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Abstract

We present a machine learning-based interpretive framework (whatprot) for analyzing single

molecule protein sequencing data produced by fluorosequencing, a recently developed pro-

teomics technology that determines sparse amino acid sequences for many individual pep-

tide molecules in a highly parallelized fashion. Whatprot uses Hidden Markov Models

(HMMs) to represent the states of each peptide undergoing the various chemical processes

during fluorosequencing, and applies these in a Bayesian classifier, in combination with pre-

filtering by a k-Nearest Neighbors (kNN) classifier trained on large volumes of simulated

fluorosequencing data. We have found that by combining the HMM based Bayesian classi-

fier with the kNN pre-filter, we are able to retain the benefits of both, achieving both tractable

runtimes and acceptable precision and recall for identifying peptides and their parent pro-

teins from complex mixtures, outperforming the capabilities of either classifier on its own.

Whatprot’s hybrid kNN-HMM approach enables the efficient interpretation of fluorosequen-

cing data using a full proteome reference database and should now also enable improved

sequencing error rate estimates.

Author summary

Scientists often wish to know which proteins, and at what quantities, are present in a sam-

ple. The field of proteomics offers a number of technologies that aid in this, such as tan-

dem mass spectrometry and immunoassays, that provide different tradeoffs between

sensitivity, throughput, and generality. One new technology, known as fluorosequencing,

detects and provides partial sequences for individual peptide or protein molecules from a

sample in a highly parallelized fashion. However, as only partial sequences are measured,

the resulting sequencing reads must be matched to a reference database of possible pro-

teins, such as might be obtained from the human genome. We describe a suitable com-

puter algorithm for performing this matching of fluorosequencing reads to a reference

database while accounting for the most prevalent types of sequencing errors. We detail its

performance and implementation, and describe a number of uncommon algorithmic
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improvements and approximations which allow this approach to scale to classification

against the whole human proteome. The resulting software, known as whatprot, allows

researchers to interpret fluorosequencing reads and better apply this emergent single mol-

ecule protein sequencing technology.

This is a PLOS Computational Biology Methods paper.

Introduction

Proteins are key components of living organisms, but their heterogenous chemical natures

often complicate their biochemical analyses, and consequently, the state of protein identifica-

tion and quantification methods (e. g., mass spectrometry, antibodies, affinity assays) has gen-

erally tended to lag the remarkable progress exhibited by DNA and RNA sequencing

technologies. However, improvements to protein analyses could potentially directly inform

better biological understanding and better translate into biomedicine and clinical studies.

Thus, the field of single molecule protein sequencing attempts to apply concepts from DNA

and RNA sequencing to protein analyses in order to take advantage of the high parallelism,

sensitivity, and throughput potentially offered by these approaches [1,2,3,4].

Fluorosequencing is one such single-molecule protein sequencing technique inspired by

methods used for DNA and RNA [5,6]. In fluorosequencing, proteins in a biological sample

are denatured and cleaved enzymatically into peptides. The researcher then chemically labels

specific amino acid types, or alternatively, specific post-translational modifications (PTMs),

within each peptide with different fluorescent dyes, then covalently attaches the peptides by

their C-termini to the surface of a single-molecule microscope imaging flow-cell (Fig 1A).

Sequencing proceeds by alternating between acquiring fluorescence microscopy images of the

immobilized peptides and performing chemical removal of the N-terminal-most amino acid

from each peptide, using the classic Edman degradation chemistry [7,8] (Fig 1B). In this man-

ner, the sequencing cycle (corresponding to amino acid position) at which different fluores-

cent dyes are removed is measured on a molecule-by-molecule basis, with these data collected

in parallel for all the peptide molecules observed in the experiment (Fig 1C).

In theory, this process gives a direct readout of each peptide’s amino acid sequence, at least

for the subset of labeled amino acids (Fig 1D), but in practice there are several complications

because of the single-molecule nature of this sequencing method. Single molecule fluorescence

intensities are intrinsically noisy, arising from the repeated stochastic transitions of each indi-

vidual dye molecule between ground state and excited state, making stoichiometric data inex-

act, particularly when there are large fluorophore counts. Typically, no more than 5–6 copies

of the same amino acid, hence dye, are expected for average proteolytic peptide lengths, with

the number of distinct colors (i.e., fluorescent channels) set by the microscopy optics and avail-

able dyes, here assumed to be 5 or fewer. However, inevitably with any chemical process, some

fluorophore labeling reactions fail to occur, and photobleaching or chemical destruction can

destroy fluorophores in the middle of a fluorosequencing run. At some low rate, peptides may

detach from the flow-cell during sequencing, and Edman degradation can skip a cycle. These

error rates, while individually small (approximately 5% each in published analyses [2]), collec-

tively add difficulty to peptide identification, necessitating computational methods to process

these data.

PLOS COMPUTATIONAL BIOLOGY Peptide classification from fluorosequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011157 May 30, 2023 2 / 26

software tool available at https://github.com/
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Currently, there are no published algorithms for mapping fluorosequencing reads to a ref-

erence proteome to identify the proteins in a sample. The first analyses of fluorosequencing

data used Monte Carlo simulations to generate realistic simulated data as a guide for data

interpretation and fitting of experimental error rates [5,6]. While this strategy did not scale

well computationally to full proteomes, it suggested that probabilistic modeling of the fluorose-

quencing process could provide a powerful strategy for interpreting these data. In this paper,

we explore the application of machine learning to develop a classifier that correctly accounts

for the characteristic fluorosequencing errors but is computationally efficient enough to scale

to the full human proteome.

