebo was applied on the right. The cream
was made in two types (Tables 3 and 4), one was 0.5% Hs-WE cream and the other was a
placebo for estimating the effects of the Hs-WE. All subjects applied this cream two times
per day for 4 weeks. The questionnaire for testing the effects was administered before using
the cream, after 2 weeks, and after 4 weeks. Skin wrinkles were approximated by visual
assessment using an Antera 3D CS (Miravex, Ireland) and skin moisturizing level was
measured using a Corneometer CM825 (Courage and Khazaka, Köln, Germany). The study
protocol was approved by the Institutional Review Board of the Global Medical Research
Center (Approval Code: GIRB-21929-NY and approval date: 5 October 2021).

Table 2. Inclusion criteria and exclusion criteria used for the validity of clinical trials.

Criteria No. Contents

Inclusion criteria

1 Females with dried skin, aged 30–59 years (average = 49.2 years).

2 The subject has eye wrinkles (crow’s feet).

3 A person who has voluntarily signed consent after the test purpose and
content were fully explained.

4 Those who can follow up during the test period.

5 A healthy person without an acute or chronic physical disease
including skin diseases.

Exclusion criteria

1 Pregnant or lactating women and women of childbearing age who do
not agree to the contraceptive method prescribed by the protocol.

2 A person with a lesion at the test site or suffering from an infectious
skin disease.

3 People with allergies, hypersensitivity, or irritation to cosmetics,
pharmaceuticals, or daily exposure to light.

4

Those who have received systemic steroids or phototherapy within 1
month of participating in the trial, or who have received skin

treatments (scaling/Botox/filler/laser/tattoo) within 3 months of
participating in the trial.

5
Those who have used drugs with similar functions at the research site
within 3 months before the start of the study, or have a mental illness or

mental retardation disorder.

6
Other than the above, a person who will make it difficult to conduct a
human test based on the judgment of the responsible researcher or the

person in charge of the study.

Table 3. The ingredients used in making clinical trial samples for placebo samples.

No. Ingredient Name

1 Water
2 Glycerin
3 Butylene glycol
4 Dipropylene glycol
5 Disodium EDTA
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Table 3. Cont.

No. Ingredient Name

6 Triethanolamine
7 Cetearyl alcohol
8 Caprylic/capric triglyceride
9 Glyceryl stearate
10 PEG-100 stearate
11 Carbomer
12 1,2-hexanediol
13 Phenoxyethanol
14 Sodium acrylate/sodium acryloyldimethyl taurate copolymer
15 Polyisobutene
16 Sorbitan oleate
17 Caprylyl/capryl glucoside

Table 4. The ingredients used in making clinical trial samples for Hs-WE 0.5% samples.

No. Ingredient Name

1 Water
2 Glycerin
3 Butylene glycol
4 Dipropylene glycol
5 Disodium EDTA
6 Triethanolamine
7 Cetearyl alcohol
8 Caprylic/capric triglyceride
9 Glyceryl stearate
10 PEG-100 stearate
11 Carbomer
12 1,2-hexanediol
13 Phenoxyethanol
14 Sodium acrylate/sodium acryloyldimethyl taurate copolymer
15 Polyisobutene
16 Sorbitan oleate
17 Caprylyl/capryl glucoside
18 Hydrangea serrata leaf extract

2.9. LC-MS/MS Analysis

Liquid chromatography-tandem mass spectrometry was carried out by COSMAX
(Sungnam, Republic of Korea) to identify the components of the Hs-WE. This experiment
was conducted with standard compounds such as gallic acid, kaempferol, vanillic acid, and
resveratrol. The analysis used the instrument TSQ Altis™ Plus Triple Quadrupole Mass
Spectrometer (Thermo Scientific, Waltham, MA, USA) with acetic acid (Merck, Rahway,
NJ, USA) in MilliQ water and acetonitrile (J.T. Baker, Phillipsburg, NJ, USA) as the mobile
phase. The amount and species of each compound was assessed based on the peak of
the graph.

