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Abstract 

RNA viruses are particularly notorious for their high levels of genetic diversity, which is generated through the forces of mutation and 
natural selection. However, disentangling these two forces is a considerable challenge, and this may lead to widely divergent estimates 
of viral mutation rates, as well as difficulties in inferring the fitness effects of mutations. Here, we develop, test, and apply an approach 
aimed at inferring the mutation rate and key parameters that govern natural selection, from haplotype sequences covering full-length 
genomes of an evolving virus population. Our approach employs neural posterior estimation, a computational technique that applies 
simulation-based inference with neural networks to jointly infer multiple model parameters. We first tested our approach on synthetic 
data simulated using different mutation rates and selection parameters while accounting for sequencing errors. Reassuringly, the 
inferred parameter estimates were accurate and unbiased. We then applied our approach to haplotype sequencing data from a serial 
passaging experiment with the MS2 bacteriophage, a virus that parasites Escherichia coli. We estimated that the mutation rate of this 
phage is around 0.2 mutations per genome per replication cycle (95% highest density interval: 0.051–0.56). We validated this finding 
with two different approaches based on single-locus models that gave similar estimates but with much broader posterior distributions. 
Furthermore, we found evidence for reciprocal sign epistasis between four strongly beneficial mutations that all reside in an RNA stem 
loop that controls the expression of the viral lysis protein, responsible for lysing host cells and viral egress. We surmise that there is a 
fine balance between over- and underexpression of lysis that leads to this pattern of epistasis. To recap, we have developed an approach 
for joint inference of the mutation rate and selection parameters from full haplotype data with sequencing errors and used it to reveal 
features governing MS2 evolution.
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Introduction
Mutations are one of the primary sources of genetic heterogeneity 
in viruses and can be seen as the fuel of evolution. The mutation 
rate is defined as the number of new mutations in a genome over 
a unit of time, usually one generation. Viruses are notorious for 
their extremely high mutation rates (Sanjuán et al. 2010; Zanini 
et al. 2017; Duffy 2018). Therefore, the viral mutation rate is a 
key parameter of virus evolution that, together with selection, 
determines the extent to which genetic diversity is created in a 
population of viruses.

Current methods for measuring the mutation rate often 
involve genomic sequencing of viral populations across time. 
Experimental evolution of viral populations is a powerful way to 
track viral mutations: in a controlled laboratory serial passaging 
experiment, a viral population is allowed to replicate for several 
generations, and deep sequencing is used to measure the dynam-
ics of mutant allele frequencies. The high viral mutation rate 
will lead to many new mutations being constantly introduced; 

selection will eliminate deleterious mutations and will lead to an 
increase in the frequency of beneficial mutations that promote 
viral fitness. The challenge is then, when observing mutations 
and their frequencies, to separate between the effects of mutation 
and natural selection, which constantly affects allele frequen-
cies even during a single round of replication (Peck, Lauring, and 
Sullivan 2018). One way of overcoming this challenge is to focus 
on specific mutations with known fitness effects. For example, 
one may focus on lethal mutations and measure their frequency 
because, under the mutation–selection balance, the frequency of 
lethal mutations should be equal to the mutation rate (Cuevas 
et al. 2009; Acevedo, Brodsky, and Andino 2014). Focusing on lethal 
mutations leads to several subsequent challenges: first, defining 
mutations as lethal is not always straightforward; second, those 
lethal mutations that can be defined may be a small subset of 
all loci; finally, lethal mutations may not be easily distinguished 
from sequencing errors (but see Acevedo, Brodsky, and Andino
2014).
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Another approach is to focus on neutral mutations. In theory, 
if evolution begins with a completely homogeneous population, 
neutral mutations are expected to accumulate at the rate of 
mutation. The challenge, then, is to specify which mutations are 
neutral. In some studies, synonymous mutations are assumed to 
be neutral (Tromas and Elena 2010; Stern et al. 2017; Zanini et al. 
2017; Zinger et al. 2019). However, there is growing evidence that 
many synonymous mutations are not neutral, and this may be 
particularly exacerbated in viruses with small, dense genomes 
where genomic regions can have overlapping functions (Cuevas, 
Domingo-Calap, and Sanjuán 2012; Mayrose et al. 2013; Zanini 
and Neher 2013). An additional complication is that both the lethal 
mutation and neutral mutation approaches are based on single-
locus models, neglecting multi-locus effects such as background 
selection, selective sweeps (Feder, Pennings, and Petrov 2021), and 
epistatic interactions.