Viewing this as a machine learning problem is challenging due to the large numbers of pos-

sible peptides in many biological experiments. For example, in the human proteome, there are

about 20,000 proteins, which when processed with an amino-acid specific protease such as

trypsin can correspond to hundreds of thousands or even millions of distinct peptides, each of

which can potentially vary due to post-translational modifications or experiment-specific

Fig 1. Overview of protein fluorosequencing. (A) illustration of the sample preparation process. Each grey circle represents an amino acid, and the letter in

the circle corresponds to the standardized single letter amino acid codes. In the diagram, proteins are denatured, cleaved with protease, labeled with fluorescent

dyes, and then labeled peptides are immobilized by their C-termini on the surface of a flow-cell. (B) The Edman degradation chemical reaction cycle, used to

predictably remove one amino acid per cycle from each peptide. (C) For a given peptide, the sequencing process removes amino acids one at a time from the

N-terminus, taking with them any attached fluorescent dyes. (D) Major steps in computational data analysis include: (1) For each field of view, performing

image analysis to extract fluorescence intensities for each spot (peptide) in each fluorescent channel across time steps (cycles), collating the fluorescence

intensity data per spot across timesteps and colors. A vector of fluorescence intensities is produced, giving a floating-point value for every timestep and

fluorophore color combination. (2) These raw sequencing intensity vectors (raw reads) must then be classified as particular peptides from a reference database.

This step is the primary concern of this paper. (3) Identified peptides can then be used to identify and quantify the proteins in the original biological sample.

https://doi.org/10.1371/journal.pcbi.1011157.g001

PLOS COMPUTATIONAL BIOLOGY Peptide classification from fluorosequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011157 May 30, 2023 3 / 26

https://doi.org/10.1371/journal.pcbi.1011157.g001
https://doi.org/10.1371/journal.pcbi.1011157


processing. This puts fluorosequencing data analysis squarely in the realm of Extreme Classifi-

cation problems, which are known to be challenging to handle in practice [9].

To analyze these data, we took advantage of the ability to generate simulated fluorosequen-

cing data using Monte Carlo simulations [5,6] to test k-Nearest Neighbors (kNN) classification

and found it gave results of poor quality but is able to scale efficiently to the full human prote-

ome while maintaining reasonable runtimes. These initial explorations motivated the develop-

ments presented in this manuscript, which focuses on the specific challenge of matching

fluorosequencing reads to peptides from a reference proteome (peptide-read matching).
Here, we propose a specialized classifier which combines heavily optimized Hidden Markov

Models (HMMs) to model the peptide chemical transformations during fluorosequencing, in

combination with kNN pre-classification to reduce runtime. We call this tool whatprot, com-

pare it with kNN and a classifier which uses HMMs without the kNN based runtime reduction,

and demonstrate that the hybrid HMM-kNN approach offers a powerful and scalable

approach for interpreting protein fluorosequencing data with the use of a reference proteome.

Methods

Monte Carlo simulation

To generate training and testing data typical of fluorosequencing experiments, we performed

Monte Carlo simulations based on the model and parameters described in [5] [6]. These

parameters are the dye loss rates pc, which differ for each color c, the missing fluorophore rates

mc, the Edman cycle failure rate e, the peptide detachment rate d, the average fluorophore

intensity μc, and the standard deviation of fluorophore intensity σc. We additionally model a

background standard deviation s0c. Based on prior estimates for the dye Atto647N ([5,6]), we

used the following values unless otherwise noted: pc = .05, mc = .07, e = .06, d = .05, μc = 1.0

(arbitrary rescaling of intensity values), σc = .16, s0c ¼ :00667. Although the code permits dif-

ferent values for different colors c, for our simulations, we modeled each color of fluorophore

with identical error values for simplicity.

An overview of the process with definitions for key terms is provided in Fig 2. We generate

simulated data in two formats. The first of these formats we refer to as a dye track, and it indi-

cates the number of remaining fluorophores of each color at each time step after considering

sequencing errors. Thus, each copy of one particular peptide sequence may give rise to a differ-

ent specific dye track in a sequencing experiment depending on the details of the labeling

schemes and sequencing efficiencies. To simulate a dye track, we randomly alter (with a

pseudo random number generator) a representation of a dye sequence in a series of timesteps,

writing to memory the count of each color of fluorophore as we progress until we reach a pre-

set number of timesteps. In this simulation, we initially remove fluorophores with a probability

of mc before beginning sequencing. We then additionally perform a series of random events

after logging fluorophore counts for each timestep: we remove the entire peptide and all fluor-

ophores with a probability of d to simulate peptide detachment from the flow cell, we remove

the last amino acid (and any attached fluorophore) with a probability of (1−e), and we remove

each fluorophore with a probability of pc, where c is the color of the fluorophore, to simulate

fluorophore destruction. We then log each fluorophore count into the dye track at every cycle.

The other format of data we consider is a raw read, which consists of radiometry data for

each fluorescent color and Edman cycle. Raw reads result experimentally from signal process-

ing and radiometry of the microscope imaging data from a fluorosequencing experiment. To

simulate a raw read, we first simulate a dye track, and then we convert each fluorophore count

into a floating point value indicating the fluorescent intensity. When we have a dye track entry

indicating Λc fluorophores for a given fluorophore color c, we sample a normal distribution
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with a mean of Λcμc and a variance of s02c þ Lcsc
2. We perform this calculation for each chan-

nel at each time-step to simulate a raw read.

These radiometry raw reads simulate the fluorescent intensity data we would expect to col-

lect from processing raw single molecule microscope images, a process currently performed

for experimental data using the algorithm SigProc (Part of Erisyon’s tool Plaster, https://

github.com/erisyon/plaster_v1), as in [10,11].

Bayesian classification with HMMs

Whatprot builds an independent HMM for each peptide in a provided reference proteome

dataset. Each state in this HMM represents a potential condition of the peptide, including the

number of successfully removed amino acids, and the combination of fluorophores which

have not yet photobleached or been destroyed by the chemical processing (Fig 3). Transition

probabilities between these states can be calculated using previously estimated success and fail-

ure rates of each step of protein fluorosequencing.