2.10. Statistical Analysis

All the data are shown as mean ± standard deviation (SD) for at least 3 replicates
of independent trials. The Mann–Whitney U test was used to establish the statistical
difference between individual experimental groups. In the clinical study, statistical analysis
was verified using the IBM SPSS statistics 25.0 program. After the normality test, a one-
way ANOVA test with paired samples t-test or Wilcoxon signed rank test was performed.
Statistical values are written in terms of p < 0.05 (#, * p < 0.05; ##, ** p < 0.01).
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3. Results
3.1. Skin Moisturizing and Anti-Wrinkle Effects of Hs-WE

Twenty-two subjects were initially enrolled in the clinical trial. One subject was
excluded by non-compliance with the plan of the trial. All subjects used the placebo
sample on the left side of their face and the investigational sample on the right side of their
face. The ingredients used to produce the samples for the clinical study are provided in
Tables 3 and 4. The moisturizing levels were measured before use (0 week), after 2 weeks,
and after 4 weeks. The crow’s feet of the subjects were also measured at the same time
points as the skin moisture level test. First, the improvements in wrinkles were more
significant in the test sample than in the placebo sample (Figure 1a and Table 5). All
products significantly enhanced the moisture levels of the skin. The skin moisturizing
value increased when treating with the investigational sample compared to applying the
placebo sample (Figure 1b and Table 6). As shown in Figure 1c, the skin wrinkles were
attenuated by the test sample. Moreover, there were no reports of any adverse reactions
during the use of the test products, so all the samples were deemed safe. Based on these
results, Hs-WE could enhance skin moisture levels and also attenuate wrinkles in the skin.
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Figure 1. Anti-wrinkle effect of Hs-WE in clinical trial. (a,b) The skin hydration level and depth
of wrinkles were detected through visual assessment using Antera 3D CS (Miravex, Ireland), and
the value was calculated through comparison between application of Hs-WE and placebo. (c) The
visualization of skin wrinkles from subjects who applied the sample to their faces. The pictures
were taken at 0 week, 2 weeks, and 4 weeks. The measured values represent the mean ± standard
deviation (SD) of three independent experiments. ** p < 0.01, compared with placebo-treated side of
face using one-way ANOVA with paired samples t-test or Wilcoxon signed-rank test.

Table 5. The measured results of skin wrinkle measurement in the clinical study.

0.5% Hs-WE Placebo

Moisturizing measurement
value (A.U)

0 week 51.544 ± 9.862 51.771 ± 10.593

after 2 weeks 54.828 ± 10.214 53.230 ± 10.631

after 4 weeks 58.525 ± 10.735 55.705 ± 10.147

Variance a
0 week–after 2 weeks 3.284 1.459

0 week–after 4 weeks 6.981 3.934

Improvement rate b (%)
0 week–after 2 weeks 6.371 2.818

0 week–after 4 weeks 13.544 7.599

p-Value within group
0 week–after 2 weeks <0.001 <0.001

0 week–after 4 weeks <0.001 <0.001

p-Value between groups
0 week–after 2 weeks <0.001

0 week–after 4 weeks <0.001
a Variance: (value after using the cream—value before using the cream). b Improvement rate:
|{(value after using the cream− value before using the cream)/value before using the cream× 100}|.
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Table 6. The measured results of skin moisture in the clinical study.

0.5% Hs-WE Placebo

Measurement of skin wrinkles
(depth, mm)

0 week 0.102 ± 0.029 0.094 ± 0.030

after 2 weeks 0.087 ± 0.027 0.087 ± 0.030

after 4 weeks 0.074 ± 0.023 0.081 ± 0.029

Variance a
0 week–after 2 weeks −0.015 −0.007

0 week–after 4 weeks −0.028 −0.013

Improvement rate b (%)
0 week–after 2 weeks 14.706 7.447

0 week–after 4 weeks 27.451 13.830

p-value within group
0 week–after 2 weeks <0.001 <0.001

0 week–after 4 weeks <0.001 <0.001

p-value between groups
0 week–after 2 weeks 0.002

0 week–after 4 weeks <0.001
a Variance: (value after using the cream—value before using the cream). b Improvement rate:
|{(value after using the cream− value before using the cream)/value before using the cream× 100}|.