Here, we focus on MS2 bacteriophage, +ssRNA virus from 
the Leviviridae family that parasites Escherichia coli, which is a 
widely studied model virus. Nevertheless, the mutation rate of 
MS2 has yet to be estimated. Mostly, estimates of mutation rates 
of Qβ, a close relative of MS2, are assumed to apply to MS2. 
These estimates vary widely, ranging from 0.08 (Garcia-Villada, 
Drake, and Hughes 2012) to 0.6 (Bradwell et al. 2013) to 6.5 
(Batschelet, Domingo, and Weissmann 1976; Domingo, Flavell, 
and Weissmann 1976; Drake 1993) mutations per genome per 
replication cycle. This variation suggests that previous estima-
tion approaches, based on only a handful of genomic loci, are 
not accurate enough (Garcia-Villada, Drake, and Hughes 2012). 
Importantly, MS2 has a particularly short genome of about 
3,500 bases, allowing us to obtain reads that cover the entire
genome.

Here, we develop and test an approach to jointly infer both 
the point mutation rate and selection parameters from sequenc-
ing data of MS2. Our approach relies on key methodological 
novelties: (1) long-read sequencing that covers the full length 
of the viral genome (i.e. haplotypes) (Callahan et al. 2021), 
(2) a multi-locus evolutionary model that captures the multi-
tude of segregating haplotypes in the population, and (3) deep 
artificial neural networks and simulation-based inference that 
allow efficient and high-dimensional inference of model param-
eters (Avecilla et al. 2022). We applied this approach to infer 
the MS2 mutation rate and selection parameters from long-read 
haplotype sequences sampled from populations evolving in the
laboratory.

Methods
Evolutionary experiment
Clonal MS2 stock was propagated from a single plaque to ensure 
that the experiment began with a phage population as genetically 
homogeneous as possible. Our experimental design was similar to 
the one described previously (Meir et al. 2020) with some changes: 
we performed ten serial passages at 37∘C with three biological 
replicates (lines A–C). The serial passaging protocol was designed 
to allow tight population size control, to limit host–phage coevolu-
tion (naive E. coli c-3000 hosts were provided for each passage), and 
to limit coinfection and ecological interactions of phages within 
the cell, as described later.

We measured the length of the MS2 replication cycle by per-
forming a one-step growth curve experiment as described below 
(Meir et al. 2020). After 120 minutes, we reached the maximal PFU 
of viruses after infection, and thus, passages were arrested after 
120 minutes (Fig. S12).

The serial passages were performed at a multiplicity of infec-
tion (MOI) of 0.1 as follows: 10 ml cultures of naive E. coli c-3000 
were grown to an optical density (OD) of OD600 = 0.4 (correspond-
ing to a density of about 2 ⋅ 107 cells/ml). Each passage was infected 
with 0.2 ml of 108 phages from the previous passage, thus keep-
ing an MOI of 0.1 PFU per cell (N = 2 ⋅ 107 PFU). The cultures were 
grown for 120 minutes with shaking of 200 rpm, and E. coli cells 
were then removed by centrifugation. The supernatant was sub-
jected to filtration with a 0.22-μm filter to remove any remaining 
residues. The new phage stock was then stored at 4∘C. Aliquots 
of these phage stocks were used for measuring the concentration 
of phages by plaque assay (as described later), infecting the next 
serial passage, isolating RNA for whole-genome deep sequenc-
ing (as described later), and maintaining a frozen stock of the 
evolving lines in 15 per cent glycerol at −80∘C. RNA was isolated 
using the QIAamp® viral RNA Mini kit (QIAGEN) according to the 
manufacturer’s instructions.