We can use the HMM forward algorithm to associate a specific peptide to each raw read (a

series of observed fluorescence intensities over time and across different fluorescence chan-

nels). We obtain the probability of the peptide given the raw read in two steps. First, we com-

pute the HMM forward algorithm using each possible peptide in the dataset to obtain the

probability of the raw read given each peptide. This uses the forward algorithm formula

f ðtþ1Þ
¼ Oðtþ1ÞTf ðtÞ ð1Þ

Fig 2. Nomenclature for different stages of fluorosequencing data analysis. The whatprot algorithm maps raw single-molecule protein sequencing reads to

peptides and their parent proteins in the reference proteome (black arrows) by comparing experimental data (at bottom) to synthetic data generated using a

Monte Carlo simulation (gray arrows).

https://doi.org/10.1371/journal.pcbi.1011157.g002
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Where f(t) represents the cumulative probabilities for each state at timestep t, where 0�t�T,

O(t) represents the diagonal emission matrix for the observation seen at timestep t, and T rep-

resents the transition matrix which is the same at every timestep. The entries in each f(t), O(t),

and in T, represent the following probability densities:

f ðtÞi ¼ pðY1:t ¼ y1:t;Xt ¼ ijZ ¼ zÞ ð2Þ

Where Y1:T are the random variables for the observations, y1:T are their true values, X1:T are

the random variables for the state in the HMM and Z is the random variable representing the

peptide, and z is a value it can take. We also have diagonal matrices O(t) defined as:

OðtÞii ¼ pðYt ¼ ytjXt ¼ i;Z ¼ zÞ ð3Þ

And:

Tij ¼ pðXtþ1 ¼ ijXt ¼ j;Z ¼ zÞ ð4Þ

Fig 3. Illustration of the states and transitions of the HMM for an example peptide. For the amino acid sequence RKKAY, we illustrate the case where the

lysine (K) residues are labeled with fluorescent dyes of one color (blue stars) and the tyrosine (Y) residue is labeled by a second color (green star).

https://doi.org/10.1371/journal.pcbi.1011157.g003
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We start from an initial state f(0) which we compute by taking into account the missing

fluorophore rate mc. Applying (1) repeatedly starting with the initial state f(0) yields a value for

f(T), and we can sum the entries to compute:

pðY1:T ¼ y1:TjZ ¼ zÞ ¼
X

i

pðY1:T ¼ y1:T;XT ¼ ijZ ¼ zÞ ¼
X

i

f ðTÞi ð5Þ

Then, by using Bayesian inversion to normalize the data, we compute the probability of the

peptide given the raw read, as given by:

p Z ¼ zjY1:Tp ¼ y1:Tð Þ ¼
pðY1:T jZ ¼ zÞpðZ ¼ zÞ

P
~z pðY1:T ¼ y1:TjZ ¼ ~zÞpðZ ¼ ~zÞ

ð6Þ

We implemented several algorithmic optimizations to this approach to reduce runtime.

These included reducing the number of states in the HMMs, factoring the HMMs’ transition

matrices into a product of matrices with higher sparsity, pruning the HMM forward algorithm

to consider only reasonably likely states at each timestep, and combining the HMM classifier

with a kNN pre-filter that can rapidly select a short-list of candidate peptides for re-scoring by

the HMM. We implemented the linear algebra and tensor operations being performed in a

manner that makes productive use of spatial and temporal locality of reference. We describe

these optimizations in more detail in the following sections and in S1 Appendix.

HMM state space reduction

We reduced certain physical states of a peptide into a single modeled state. We consider the

physical state to be the fully specified physical arrangement of fluorophores on the peptide

molecule being analyzed. In particular, in the physical state fluorophores are unambiguously

attached to specific amino acids. However, the model we used allows multiple physical states

to be combined into a single modeled state. In the modeled state, the locations of the fluoro-

phores on the peptide are not explicitly defined, and we track only the counts of each color of

fluorophore and the number of amino acids on the peptide. An example of the resulting

HMM for a sample peptide is shown in Fig 4.

A similar state reduction to ours was previously described by Messina and colleagues in

[12]. The reduction requires fluorophores to behave independently of each other, so that the

status of one fluorophore is uncorrelated with the status of any other. While this is not true in

practice due to FRET (Förster resonance energy transfer) and other dye-dye interactions,

quantification of this effect in the imaging conditions used for fluorosequencing suggests that

these effects are negligible enough to ignore [6]. The authors of [12] also require the fluoro-

phores to be indistinguishable to reduce the numbers of states. This is not true in our case

because we use Edman degradation and because we use multiple colors of fluorophores.

Nonetheless, we demonstrate in S1 Appendix that despite these complications, this state

space reduction incurs no loss in the theoretical accuracy of the model. Further, we demon-

strate that this reduces the algorithmic complexity from what would otherwise be exponential

with respect to the number of fluorophores, to instead be tied to the product of the counts of

fluorophores of each color.

Transition matrix factoring

In the HMM forward algorithm, a vector of probabilities with one value for each state in the

HMM’s state space is repeatedly multiplied by a square transition matrix. This operation is the

dominant contribution to the algorithmic complexity of the HMM forward algorithm.
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Therefore, by making multiplication by the transition matrix more algorithmically efficient,

we can improve the algorithmic complexity of our computational pipeline.

We factor this transition matrix into a product of highly sparse matrices. This factorization

is done by creating a separate matrix for each independent effect under consideration, includ-

ing loss of each color of dye (where each color is factored separately), Edman degradation, and

finally, peptide detachment (Fig 5). As with the state space reduction, this optimization incurs

no loss in the accuracy of the model, and furthermore, these matrix factors, even in combina-

tion, are far sparser than the original transition matrix when computed for larger peptides.

This greater sparsity can be leveraged to achieve superior algorithmic complexity results (see

S2 Appendix).

HMM pruning

Despite significant improvements in the algorithmic complexity of an HMM for one peptide

given so far from state space reduction and matrix factorization, performance can be improved

if we consider approximations. Intermediate computations contain mostly values close to

zero, which will have inconsequential impact on the result of the HMM forward algorithm.