3.2. Hs-WE Shows No Toxicity in HaCaT Cells

The MTT assay was conducted to verify the toxicity of the Hs-WE. As shown in
Figure 2a, there was no toxicity in HaCaT cells at any tested concentrations. In the LC-
MS quantitative analysis, there were many secondary metabolites such as chlorogenic
acid, protocatechuic acid, rutin, hyperoside, GABA, resveratrol, loganin_A, isoquercitirin,
gallic acid, p-coumaric acid, astraglin, caffeic acid, ferulic acid, salicylic acid, vanillic acid,
kaempferol, and hydrangenol (Figure 2b and Table 7). In this extract, 1.002% hydrangenol
was detected, which is considered a standard compound of hydrangeaceae (Figure 2c). A
wound healing migration assay was performed to determine whether the Hs-WE affects
cell proliferation. Healing activity was observed for all the Hs-WE-treated conditions
after 72 h of incubation. Moreover, high levels of cell proliferation were observed at high
concentrations, and cell proliferation was significantly increased in a dose-dependent
manner compared to the control group (Figure 2d). In summary, Hs-WE could aid cell
growth with no cytotoxicity.
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Figure 2. Effect of Hs-WE on the viability and wound healing of HaCaT cells and its LC/MS-MS
profile. (a) Cell viability was detected at 570 nm using the MTT assay. The assay was performed on
Hs-WE-treated HaCaT cells in 96-well plates. (b) The LC/MS-MS analysis of Hs-WE. (c) LC/MS-MS
analysis to determine the hydrangenol content in Hs-WE. (d) The potential proliferation effects of
Hs-WE were measured using a wound healing assay. The media including Hs-WE were changed
after imaging. The area was detected using ImageJ software (Ver.: 1.53J, NIH, Bethesda, MD, USA).
Values represent the mean ± standard deviation (SD) of three independent experiments. * p < 0.05,
** p < 0.01, compared with Hs-WE-treated group using the Mann–Whitney U test.
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Table 7. The natural compounds in Hs-WE verified through LC/MS-MS analysis.

Peak No. RT Name of the Compound

1 1 GABA
2 1.94 Gallic acid
3 3.85 Protocatechuic acid
4 6.87 Chlorogenic acid
5 7.59 Vanillic acid
6 7.8 Caffeic acid
7 8.61 Loganin_A
8 9.68 p-Coumaric acid
9 10.42 Rutin
10 10.56 Ferulic acid
11 10.74 Hyperoside
12 10.89 Isoquercitrin
13 11.11 Salicylic acid
14 11.8 Astragalin
15 13.42 Resveratrol
16 14.78 Hydrangenol
17 16.75 Kaempferol