Plaque assay
A plaque assay was performed at the end of each passage to deter-
mine the MS2 phage titer (Meir et al. 2020). Briefly, E. coli c-3000 
was grown to mid-logarithmic phase (OD600 of 0.5) in rich grow-
ing medium Luria-Bertani (LB) at 37∘C with shaking at 200 rpm. 
Serial dilutions of the MS2 samples were prepared in NaCl 0.85 per 
cent to reduce the phage concentration to less than 200 PFU/ml, 
which could be counted easily on a Petri dish with the naked eye. 
We added into each test tube 5 ml of soft agar (70 per cent) with 
1 ml of E. coli. Then, 0.1 ml of each phage sample was added, and 
all of the tube content was emptied onto solid base agar in stan-
dard Petri dishes and allowed to harden. The plates were incubated 
overnight at 37∘C.

One-step growth curve
A culture of E. coli c-3000 was grown in LB medium at 37∘C to an 
OD600 of 0.5 and then infected with wildtype MS2 at MOI = 0.1. At 
times 0, 30, 45, 60, 75, 90, 105, 120, 150, and 180 minutes post-
infection, 1 ml was collected, centrifuged (1 minute at 13,000 rpm 
at room temperature), and the supernatant was filtered with a 
0.22-μm filter to remove any remaining residues. Next, a plaque 
assay was performed to determine the concentration of the MS2 
phage. A one-step growth curve was generated using the R drc
package to fit to a log-logistic curve.

Loop Genomics library construction, sequencing, 
and processing
RNA from passages 3, 7, and 10 from all three lines was sent 
to Loop Genomics (San Jose, CA, USA) and sequenced using 
the LoopSeq RNA preparation kit and its protocol (information 
available at loopgenomics.com). Loop Genomics’ synthetic long-
read approach enabled full-length sequencing of the MS2 RNA 
genome with a low error rate of 5 ⋅ 10−5 errors per base (Callahan 
et al. 2021). In short, the LoopSeq method uses unique molec-
ular barcode-labeling technology in which each barcode is dis-
tributed across a single genome followed by fragmentation of the 
genome into shorter fragments. The labeled fragmented genomes 
are then sequenced by existing standard short-read sequencing 
approaches on the Illumina sequencing platforms. The short-read 
raw data were uploaded to the Loop Genomics’ unique analytic 
pipeline. The pipeline was used for low-quality base trimming, 
unique sample barcode demultiplexing, and synthetic long-read 
reconstruction. The synthetic long-read reconstruction is a pro-
cess that enables the de novo assembly to the full-length genomes 
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Figure 1. The illustration of genotype classes. Our evolutionary model assigns genotypes to genotype classes. Each genotype class k is a 6-tuple that 
represents all genomes with the same number of non-beneficial synonymous SNVs that derive from the initial population, non-beneficial 
non-synonymous SNVs from the initial population, non-beneficial synonymous SNVs, non-beneficial non-synonymous SNVs, beneficial synonymous 
SNVs, and beneficial non-synonymous SNVs. For simplicity, simplified genotype classes (k*) consisting of only 4-tuples representing the last four types 
of mutations (i.e. excluding the initial founder population SNVs) are represented in the figure. SNVs of the same type are interchangeable and are 
assumed to have the same fitness effect (w). Genotype classes allow our model to be computationally tractable while still giving a detailed account of 
the evolutionary dynamics.

after rearranging the short reads tagged with the same unique 
barcode.

Data analysis
We ran BLAST (Altschul et al. 1990; McGinnis and Madden 2004) 
to align the long reads obtained from LoopSeq against the MS2 
reference sequence (GenBank ID V00642.1, with some small dif-
ferences noted in Meir et al. 2020) with the following parameters: 
–evalue 1e-07 –perc_identity 0.85 –task blastn –num_alignments 
1000000 –dust no –soft_masking F. To ensure that we obtained only 
reads that spanned the entire alignment, we then filtered out any 
alignments that aligned more than once to the reference and fil-
tered alignments that were shorter than 3,500 nucleotides (98 per 
cent of the length of the reference genome), overall keeping 38 per 
cent of 61,248 reads. We further removed alignments that resulted 
in a minus strand alignment, i.e. were the reverse complement of 
the genome.

