Skip to main content
. 2023 May 24;23(11):5024. doi: 10.3390/s23115024

Table 1.

Summary of deep learning-based techniques for anomaly detection.

Method Type Year Reference
Convolutional Long Short-Term Memory RB + Future Frame Prediction 2016 [4]
2D Convolutional Autoencoder RB 2016 [81]
Sparse Autoencoder Reconstruction based 2016 [82]
Slow Feature Analysis + Deep Neural Network Scoring 2016 [9]
Sparse Denoise Autoencoder Multiclass Classification 2017 [83]
Autoencoder + Cascade Deep CNN Multiclass Classification 2017 [3]
Spatiotemporal Autoencoder RB + Future Frame Prediction 2017 [84]
Pretrained DNN + Gaussian classifier Multiclass Classification 2018 [85]
Autoencoder + Low level features Reconstruction based 2018 [86]
Multiple Instance Learning Scoring 2018 [2]
Low-level Features + Autoencoder Reconstruction based 2018 [86]
Frame predict using GANs Future Frame Prediction 2018 [43]
Combination of traditional and deep features Scoring 2019 [87]
Localization feature extraction Scoring 2019 [88]
AnomalyNet Reconstruction based 2019 [89]
Optical Flow + Multiple Instance Learning Scoring 2019 [90]
Social Force Maps + Multiple Instance Learning Scoring 2019 [91]
Attention module + Autoencoder Reconstruction based 2019 [92]
Component Analysis + Transfer Learning Multiclass Classification 2019 [93]
Object detection using SSD + Autoencoder Multiclass Classification 2019 [94]
Sparse coding Deep neural network Scoring 2019 [95]
Adaptive Intra-Frame Classification Network Classification 2019 [96]
Autoencoder + Gaussian Mixture Model Scoring 2020 [97]