3.3. Hs-WE Skin Moisturizing Potential at the Transcription Level

We performed a qRT-PCR assay from Hs-WE-treated HaCaT cells to determine the skin
moisturizing mechanism of the Hs-WE. The action of the Hs-WE on skin keratinocytes was
confirmed through the qRT-PCR assay. Hyaluronic acid synthase as well as components
of the skin barrier were upregulated under Hs-WE treatment (Figure 3a). In contrast, the
mRNA levels of hyaluronidases such as HYAL-1, HYAL-2, and HYAL-3 were downregulated
in the Hs-WE-treated group in a dose-dependent manner (Figure 3b). Additionally, TGM,
OCLN, INVN, and FLG were significantly upregulated to high concentrations in HaCaT
cells when treated with the Hs-WE (Figure 3c). The wound-healing effects of the Hs-WE
could be supported by confirming that the transcription levels of Ker5, Ker6, and Ker16
were improved with Hs-WE treatment (Figure 3d). Moreover, we examined the level of
collagen type I in HDF cells after treatment with Hs-WE to support the results of the
clinical study. The mRNA expression of COL1A1 was increased at higher concentrations
of Hs-WE (20 µg/mL) (Figure 3e). Meanwhile, the protein level of COL1A1 was revealed
to be upregulated by the presence of Hs-WE or hydrangenol (Figure 3f). Overall, it was
found that Hs-WE could improve skin hydration by upregulating the mRNA levels of the
genes involved in keratin synthesis and hyaluronic acid synthesis, and downregulating the
hyaluronidases. Furthermore, it was revealed that the Hs-WE could induce fibroblasts to
synthesize procollagen-1 through transcriptional activation.
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Figure 3. Effect of Hs-WE on the expression of moisturizing factors, tight junction factors, and col-
lagen in skin. (a–d) HaCaT cells were treated with Hs-WE for 24 h. After isolating the mRNA, the 
synthesized cDNA was used in a PCR assay. Shown are the expression levels of genes associated 
with hyaluronic acid synthase (a), hyaluronidase (b), skin junctions (c), and epidermal proliferation 
(d). (e) The COL1A1 expression of HDF cells in the presence of Hs-WE (20 µg/mL) or hydrangenol 
(60 µM) was examined by qRT-PCR analysis. (f) Protein level of COL1A1 in HDF cells after treat-
ment with Hs-WE (5–20 µg/mL) or hydrangenol (15–60 µM) was detected by Western blotting anal-
ysis. Values represent the mean ± standard deviation (SD) of three independent experiments. * p < 
0.05, ** p < 0.01 compared with Hs-WE-treated group using Mann–Whitney U test. 
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the NF-κB pathway. These results showed an increased pattern of phosphorylation for 
PI3K, AKT, and PDK-1 (Figure 4b). According to the clinical trial, we examined the protein 
levels of Has-1, 2, and 3 to determine if Has could be upregulated by treatment with Hs-
WE at the protein levels. As we expected, the expressions of hyaluronic acid synthesis 
genes including Has-1, 2, and 3 were also increased at the protein level (Figure 4c). Previ-
ous reports have shown that enhanced AP-1 protein expression is associated with Has 
expression [19]. The increased expression of the proteins involved in the AP-1 signaling 
pathway was also shown through a Western blotting assay. We confirmed that the acti-
vated form of c-Jun and c-Fos increased at the protein level, as shown in the results of the 
luciferase reporter assay, which showed an increase in AP-1 levels. Next, we checked the 
upstream molecules of c-Jun and c-Fos. Their phosphorylation forms were upregulated in 
the case of JNK, ERK, and p38 (Figure 4d). Lastly, we examined the Has family protein 

Figure 3. Effect of Hs-WE on the expression of moisturizing factors, tight junction factors, and
collagen in skin. (a–d) HaCaT cells were treated with Hs-WE for 24 h. After isolating the mRNA, the
synthesized cDNA was used in a PCR assay. Shown are the expression levels of genes associated
with hyaluronic acid synthase (a), hyaluronidase (b), skin junctions (c), and epidermal proliferation
(d). (e) The COL1A1 expression of HDF cells in the presence of Hs-WE (20 µg/mL) or hydrangenol
(60 µM) was examined by qRT-PCR analysis. (f) Protein level of COL1A1 in HDF cells after treatment
with Hs-WE (5–20 µg/mL) or hydrangenol (15–60 µM) was detected by Western blotting analysis.
Values represent the mean ± standard deviation (SD) of three independent experiments. * p < 0.05,
** p < 0.01 compared with Hs-WE-treated group using Mann–Whitney U test.