As described later, our model relies on single-nucleotide 
variation (SNV) counts and in particular categorizes them as 
synonymous or non-synonymous. We thus excluded both the 
untranslated regions of the genomes (which are very short and 
account for less than 10 per cent of the genome) and indels from 
our analysis, as their biological effects are more complex to ana-
lyze. Notably, we ignore large genomic modifications and focus 
only on SNVs to estimate the point mutation rate.

Evolutionary model
Instead of separately considering each SNV in the genome, we 
label each SNV as belonging to one of the following types based 
on whether a mutation at a site is (1) synonymous or not, (2) ben-
eficial or non-beneficial, and (3) a part of the founding population 
or not. We group genotypes by the number of each of these muta-
tion types into genotype classes (illustrated in Fig. 1). Monitoring 
just the genotype classes, rather than the genotypes themselves, 
reduces the number of model parameters to only ten and makes 
our model computationally tractable.

Initial founding population
Our experimental conditions were designed to ensure a homoge-
neous initial population, derived from a plaque. However, the gen-
eration of this initial population still included multiple replication 
cycles at slightly different conditions than our experiment, such 
as higher MOI. We thus directly model the limited diversity present 
in the initial population. We assume that the average number of 
synonymous SNVs per genotype in the initial population is 𝑀𝑠

and the average number of non-synonymous SNVs per genotype 
in the initial population is 𝑀𝑛𝑠. We assume that the number of 
SNVs in the initial population is 𝑀 ∼ 𝑃𝑜𝑖(𝑀𝑠 + 𝑀𝑛𝑠) and for sim-
plicity also assume that this plaque-derived founding population 
does not contain beneficial SNVs. Therefore, the number of syn-
onymous 𝑘𝐼𝑠 and non-synonymous 𝑘𝐼𝑛𝑠 mutations per individual 
in the initial population is as follows: 

𝑘𝐼𝑠 ∼ Binomial(𝑀, 𝑀𝑠
𝑀𝑠 + 𝑀𝑛𝑠

), (1A)

𝑘𝐼𝑛𝑠 = 𝑀 − 𝑘𝐼𝑠, (1B)

Evolution during serial passaging
We model the evolutionary dynamics using a Wright–Fisher 
framework with a constant population size 𝑁 and non-overlapping 
generations. We follow the frequency of genotypes with exactly 
𝑘𝐼𝑠 non-beneficial synonymous SNVs that derive from the ini-
tial population, 𝑘𝐼𝑛𝑠 non-beneficial non-synonymous SNVs from 
the initial population, 𝑘𝑠 non-beneficial synonymous SNVs, 𝑘𝑛𝑠
non-beneficial non-synonymous SNVs, 𝑘𝑏𝑠 beneficial synonymous 
SNVs, and 𝑘𝑏𝑛𝑠 beneficial non-synonymous SNVs, such that each 
genotype can be classified into a class k = (𝑘𝐼𝑠,𝑘𝐼𝑛𝑠,𝑘𝑠,𝑘𝑛𝑠, 𝑘𝑏𝑠, 
𝑘𝑏𝑛𝑠), 𝑘𝑖 ≥ 0.

Mutation. We assume that the number of new SNVs per genotype 
per replication cycle is Poisson distributed with the expected value 
U, which is the mutation rate: the expected number of mutations 
per genome per replication cycle (Tenaillon et al. 1999). The prob-
ability that an SNV is synonymous or non-synonymous is given by 
𝑝𝑠 and 𝑝𝑛𝑠 = 1 − 𝑝𝑠, respectively. The probability that a synonymous 
or non-synonymous SNV is beneficial is 𝑝𝑏𝑠 and 𝑝𝑏𝑛𝑠, respectively. 
Thus, the number of new SNVs per genotype is given by 