Fig 4. Illustration of HMM state space reduction for the peptide of Fig 3. States are combined that have both the same number of amino acids remaining

and the same fluorophore counts for each color of fluorophore.

https://doi.org/10.1371/journal.pcbi.1011157.g004
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The most significant contribution to this occurs for the HMM emission calculations. While

there may be many states of a peptide which have a significant probability of producing a par-

ticular observation value, in most states (particularly for larger peptides) the observed value is

extremely unlikely.

Emission computations can be viewed as multiplication by a diagonal matrix, different for

each emission in a raw read. The entries represent the probability of the indexed state produc-

ing the known emission value for that timestep. We prune this matrix by setting anything

below a threshold to zero, which increases the sparsity of the matrix. Although use of a naïve,
but standard, sparse matrix computational scheme would reduce runtime, we show that better

algorithmic complexity can be achieved with a more complicated bi-directional approach in

Fig 6 and S3 Appendix. While we did not implement this approach precisely, a consideration

of this effect served as inspiration for a technique combining pruning with matrix factoring, as

described next.

Combining transition matrix factoring with HMM pruning

Both transition matrix factoring and HMM pruning appear, at first glance, to be incompatible

improvements. These approaches can be combined, but the bi-directional sparse matrix

computational scheme introduces significant additional difficulties.

We view the various factored matrices as tensors and propagate contiguous blocks of indi-

ces forwards and backwards before running the actual tensor operations to avoid unnecessary

calculations (Fig 7). Contiguous blocks of indices are needed because propagating lists of indi-

ces across the various factors of the matrices has the same computational complexity as multi-

plying a vector by these matrices. This may make the pruning operation seem less optimal in a

sense, as some values that get pruned may be bigger than some that are kept due to this form

of indexing. Nevertheless, we found the tradeoff to be favorable in practice (S4 Appendix).

Of note, instead of pruning by the raw values, we prune all states such that the known emis-

sion value is outside of their pre-configured confidence interval. The bounds of this confidence

interval is determined by a cut-off value that is multiplied by σc similarly to what you might do

with a z-score. In this way we provide some confidence that the fraction of true data inadver-

tently zeroed out is negligible.

Fig 5. An illustration of the factoring of the transition matrix for the peptide from Fig 4. Note especially the reduction in the total number of transitions

(arrows) when the transition matrix is factored. At left, black arrows represent non-zero entries in the unfactored transition matrix. At right, colored arrows

(see key) represent non-zero entries in each of the matrices in the factored product. In both diagrams, arrows from a state to itself are omitted for visual clarity.

https://doi.org/10.1371/journal.pcbi.1011157.g005
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k-Nearest Neighbors classification

Most traditional machine learning classifiers have an algorithmic complexity which scales pro-

portionally or worse to the number of classification categories. The Bayesian classifier we have

so far described is no exception; each raw read must be compared against every peptide in the

reference dataset to be classified. There are many problems in biology which require large ref-

erence datasets, human proteomic analysis being one example. The human proteome has

20,000 proteins, which when trypsinized generate hundreds of thousands of peptides. Classifi-

cation against these many categories is computationally intractable with a fully Bayesian

approach.

In contrast, the algorithmic complexity of kNN scales logarithmically with the number of

training points used. For this reason, tree-based methods are common in other Extreme Clas-

sification applications [9], where similarly massive numbers of categories are under consider-

ation. Unfortunately, the resulting faster runtimes come at a significant cost; kNN often gives

far worse results in practice than a more rigorous Bayesian approach.

For purely kNN based classification, we simulate 1000 raw reads per peptide in the refer-

ence to create a training dataset and put these into a custom KD-Tree implementation for fast

Fig 6. Illustration of the effects of HMM pruning for the peptide of Fig 5.

https://doi.org/10.1371/journal.pcbi.1011157.g006
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and easily parallelizable nearest neighbor lookups. We do not allow edits in our KD-Tree after

it is built so as to allow parallelized lookups to occur without any concern for locks or other

common issues in parallel data structures. We also reduce the memory footprint of the

KD-Tree through an unusual compression scheme. For our training data, we use dye tracks

instead of raw read radiometry data; this alone reduces the memory footprint of the KD-Tree

by a factor of four due to the less precise format. But this allows another further compression

technique; we find all identical dye tracks and merge them into one entry. With these dye

tracks entries in the KD-Tree we store lists of peptides that produced the dye track when we

simulated our training data, along with how many times each peptide produced that dye track.

To classify an unknown raw read, the k nearest dye track neighbors to a raw read query are

retrieved, using a Euclidean norm as the metric. These neighbors then vote on a classification,

with votes weighted using a Gaussian kernel function, exp � d2

2s2
kNN

� �
, where δ is the Euclidean

distance between the query raw read and the neighbor, and σkNN is a parameter of the algo-

rithm. A neighbor is also weighted proportionally to the number of times it occurred as a

Fig 7. Illustration of HMM pruning combined with transition matrix factoring for the peptide of Fig 5. We emphasize that this is an anecdotal example;

while there are more arrows here than in Fig 6, this strategy provides an improvement in asymptotic complexity, as described in S4 Appendix and shown in

experiments with simulated data.

https://doi.org/10.1371/journal.pcbi.1011157.g007
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simulation result and will split its voting weight among all of the peptides that produced that

dye track proportionally to the numbers of times each peptide produced the dye track during

simulation of training data.

Once voting is complete, the highest weighted peptide is then selected as the classification,

with its classification score given as a fraction of its raw score over the total of all the raw

scores. We have explored multiple choices of k and σ values to optimize the performance.