3.4. Hs-WE Upregulates the Expression of AP-1 Pathway Proteins

A luciferase reporter assay was conducted to confirm the expression of AP-1 pathway
proteins after Hs-WE treatment. At the transcription level, the AP-1-mediated luciferase
expression was increased by Hs-WE treatment in a dose-dependent manner (Figure 4a). We
also confirmed the change in expression of PI3K/AKT pathway proteins, which affect the
NF-κB pathway. These results showed an increased pattern of phosphorylation for PI3K,
AKT, and PDK-1 (Figure 4b). According to the clinical trial, we examined the protein levels
of Has-1, 2, and 3 to determine if Has could be upregulated by treatment with Hs-WE at the
protein levels. As we expected, the expressions of hyaluronic acid synthesis genes including
Has-1, 2, and 3 were also increased at the protein level (Figure 4c). Previous reports have
shown that enhanced AP-1 protein expression is associated with Has expression [19]. The
increased expression of the proteins involved in the AP-1 signaling pathway was also
shown through a Western blotting assay. We confirmed that the activated form of c-Jun
and c-Fos increased at the protein level, as shown in the results of the luciferase reporter
assay, which showed an increase in AP-1 levels. Next, we checked the upstream molecules
of c-Jun and c-Fos. Their phosphorylation forms were upregulated in the case of JNK, ERK,
and p38 (Figure 4d). Lastly, we examined the Has family protein levels after inhibitor and
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Hs-WE co-treatment. Has-1 and 3 levels were decreased even if co-treated with the Hs-WE
and JNK inhibitors (Figure 4e). In summary, the skin moisturizing effect of Hs-WE is due
to synergizing the upregulation of the AP-1 pathway and Akt/PI3K pathway proteins.
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Figure 4. Effect of Hs-WE on the activation of AP-1 pathway. (a) Luciferase activity was determined
with luminometer with lysates of HaCaT cells transfected with the AP-1-Luc and β-gal plasmids
under the treatment of Hs-WE (5 to 20 µg/mL). (b–e) Levels of the Akt/PI3K pathway proteins (b),
HAS proteins (c,e), and MAPK pathway proteins (d) were detected by Western blotting analysis
with lysates of HaCaT cells incubated with Hs-WE (b–d) or MAPK inhibitors (U0126, SB203580, and
SP600125) (e) for 24 h. (Values represent the mean ± standard deviation (SD) of three independent
experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the normal group using
Mann–Whitney U test.
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3.5. Hydrangenol Shows Skin Improvement Effects at the mRNA Level

Hydrangenol a natural compound that can be isolated from hydrangeas. Hydrangenol
is a representative natural compound of H. serrata used in many previous studies. Therefore,
we investigated whether this compound also affects skin moisturization and cell growth to
attenuate skin wrinkles. We conducted a conventional MTT assay to examine cell viability.
The HaCaT cells showed no toxicity for all tested concentrations of hydrangenol (Figure 5a).
Moreover, the wound area closed over 72 h in a dose-dependent manner (Figure 5b). We
conducted a qRT-PCR assay to confirm these results with the hydrangenol treatment and
found the same effect as the Hs-WE. We also examined the level of skin moisturizing
factors and skin barrier-improving factors like the previous experiments. The transcription
levels of these genes were improved by the presence of hydrangenol in a dose-dependent
pattern (Figure 5c). The levels of keratin 5, 6, and 16 were increased by the treatment with
hydrangenol (Figure 5d). This verifies the effects of the wound healing migration assay
after hydrangenol treatment. Consequently, both hydrangenol and the Hs-WE showed
significant effects, confirming that the effect of the Hs-WE was caused by hydrangenol.
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Figure 5. Effect of hydrangenol on the viability, wound healing, and expression of moisturizing
factors and tight junction factors in HaCaT cells. (a) Cell viability of HaCaT cells in response to
hydrangenol. The cells were plated in a 96-well plate. The cells were treated with hydrangenol for
24 h. (b) The wound-healing effects of hydrangenol were detected by comparing the normal and
hydrangenol-treated groups. The pictures were taken at 0, 24, and 48 h. (c,d) The mRNA expressions
were measured by real-time PCR. HaCaT cells were treated with hydrangenol for 24 h, and cDNA was
synthesized after mRNA isolation. The mRNA levels of hyaluronic acid synthase and hyaluronidase
(c), skin junction and skin proliferation factors (d) were detected. Values represent the mean ±
standard deviation (SD) of three independent experiments. * p < 0.05, ** p < 0.01, compared with
Hs-WE-treated group using the Mann–Whitney U test.
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3.6. Hydrangenol Improves Skin as the Main Component of Hs-WE