𝑢 ∼ 𝑃𝑜𝑖(𝑈), Δ = (Δ𝑠, Δ𝑛𝑠, Δ𝑏𝑠, Δ𝑏𝑛𝑠) ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑢, 𝑝Δ) , (2)

where u is the total number of new SNVs in one individ-
ual, Δ𝑖 is the number of new SNVs of type i, and 𝑝Δ =
(𝑝𝑠 − 𝑝𝑏𝑠, 𝑝𝑛𝑠 − 𝑝𝑏𝑛𝑠, 𝑝𝑏𝑠, 𝑝𝑏𝑛𝑠) (𝑝Δ sums to 1). Thus, the change in 
fk, the frequency of genotype class k, due to mutation is given by 

𝑓𝑚𝑢𝑡
𝑘 = ∑

𝑔
𝑓𝑔 ⋅ 𝑃 (Δ𝑘−𝑔), (3)

where g is an index over all existing genotype classes that can 
mutate to genotype class k; Δ𝑘−𝑔 is the difference in the number 
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of mutations of the various types between genotype class k and 
g; and P(Δ𝑘−𝑔) is the Poisson-multinomial probability mass func-
tion (𝑒𝑞. 2). Since the Poisson-multinomial distribution has infinite 
support, we truncate the distribution by setting 𝑃 (Δ𝑘−𝑔) = 0 if 
𝑃 (Δ𝑘−𝑔) < 1/(100𝑁). We neglect the effect of recombination due 
to low MOI.

Fitness. For simplicity, we assume a single value for the fitness 
effect of synonymous non-beneficial SNVs, 𝑤𝑠, and a single value 
for fitness effect of non-synonymous non-beneficial SNVs, 𝑤𝑛𝑠. 
Beneficial SNVs (synonymous or non-synonymous) are modeled 
separately, and the fitness effect of beneficial SNVs (synonymous 
or non-synonymous) is 𝑤𝑏.

Initial founder population fitness. Since the initial population 
evolved under possibly different selection pressures (described 
previously), we allow SNVs in the initial population to have dif-
ferent fitness effects, but we assume that the log-fitness of these 
initial SNVs is correlated with the log-fitness of non-beneficial 
SNVs in the experiment, with correlation coefficient 𝛿: here, 𝛿 = 0 
implies that the initial population SNVs are neutral under the 
experimental conditions; 𝛿 = 1 implies that the initial population 
SNVs fitness effects are the same as that of the non-beneficial 
SNVs; and 𝛿 > 1 implies that the SNVs in the initial population are 
more deleterious than later non-beneficial SNVs.

Epistasis. We also model the potential interaction of multiple 
beneficial SNVs by introducing an epistasis parameter 𝜂: when 
𝜂 > 1, there is positive epistasis; when 0.5 < 𝜂 < 1, there is nega-
tive epistasis; when 𝜂 < 0.5, there is sign epistasis; and when 𝜂 < 0, 
there is reciprocal sign epistasis so that the effect of two beneficial 
mutations is deleterious.

Fitness of genotype classes. We assume multiplicative fitness. 
Therefore, the fitness of genotype class k =(𝑘𝐼𝑠,𝑘𝐼𝑛𝑠,𝑘𝑠,𝑘𝑛𝑠, 𝑘𝑏𝑠, 
𝑘𝑏𝑛𝑠) is 

𝑤𝑘 = 𝑤𝑠
𝛿⋅𝑘𝐼𝑠 ⋅ 𝑤𝑛𝑠

𝛿⋅𝑘𝐼𝑛𝑠 ⋅ 𝑤𝑠
𝑘𝑠 ⋅ 𝑤𝑛𝑠

𝑘𝑛𝑠 ⋅ 𝑤𝑏
𝜂⋅(𝑘𝑏𝑛𝑠+𝑘𝑏𝑠), (4)

where 𝜂 =1 if 𝑘𝑏𝑛𝑠 + 𝑘𝑏𝑠 < 2.
Thus, the effect of natural selection on genotype frequencies is 

given by 

𝑓𝑘
𝑠𝑒𝑙 = 𝑤𝑘 ⋅ 𝑓𝑘

𝑚𝑢𝑡/𝑤, (5)

where 𝑤 = ∑
𝑗

𝑤𝑗 ⋅ 𝑓𝑗
𝑚𝑢𝑡 is the population mean fitness.