Hybridizing kNN with Bayesian HMM classification

To combine the computational efficiency of kNN with the accuracy of the HMM model, we

defined a classifier which hybridizes these two disparate methods. We use a kNN classifier to

reduce the reference dataset, for each raw read, down to a smaller shortlist of candidate pep-

tides. These candidates can then be used in the Bayesian classifier by building HMMs to com-

pare them against the specific raw read. While this can result in the true most likely peptide

not being in the shortlist and therefore not being selected by this hybrid classifier, with a suffi-

ciently long shortlist this is highly unlikely. A larger problem is in performing Bayes’ rule, as in

(6). An exact formula for Bayes’ rule requires an exhaustive set of probability values for every

potential outcome, which are summed in the denominator. Avoiding determining every prob-

ability makes this impossible. Instead, we can estimate Bayes’ rule as follows:

p Z ¼ zjY1:Tp ¼ y1:Tð Þ ¼
pðY1:T jZ ¼ zÞpðZ ¼ zÞ

P
~z2zh

pðY1:T ¼ y1:TjZ ¼ ~zÞpðZ ¼ ~zÞ

Where zh is the set of up to h peptides selected by the kNN method; we require z2zh.
Although we lose theoretical guarantees of optimal accuracy given the model, this change pro-

vides a considerable improvement to the algorithmic complexity. The algorithmic complexity

to classify one raw read using a fully Bayesian approach is O(RW), where R is the number of

peptides in the reference dataset, and W is the average amount of work needed to run an

HMM for one peptide fluorophore combination. In comparison, with the hybridized classifier,

the algorithmic complexity is O(log(RQ)+hW) where Q is the number of raw reads in the

training dataset simulated for each possible peptide.

We chose specific values for h, σ, and k, by comparing the runtime and PR curves on simu-

lated datasets.

Maintaining spatial locality of reference

Spatial and temporal locality of reference is the tendency of some computer programs to access

nearby data points at similar times. Modern CPUs are designed to make this extremely effi-

cient through multi-level batch caching schemes which cache data from RAM that is nearby a

memory address being accessed, so that nearby data can be read more quickly. Programs

which exploit this in read-write intensive pieces of code can often achieve significant runtime

acceleration compared to programs which do not.

We wrote highly optimized kernel functions to perform our structured matrix/tensor operations

which exploited the sparse nature of the problem while also iterating over elements in what we

believe to be an optimal or near optimal fashion for most computer architectures. We believe this

provided considerable improvements in performance, though this has not been rigorously tested.

Results

We simulated the fluorosequencing of peptides to obtain labeled training and testing data (Fig

2). We generated several datasets, each with a randomized subset of the proteins in the human
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proteome. We selected 20 proteins (.1% of the human proteome), 206 proteins (1% of human

proteome), 2,065 proteins (10%), and 20,659 proteins (the full human proteome). We repeated

this randomized selection scheme to examine several protease and labeling schemes. These

were (1) trypsin (which cleaves after lysine (K) and arginine (R) amino acids) with fluorescent

labels for aspartate (D) and glutamate (E) (these share a fluorophore color due to their equiva-

lent reactivities), cysteine (C), and tyrosine (Y), (2) cyanogen bromide (which cleaves after

methionine (M) amino acids) with D/E, C, Y, and K, (3) EndoPRO protease (which cleaves

after alanine (A) and proline (P) amino acids) with D/E, C, and Y, (4) EndoPRO with D/E, C,

Y, and K, (5) EndoPRO with D/E, C, Y, K, and histidine (H). Thus, in the schemes examined,

of the 20 canonical amino acid types found in most proteins, either one or two were recog-

nized by the protease and up to 6 additional amino acids were labeled by fluorescent dyes.

These databases of peptides were used to generate databases of idealized dye sequences, dye
tracks, and raw reads, used for training and testing purposes for the various models. Peptides

were converted directly into dye-sequences and combined as appropriate. For our training

data for kNN, we then generated 1000 dye-tracks for each peptide in the dataset. We also note

that the Bayesian HMM classifier requires no training data, as it is based on a direct physical

model of the fluorosequencing process.

For our test data for each dataset, we generated 10,000 raw sequencing reads by randomly

selecting peptides with replacement from the dataset and simulating sequencing on them

using the techniques described in the Monte Carlo simulation Methods section. For both dye

tracks and simulated fluorescent intensity measurements, results where there were zero fluoro-

phores throughout sequencing were discarded, as these would fail to be observed in an actual

sequencing experiment.

All timed runs were executed on the Texas Advanced Computing Center (TACC) at The

University of Texas at Austin. We used their stampede2 system, and in particular their stan-

dard Intel Xeon Platinum 8160, or “Skylake,” nodes. These nodes had 48 cores split between

two sockets (24 cores/socket), with 2 hardware threads per core, giving 96 hardware threads

on a node. The nodes we used also had 192GB of DDR4 RAM.

We collected and compared runtime data and precision-recall curves for several different

purposes. With the trypsinized 3-color dataset, we performed a parameter sweep of the prun-

ing cut-off for the HMM Bayesian classifier (S1 Fig). Losses in precision and recall perfor-

mance were negligible for cut-off values of 5 and greater, though the precision recall curves

grew worse at smaller values. Runtimes shrank rapidly as the cut-offs were decreased. The

pruning cut-off parameter sweep was also performed on the 20-protein cyanogen bromide

dataset (S2 Fig). We saw that in this second dataset, runtime improvements for lower cut-offs

were even more extreme; a speed-up factor of about 1000 could be achieved with minimal

effects on the precision recall plots. From these two simulations, we chose a cutoff value of 5 as

providing the optimal trade-off between runtime and precision recall performance.

On the trypsinized dataset (full human proteome), we also swept the k and σkNN parameters

of the NN classifier (S3 and S4 Figs). Here large values of k introduce modest reductions in

precision recall performance, while the model is extremely sensitive to the selection of σkNN.

Based on this analysis, we suggest that good choices of these parameters are k =10 and σkNN =

0.5.