We conducted a luciferase reporter assay to examine the Ap-1 transcription levels
in hydrangenol-treated conditions. The Ap-1 mediated luciferase transcription level was
upregulated in a dose-dependent pattern in transfected HaCaT cells (Figure 6a). We also
investigated protein expression levels by performing Western blotting. Various studies have
reported that the AKT/PI3K pathway promotes cell survival and transcription and blocks
apoptosis by inactivating pro-apoptotic proteins [44,45]. In our results, phosphorylated
AKT, PI3K, and PDK-1 was actively expressed in the hydrangenol-treated conditions
(Figure 6b). This could be the mechanism for the wound healing activity of hydrangenol.
Moreover, we checked the protein levels of HAS family genes in hydrangenol-treated
cells. The expression patterns were increased in a dose-dependent patterns, suggesting
that the AP-1 pathway could be involved in the upregulation of hyaluronic acid synthesis
(Figure 6c). From these results, we could expect effects on the AP-1 protein signaling
pathway. Meanwhile, c-Fos and c-Jun were significantly activated by hydrangenol, and
the upstream proteins p38, ERK, and JNK were also upregulated in hydrangenol-treated
cells (Figure 6d). Finally, we examined the HAS protein levels after treatment with JNK,
p38, and ERK inhibitors. As we expected, HAS family protein expression levels decreased
when JNK protein was inhibited by SP600125 (Figure 6e). Taken together, the activity of
hydrangenol, which can upregulate AP-1 protein levels, especially through JNK, could
assist the synthesis of HAS proteins.
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levels of moisturizing factors. (a) Luciferase activity in hydrangenol-treated HaCaT cells was deter-
mined with lumonometer by transfection with the AP-1-Luc and β-gal plasmids under treatment of 
hydrangenol (5, 10, and 20 µM). (b–e) Levels of  PI3K/Akt pathway proteins (b), Has proteins (c,e), 
and MAPK pathway (d) were detected by Western blotting analysis with lysates of HaCaT cells 
treated with hydrangenol (b–e) or MAPK inhibitors (U0126, SB203580, and SP600125) (e) for 24 h. 
The relative intensity was measured by the ratio of phosphorylated protein expression/total expres-
sion of protein using ImageJ. Values represent the mean ± standard deviation (SD) of three inde-
pendent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the normal group using 
the Mann–Whitney U test. 
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the relationship between the AP-1 pathway and skin barrier-restoring mechanisms [18]. 
H. serrata is a plant affiliated with hydrangeaceae. It is called “san soo gook” because it is 
a plant native to mountainous areas including Korea and Japan. It has been used for tea 
because of its sweet taste. Previous studies demonstrated the anti-obesity effects, muscle 
synthesis effects, and anti-photoaging effects of H. serrata [39–43]. We investigated the skin 
improvement potential of a Hs-WE. Skin moisturizing effects as well as anti-wrinkle ef-
fects were observed in the 0.5% Hs-WE-treated group (Figure 1a–c). In a quantitative anal-
ysis experiment, LC/MS was conducted to identify the diverse compounds in the Hs-WE. 
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Figure 6. Effect of hydrangenol and MAPK inhibitors on the activation of AP-1 pathway and
protein levels of moisturizing factors. (a) Luciferase activity in hydrangenol-treated HaCaT cells
was determined with lumonometer by transfection with the AP-1-Luc and β-gal plasmids under
treatment of hydrangenol (5, 10, and 20 µM). (b–e) Levels of PI3K/Akt pathway proteins (b), Has
proteins (c,e), and MAPK pathway (d) were detected by Western blotting analysis with lysates of
HaCaT cells treated with hydrangenol (b–e) or MAPK inhibitors (U0126, SB203580, and SP600125)
(e) for 24 h. The relative intensity was measured by the ratio of phosphorylated protein expres-
sion/total expression of protein using ImageJ. Values represent the mean ± standard deviation (SD)
of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared with the normal
group using the Mann–Whitney U test.