Random sampling. Serial passaging that includes sampling 
progeny virus for the next passage is modeled by assuming ran-
dom sampling. Thus, the number of virions of each genotype 
class after sampling is given by 𝑛 = {𝑛𝑘} ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁,𝑓𝑠𝑒𝑙), 
where 𝑓𝑠𝑒𝑙 = {𝑓𝑘

𝑠𝑒𝑙} and k is an index over all existing genotype 
classes. Accordingly, the frequency of genotype class k in the next 
generation is 

𝑓𝑘
′ = 𝑛𝑘/𝑁. (6)

We simulate the stochastic genotype frequency dynamics 
in the experiment by iterating equations 1–6 for multiple 
generations.

Sequencing process. Because only a sample of genomes is 
sequenced, and sequencing is error prone, we model sequencing 

errors and sampling. The frequency 𝑓𝑘 of genotype class k after 
sampling and sequencing is

̃𝑓𝑘 = ∑
𝑔

𝑓𝑔 ⋅ 𝑃 (Δ𝑘−𝑔),

�̃� ∼ 𝑃𝑜𝑖(𝑁𝑠𝑒𝑟𝑟𝑠𝑒𝑞) ,

Δ = (Δ𝑠,Δ𝑛𝑠,Δ𝑏𝑠,Δ𝑏𝑛𝑠) ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(�̃�,𝑝Δ) ,

{𝑛𝑘} ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑠,𝑓𝑘),

𝑓𝑘 = 𝑛𝑘/𝑁𝑠,

where 𝑁𝑠 is the sample sequencing coverage (see later) and 
𝑒𝑟𝑟𝑠𝑒𝑞 is the expected average sequencing error set at 𝑒𝑟𝑟𝑠𝑒𝑞 =
5 ⋅ 10−5 errors per base, based on the reported LoopSeq error rate 
(Callahan et al. 2021). We further tested 𝑒𝑟𝑟𝑠𝑒𝑞 = 5 ⋅ 10−4 errors per 
base to assess the robustness of our method to a higher error rate.

Experimental parameter values
A viral population size 𝑁 = 2 ⋅ 107 was assumed corresponding 
to the experimental setup (see earlier section). Each line and 
passage had different sequencing coverage Ns (mean = 2,589, stan-
dard deviation = 1,195, minimum = 1,309, and maximum = 4,976; 
see Table S1 for details). The probability that an SNV is synony-
mous is 𝑝𝑠 = 0.28, corresponding to the possible point synonymous 
and non-synonymous SNVs in the MS2 reference genome. Other 
parameter values were inferred from experimental data (see next 
section).

Likelihood-free Bayesian inference
Summary statistics
We applied three summary statistics: short-reads summary statis-
tic (SR), long-reads summary statistic (LR), and labeled long-reads 
summary statistic (L-LR). The simplest, SR, is a vector of the 
average number of synonymous and non-synonymous SNVs per 
genotype at each passage t. Thus, SR is a vector with two entries 
per passage and six entries in total.

Using LoopSeq long-read sequencing, which covers the entire 
MS2 genome, we could use a more informative summary statis-
tic, LR, which counts the frequency of genotypes containing 
exactly 𝑘𝐼𝑠 + 𝑘𝑠 + 𝑘𝑏𝑠 synonymous SNVs and 𝑘𝐼𝑛𝑠 + 𝑘𝑛𝑠 + 𝑘𝑏𝑛𝑠 non-
synonymous SNVs, respectively, at passage t. We counted up to 
ten SNVs of each type, producing 66 possible SNV combinations 
per passage. We also included SR in LR, producing a vector with 68 
entries per passage and 204 entries in total.