We swept all parameters of the hybrid classifier for the trypsinized dataset as well (hybrid h
parameter, k, σkNN, and cut-off) (S5–S8 Figs). Here, the HMM cut-off parameter had less

impact on runtime than for the pure HMM Bayesian classifier, but we still found a cut-off of 5

to be optimal. Higher values of k improved precision recall performance for the hybrid model,

contrary to the results of the NN classifier on its own, and we therefore suggest setting k to

10000. σkNN had minimal impact of any kind, in contrast to its significant impact on the
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precision recall of the NN classifier; we nevertheless chose to set it to 0.5 in light of the data

from parameter tuning for the NN classifier on its own. We also found that higher values of h
improved performance, though the impact plateaus after h of about 1000, and we used that

value for later experiments.

After tuning parameters, we compared the performance of the different classifiers when

applied to 10,000 simulated fluorosequencing reads of peptides drawn randomly from all tryp-

tic peptides in the human proteome (Fig 8). The hybrid classifier achieved similar precision

recall curves to the Bayesian HMM classifier, which was much better than the precision recall

curve of the NN classifier. The hybrid classifier also achieved runtimes of the same order of

magnitude as the NN classifier, which was significantly faster than the runtime of the Bayesian

HMM classifier.

Fig 8. Comparison of the HMM (Bayesian), hybrid, and NN classifiers. This was done on a dataset of 10K reads

from peptides chosen randomly from all 20,659 human proteins trypsinized and labeled on D/E, C, and Y. (A) The

precision recall curves. (B) Runtimes.

https://doi.org/10.1371/journal.pcbi.1011157.g008
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We also studied how the number of fluorophore colors affected the runtime and precision/

recall of the hybrid classifier (Fig 9). We found that improvements in precision recall were pos-

sible with each additional color of fluorophore, but this did come at the cost of longer runtimes.

We also investigated the effect of varying sizes of reference proteomes on the hybrid classifi-

er’s performance, using the three color trypsinized dataset (Fig 10). We found that significantly

better performance was possible when the reference database was smaller.

The precision/recall curves plotted above (Figs 8–10) show the actual precision/recall scores

based on data with known peptide classifications. When working with real data this will typi-

cally not be possible, because the real classifications will not be known. It is therefore impor-

tant that the assignment probabilities produced by the classifier be well-calibrated, so that an

estimate of the precision/recall (or as is more often the case in protein mass spectrometry, the

Fig 9. Comparison of different labeling strategies. The hybrid classifier was run on a dataset of 10K reads from

peptides chosen randomly from all 20,659 human proteins cleaved with EndoPRO. (A) The precision recall curves. (B)

Runtimes.

https://doi.org/10.1371/journal.pcbi.1011157.g009
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false discovery rate (FDR)) can be computed in the absence of known labels. We verified that

the probabilities output by the hybrid HMM classifier were indeed well-calibrated relative to

the true assignment probabilities (Fig 11A). This in turn allowed us to compute a predicted

precision/recall curve assuming that each classification is fractionally correct with a probability

given by its classification score. A comparison of this predicted P/R with the actual precision/

recall curve for the same set of reads shows excellent agreement (Fig 11B).

Whatprot specifically attempts to assign each raw fluorosequencing read to one or more

peptides from the reference database, i.e., to identify and score peptide-read matches (PRMs), a

process highly analogous to analytical interpretation of shotgun mass spectrometry (MS) pro-

teomics data in which a key step is comparing experimental peptide mass spectra to a reference

Fig 10. Comparison of size of reference database. The hybrid classifier was run on datasets of 10K reads each from

peptides chosen randomly from different numbers of random human proteins treated with the same protease and

labeling scheme (trypsin, labeled D/E,C,Y). (A) The precision recall curves. (B) Runtimes.

https://doi.org/10.1371/journal.pcbi.1011157.g010
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proteome (finding peptide-spectral matches, or PSMs [13]). However, observing multiple reads

mapping to the same peptide will tend to increase the confidence that peptide is present in the

sample, just as observing multiple peptides from the same protein will similarly increase confi-

dence in that protein being present. Thus, we asked if considering the PRMs collectively led to

performance increases for identifying peptides and proteins.

As shown in (Fig 12), proteins can be identified correctly at much higher rates than pep-

tides, which are similarly identified at higher rates than individual reads. In fact, provided that

a protein possesses some well-identified peptides that are unique, it can typically be identified

with very high accuracy. For this test, we used a very simple protein inference scheme. First

each peptide was scored to the maximum score of all reads identifying it, while penalizing

reads which identified more than one peptide (dividing by n if n peptides were identified). Sec-

ond each protein was scored as the maximum score of all peptides it contains, penalizing pep-

tides which are associated with more than one protein (again dividing by n if n proteins were

associated). However, the problem of integrating peptide level observations to protein observa-

tions has been studied extensively for MS [14,15], and it is likely that these techniques will

offer similarly strong interpretive power to the case of single molecule protein sequencing.

We also wished to explore whether the parameterization of our model may have been over-

fit to human data. Though our parameter sweeps in S1–S8 Figs were coarse, and the parame-

ters are general in a way that seems unlikely to have species specific effects, we confirmed

overall performance by testing the same parameter choices against additional sets of proteins

selected from other organisms. We tested precision and recall at the read, peptide, and protein

levels for both C. elegans (Fig 13), and yeast (Fig 14). The results indicate that the tuning of

Fig 11. Analysis of the accuracy of probability estimates given as scores by the classifier. Based on 10K reads from peptides chosen randomly from all

20,659 human proteins cleaved with EndoPRO and labeled on D/E,C,Y,K,H. (A) Classification results were sorted by their predicted accuracy scores, and then

equally distributed between 100 buckets. The average predicted and true accuracy scores were then computed for each bucket and plotted. (B) The true result

precision/recall curve was computed as normal, while the predicted result precision/recall curve was plotted assuming each classification was fractionally

correct according to its predicted accuracy score.

https://doi.org/10.1371/journal.pcbi.1011157.g011
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parameters allows HMM pruning and a hybrid approach to accurately estimate the true

best-estimate as given by an unpruned HMM-Bayesian classifier, even for non-human

organisms.