4. Discussion

Keratinocytes are located at the outer-most layer of the skin and play an important role
in protecting the skin from external stimuli, including UV irradiation, reactive oxidative
species, fine dust, and air pollution. Skin aging can be accelerated by these stimuli, and
skin aging caused by these factors is referred to as extrinsic aging [46,47]. Aging that occurs
naturally over time is called natural aging or endogenous aging. Accordingly, the symp-
toms of aging also appear different depending on which factors are involved. In the case
of intrinsic aging, symptoms like reduction of the skin dermis, relief of flexions between
the epidermis and dermis, increased moisture evaporation in the skin, and fine wrinkle
formation were observed [1]. Skin hydration is essential to retain skin homeostasis [48].
Skin dryness can cause skin wrinkles, and decreased skin moisture also affects skin cells.
Many studies about anti-aging focused on two mechanisms. One is the upregulation of
skin moisturizing factors. They improved hyaluronic acid synthesis (such as upregulating
the HAS family proteins) to maintain good skin conditions or prevent skin dryness by
inhibiting hyaluronidases. The other is the reinforcement of the skin barrier component.
By upregulating the skin junction factors like FLG, TGM-1, OCLN, INVN, and the ker-
atin family, we can reduce transepidermal water loss from the skin. Various trials have
been conducted to upregulate the Has genes and skin barrier factors, and downregulate
hyaluronidase to prevent symptoms. Previous reports have investigated the relationship
between the AP-1 pathway and skin barrier-restoring mechanisms [18]. H. serrata is a plant
affiliated with hydrangeaceae. It is called “san soo gook” because it is a plant native to
mountainous areas including Korea and Japan. It has been used for tea because of its sweet
taste. Previous studies demonstrated the anti-obesity effects, muscle synthesis effects, and
anti-photoaging effects of H. serrata [39–43]. We investigated the skin improvement po-
tential of a Hs-WE. Skin moisturizing effects as well as anti-wrinkle effects were observed
in the 0.5% Hs-WE-treated group (Figure 1a–c). In a quantitative analysis experiment,
LC/MS was conducted to identify the diverse compounds in the Hs-WE. The results of
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this experiment revealed the main component of Hs-WE and other chemicals such as
coumarin compounds, polyphenols, and flavonoids (Figure 2b). Previous studies showed
that various metabolites in plants help in improving skin health [49,50], In the case of
melatonin, for example, not only is it a substance found in natural honey [51], it is also
known to have a skin-protective role by reducing transepidermal water loss (TEWL) [52].
Moreover, vitamin D3, which is found in natural honey, has also been reported as a natural
anti-aging component [53,54]. We assumed that the results of clinical trials may also be the
result of various phytochemicals in the Hs-WE. HaCaT cells were used in all experiments
to identify more specific mechanisms of Hs-WE in skin cells. First, the Hs-WE showed no
toxicity to cells even at a high concentration of 200 µg/mL (Figure 2a). The wound healing
migration assay results confirmed that the Hs-WE could potentially prevent wrinkles by
inducing cell proliferation without toxicity in epidermal cells (Figure 2d). Skin dryness
can be prevented by decreasing the water loss from weakened skin barriers. Factors such
as TGM, OCLN, INVN, and FLG reinforce the skin junction and skin barrier [55–57]. The
presence of the Hs-WE upregulated both signal transduction to synthesize moisturizing
factors such as HAS1, 2, and 3 (Figure 3a) and skin barrier factors such as TGM, occludin,
involucrin, and filaggrin (Figure 3c). The keratin 5, 6, and 16 levels were increased by
treatment with Hs-WE (Figure 3). These three genes contribute to cell proliferation and skin
turnover. COL1A1 was also upregulated at the both mRNA and protein levels when HDF
cells were treated with Hs-WE or hydrangenol (Figure 3e,f). From these results, we hypoth-
esized the wound-healing effect of the Hs-WE was due to the increased keratin 5, 6, and 16.
Additionally, we also hypothesized that the Hs-WE can increase collagen synthesis in the
dermis. AP-1 plays a pivotal function in the epidermis, repairing wounds by differentiation.
Meanwhile, the upstream molecule p38 MAPK induces Has1 transcription. Protein levels
of PI3k, Akt, MAPK, and AP-1 were confirmed in the presence of the Hs-WE (Figure 4b,d)
or hydrangenol (Figure 6b,d). When the inhibitors of MAPK were added to HaCaT cells,
the key molecules which induce HAS expression were increased after the treatment with
Hs-WE and hydrangenol (Figures 4e and 6e). Considering the previous results in which
various phytochemicals were detected in the Hs-WE, we hypothesized that the synergistic
effect is due to the biochemicals in the extract. We confirmed that hydrangenol, an indicator
component of Hs-WE, also acts on the skin in the same way.

Our study had some limitations including the fact that primary human keratinocytes
were not used in the experiments. Many papers dealing with skin research have been
published about the differences in gene expressions and protein levels between NHEK and
HaCaT cells [58–60]. Since the expression levels may be increased or decreased when the
same experiments are conducted with normal human keratinocytes, the results observed
in both cell types is necessary. Moreover, histological approaches with human-derived
skin tissues biopsied from clinical trials or three-dimensional culture conditions will be
also necessary to confirm the activity of the Hs-WE on the reduction of wrinkles and
its mechanisms. Despite these technical limitations, however, we believe that the Hs-
WE is effective in the improvement of wrinkle formation according to the clinical trial
and in the upregulation of moisturizing factors by measuring the relevant proteins at
the mRNA and protein levels, suggesting that it can be applied as a cosmeceutical and
nutritional supplement for human skin. Nonetheless, to support our current data, we will
further verify the Hs-WE’s effect using fresh primary dermal keratinocytes and human
skin. Therefore, these results seem to prove that the steady and repeated application of
hydrangea extract produces anti-wrinkle effects by upregulating moisturizing factors and
skin barrier constituents without skin toxicity.

5. Conclusions

In our study, skin cell viability and proliferation were enhanced by treatment with
the Hs-WE or hydrangenol. The moisturizing effects of the Hs-WE or hydrangenol were
confirmed by detecting factors such as Has and Hyal at the mRNA level. The attenuat-
ing effects on skin wrinkles were also examined by measuring the mRNA levels of skin
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junction, procollagen, and proliferation factors. Proteins, including AP-1, Akt, and Has,
were upregulated by treatment with the Hs-WE or hydrangenol. Additionally, Has-1,
2, and 3 expression levels were commonly inhibited in the presence of JNK inhibitors.
Taken together, the Hs-WE and hydrangenol could enhance these protein levels via the
phosphorylation of JNK. We concluded that the Hs-WE and hydrangenol can increase skin
moisture levels and attenuate skin wrinkles by promoting the proliferation of keratinocytes.
Therefore, we suggested that the Hs-WE could improve skin wrinkles and dryness via
routine application to the skin (Figure 7). For this purpose, we are planning to develop a
cosmetic preparation with 0.5% or more of Hs-WE or its food formulation with skin health
functionality to be used or taken twice a day, usually in the morning and evening. Finally,
since providing sufficient nutrients to the skin is important to prevent wrinkles and skin
hydration, the development of cosmetic formulations is an important issue to enhance
the penetration of nutrients. Therefore, we will continuously study to develop effective
cosmeceutical preparations or even functional foods.
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Abbreviation
ROS reactive oxygen species
HDF human dermal fibroblast
HYAL hyaluronidase
HAS-1 hyaluronic acid synthase 1
HAS-2 hyaluronic acid synthase 2
HAS-3 hyaluronic acid synthase 3
INVN involucrin
OCLN occludin
TGM transglutaminase 1
FLG filaggrin
AP-1 activator protein 1
MAPK mitogen-activated protein kinase
ERK extracellular signal-regulated kinases
JNK c-Jun NH2-terminal kinases
HaCaT cells human keratinocyte cell line
DMEM Dulbecco’s modified eagle’s medium
PC/SM penicillin/streptomycin solution
FBS fetal bovine serum
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
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