We also explored the sensitivity of our parameterization to differences between the model

parameters and the true data error rates. We applied the same optimized model to synthetic

datasets generated with different error rates (e.g. Edman degradation rate, bleach rates, etc.),

plotting the results in S9–S15 Figs. In general, the algorithm is reasonably robust to variation

in the error rates, with some (such as mu) more sensitive than others (such as sigma). Not sur-

prisingly, high true error rates degraded model performance, while lower than expected error

rates led to improved performance in multiple cases. Thus, for several parameters performance

was more adversely affected by higher error rates in the data than by differences between the

model and the data, such as is evident for the dud-dye rate.

Fig 12. Precision and recall are improved for proteins by integrating identifications across peptides. The example

shows 10K simulated reads from peptides derived from 100 proteins randomly selected from the human proteome,

considering trypsin digestion and labels on D/E, C, and Y. We note the “HMM (no pruning)” curve is hidden under

the “HMM (pruned)” curve.

https://doi.org/10.1371/journal.pcbi.1011157.g012
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Discussion

We developed an HMM for interpreting single molecule protein fluorosequencing data and

showed that a hybrid HMM/kNN model can achieve a high precision and recall comparable

the HMM alone while maintaining a runtime comparable to the much faster kNN.

It is worth emphasizing that these analyses were performed on datasets of 10,000 raw fluor-

osequencing reads. In practice, users will likely want to analyze millions to billions of reads, so

runs that completed in a seemingly reasonable amount of time might still be intractable in

these scenarios with larger datasets, or at a minimum require computing clusters with high

parallelization. For analyzing the current datasets in the runtime charts (Figs 8–10), note that

the blue part of the bar graphs indicates the classify time, which will scale with the number of

reads being classified (if all else remains equal), and the orange part of the graph indicates

setup time, which should remain constant regardless of the number of reads (though it changes

depending on the model and the size of the reference set).

Fig 13. Performance on C. elegans. The example shows 10K simulated reads from peptides derived from 100 proteins

randomly selected from the C. elegans proteome, considering trypsin digestion and labels on D/E, C, and Y. We note

the “HMM (no pruning)” curve is hidden under the “HMM (pruned)” curve.

https://doi.org/10.1371/journal.pcbi.1011157.g013
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It is also interesting that the HMM pruning operation is more necessary with longer pep-

tides and more colors of fluorophores; with the trypsinized dataset labeling D/E, C, and Y,

omitting pruning had little consequence, but in moving to cyanogen bromide with D/E, C, Y,

and K, we observed a runtime speedup of about 1000-fold. The algorithmic complexity with-

out HMM pruning is tied to the number of states in the model, because each state must be vis-

ited at every step of the forward algorithm. The number of states in the model grows with the

product of the numbers of fluorophores of each color, and pruning improves runtime by

restricting to narrower ranges of fluorophore counts that the forward algorithm needs to con-

sider at each timestep. This effect is multiplicative in the number of fluorophore colors, which

we believe explains most of the improvement between these two scenarios. Longer peptides

will typically have more labelable amino acids, which could amplify this effect.

Finally, our data demonstrates that with a proper selection of parameter values, the hybrid

model can achieve precision and recall performance virtually identical to the HMM Bayesian

Fig 14. Performance on yeast. The example shows 10K simulated reads from peptides derived from 100 proteins

randomly selected from a yeast proteome, considering trypsin digestion and labels on D/E, C, and Y. We note the

“HMM (no pruning)” curve is hidden under the “HMM (pruned)” curve.

https://doi.org/10.1371/journal.pcbi.1011157.g014
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approach alone, while providing those results in a fraction of the time. Similarly, the pruning

operation employed in the HMMs has no noticeable positive or negative effect on the precision

recall curves while providing a considerable improvement in runtime performance.

Regarding proper choice of parms, we note that most of these error rates are generally stable

experimentally, as they arise from well-behaved physicochemical behaviors, such as photo-

bleaching and chemical destruction of dyes (both easily measured from control experiments)

and Edman rates (again measurable from control experiments). Several rates are inferred from

observation (e.g. peptide detachment rates) are less easy to isolate in control experiments.

However, we have generally observed high stability in these rates unless we are specifically

manipulating them in control experiments (e.g. omitting key reagents to test Edman rates,

etc).

A number of analytical techniques common in related fields were not explored. In tandem

mass spectrometry (MS/MS), peptide spectral mapping is typically done either through data-

base lookups and/or the use of simulated outcomes. Simulated mass spectra, consisting of ion

pairs for the C- and N- terminal fragments for each potential breakage point, can be compared

to the real data collected from the instrument [13]. Recent advances have been achieved by

using deep learning to predict fragmentation behavior with higher quality than is possible with

more traditional methods [16,17]. While we use the notion of matching fluorosequencing

reads to a reference database, the specific algorithms are distinct.

Nevertheless, of possible relevance from the field of MS/MS is the analysis of the false dis-

covery rate (FDR) [18,19]. The FDR is affected by two distinct sources: a peptide may be misat-

tributed to the wrong peptide, even when the true peptide is present in the reference dataset,

and MS/MS datasets contain significant amounts of modified peptides or contaminants,

whose spectra may be mistakenly assigned to peptides in the reference set [20]. FDR is typically

evaluated using a decoy database, such as is generated using reversed proteins from the target

database. The FDR can then be set by referring to the number of hits in the decoy database

given a particular score, as the decoy database is designed such that it should in theory never

have hits for the biological sample being analyzed [21]. While an estimate of FDR based in the-

oretical analysis of the problem could find the misattribution rate of true peptides, even this

estimate would be incomplete, because there are errors in mass spectra of peptides that cannot

be accounted for by existing theory; furthermore, any effect of modifications or contaminants

would likely be omitted.

The utility of a similar decoy database strategy for estimating FDR for fluorosequencing is

unknown and remains to be established. We note however that, due to the rigorous probabilis-

tic nature of our analysis, a reasonable estimate of FDR can be performed by subtracting the

sum of PRM scores from the number of PRMs. This is the same as one minus the precision in

a predicted precision/recall curve, and the proximity of our predicted precision/recall curve to

the real curve for a known dataset demonstrates the feasibility of this approach (Fig 11). This

analysis likely fails to account for the contributions of modifications and contaminants. We

therefore plan to explore this problem more extensively in future work.

We also considered techniques for DNA sequence reconstruction. In general, DNA

sequencing provides de novo sequence reconstructions and does not use reference database

matching, and therefore is not a good model for fluorosequencing. Nevertheless, base calling

strategies may have some relevance. For example, methods for base-calling from conventional

(e.g. Illumina style) DNA sequencing are straightforward [22,23], and although errors occur,

they are rare [24]. Analysis of errors in DNA sequencing is typically performed using multiple

sequence alignment or k-mer based methods [25]. Because the error rates are typically much

lower in DNA sequencing than in fluorosequencing, we believe existing software is unlikely to

be effective in this new domain.
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Nanopore DNA sequence analysis methods could also be considered. Nanopores, similar to

fluorosequencing, deal with single molecule data and the concomitant statistical noise that

process involves. However, nanopore data is on a real time continuum, with a DNA fragment

which may move through the nanopore at variable rates during sequencing. Base-calling, the

assignment of nucleic acid bases to chunks of sequencing information, is again the step most

analogous to fluorosequencing. State of the art base-calling methods for nanopore sequencing

typically use either HMMs or recurrent neural networks (RNNs). Comparisons of existing

approaches suggest that RNNs slightly outperform HMMs in this domain [26]. While this sug-

gests that RNNs are worth exploring for fluorosequencing data, we have avoided this approach

for two reasons. First, RNNs are a deep learning technique, which invariably requires access to

massive amounts of data; this is not currently feasible with fluorosequencing unless that data is

simulated. Second, our approach suggests the possibility of direct estimation of parameters

using some variant of the Baum-Welch algorithm adapted to our use case, which we believe

would be significantly more difficult in an RNN based approach [27].

Tandem mass spectrometry and other types of proteomics datasets may require splitting

training and testing sets into sets of non-overlapping peptides or proteins. This approach is

critical when handling real data, because discrepancies between real and theoretical models are

inevitable, and having different peptides in the training and testing data ensures that the result-

ing statistical corrections are capturing general properties of all peptides rather than overfitting

the training data. Although this will be necessary to do for this model to correctly handle real

data this is outside the scope of this paper.

Conclusions

We have developed a powerful computational tool for the analysis of protein fluorosequencing

data, which significantly increases the complexity of applications available to this new technol-

ogy. This tool includes critically important optimizations which make our approach feasible in

practice.

In future work we plan to implement a variation of the Baum-Welch algorithm to fit the

parameters to data from a known peptide. We also wish to explore peptide and protein infer-

ence methods using peptide data classified using these methods. We may also explore de novo
recognition of labels without use of a reference database.
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that “prune = 5” and “prune = 10” are hidden under the “prune = inf” curve. The “prune = 1”

curve contains no true positives. (B) Runtimes.

(TIF)

S2 Fig. Tuning the pruning parameter of the Bayesian HMM classifier. Here we show a

more extraordinary case than S1 Fig. (A) Precision/recall curves. We note that “prune = 5”

and “prune = 10” are hidden under the “prune = inf” curve. The “prune = 1” curve contains no

true positives. (B) Runtimes.

(TIF)

S3 Fig. Tuning the k parameter of the kNN classifier. Setting k to 10 seems to provide the

best trade-off (A) Precision/recall curves. (B) Runtimes.

(TIF)

S4 Fig. Tuning the σkNN parameter of the kNN classifier. Setting σkNN to 0.5 seems to provide

the best trade-off. All settings showed a classify time of about 35 seconds, and a setup time of

about 140 seconds.

(TIF)

S5 Fig. Tuning the pruning parameter of the hybrid classifier. A value of 5 appeared to pro-

vide the best trade-off. (A) Precision/recall curves. We note that “prune = 5” and “prune = 10”

are hidden under the “prune = inf” curve. The “prune = 1” curve contains no true positives.

(B) Runtimes.

(TIF)

S6 Fig. Tuning h for the hybrid classifier. An h of 1000 provided the best trade-off. (A) Preci-

sion/recall curves. (B) Runtimes.

(TIF)

S7 Fig. Tuning k for the hybrid classifier. A k of 1000 or 10000 provided the best results. (A)

Precision/recall curves. (B) Runtimes.

(TIF)

S8 Fig. Tuning the σ parameter of the hybrid classifier. Setting σ to 0.5 seemed to provide

the best trade-off. All settings had a classify time of about 50 seconds, and a setup time of

about 140 seconds.

(TIF)

S9 Fig. Sensitivity analysis of Edman failure rate. The model expects an Edman failure rate

of 6%, the rate for the test data varies as in the legend. Run on a full human proteome dataset.

(TIF)

S10 Fig. Sensitivity analysis of detachment rate. The model expects a detachment rate of 5%,

the rate for the test data varies as in the legend. Run on a full human proteome dataset.

(TIF)

S11 Fig. Sensitivity analysis of dud-dye rate. The model expects a dud-dye rate of 7%, the

rate for the test data varies as in the legend. Run on a full human proteome dataset.

(TIF)

S12 Fig. Sensitivity analysis of bleach rate. The model expects a bleach rate of 5%, the rate for

the test data varies as in the legend. Run on a full human proteome dataset.

(TIF)
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S13 Fig. Sensitivity analysis of mu. The model expects a mu value of 1.0, the rate for the test

data varies as in the legend. Run on a full human proteome dataset.

(TIF)

S14 Fig. Sensitivity analysis of sigma. The model expects a sigma value of .16, the rate for the

test data varies as in the legend. Run on a full human proteome dataset.

(TIF)

S15 Fig. Sensitivity analysis of background sigma. The model expects a background sigma

value of .00667, the rate for the test data varies as in the legend. Run on a full human proteome

dataset.

(TIF)
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