We used a similar but more informative summary statistic, 
L-LR, which includes the number of beneficial SNVs. We labeled 
four SNVs as beneficial: they were all rare at passage 3 but 
reached a frequency higher than 3 per cent in all three lines 
by passage 10 (Fig. 2A, purple lines). Assuming that the per-
base mutation rate is at most 0.001 (Drake 1993), a neutral SNV 
is expected to be at a frequency of about 1 per cent by pas-
sage 10. Labeling the beneficial SNVs allowed us to obtain the 
frequencies of genotypes containing exactly 𝑘𝐼𝑠 + 𝑘𝑠 synonymous 
non-beneficial SNVs, 𝑘𝑏𝑠 synonymous beneficial SNVs, 𝑘𝐼𝑛𝑠 + 𝑘𝑛𝑠
non-synonymous non-beneficial SNVs, and 𝑘𝑏𝑛𝑠 non-synonymous 
beneficial SNVs at each passage t. We counted up to ten SNVs of 
each of the four types, producing 1,001 frequency values per pas-
sage. Including SR in L-LR produced a vector with 3,009 entries
in total.
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Figure 2. SNV and genome frequencies across time. (A) Markers show SNV frequencies in the three replicas, with high-frequency SNVs in purple, 
founder SNVs in brown-orange, and all other low-frequency SNVs in gray. The shaded area illustrates the range of observed values. (B) Observed 
versus expected frequencies of pairs of SNVs. For a pair of SNVs denoted by X and Y, F(X) and F(Y) are their frequencies across all genotypes, 
respectively; F(X)F(Y) is the expected frequency of the pair assuming independence; and F(X, Y) is the observed frequency of the pair across all 
genotype; frequencies are taken from all three replicas at passage 10. The diagonal line represents the independence of the pair of SNVs,
i.e. F(X, Y) = F(X)F(Y). Founder SNV pairs were excluded from this analysis. Pairs of beneficial SNVs are surrounded by a red box. (C) Genetic diversity 
for each replica and passage. When a genome contains more than one high-frequency SNV, the color of its box is defined by the first SNV in the order 
of appearance in the legend. The genomes are ordered by their frequency in each dataset and the number of SNVs within them. Rare genotypes are 
defined as present in less than 0.5 per cent of a sample and are boxed with a dashed line. (D) The RNA structure where all beneficial SNVs occur is 
inferred using Mfold (Zuker 2003) and in line with the experimentally resolved structure (Dai et al. 2017). This region spans the end of the coat gene 
and the overlapping lysis gene. All beneficial SNVs are synonymous with respect to the coat gene and non-synonymous with respect to the lysis gene. 
‘RBS’ marks the ribosomal-binding site for the lysis gene.

Prior distributions
We assumed uniform (noninformative) prior distributions with 
ranges set based on current estimates in the literature (Table 1). 
The prior distribution of 𝑤𝑏 is much wider than the estimates in 
the literature to account for the rapid increase in frequencies of 
some SNVs we observe in the empirical data (Fig. 4B). Prior distri-
butions for 𝑤𝑠 and 𝑤𝑛𝑠 are wide to avoid bias in the posterior. Prior 
distributions of 𝑀𝑠 and 𝑀𝑛𝑠 are based on experimental sequencing 
data from three different MS2 plaque sequences (data not shown). 

Sequential neural posterior estimation
We used a recently developed neural-network-assisted likelihood-
free inference method, sequential neural posterior estimation (SNPE) 
(Greenberg, et al. 2019) or, specifically, the SNPE-C implementa-
tion in the Python package sbi (Tejero-Cantero et al. 2020). SNPE 
has been recently applied for inferring the formation rate and 
fitness effect of copy number variation in populations of yeast 
evolving under nutrient limitation in a chemostat (Avecilla et al. 
2022). Briefly, SNPE trains an artificial neural network on a train-
ing set of parameters (generated from the prior distribution) and 
simulated data (generated from the evolutionary model given 
parameter values) to estimate the joint density of model param-
eters and data (conditioned on the prior distribution). This joint 

density is effectively an amortized posterior distribution of the model 
parameters, which can be evaluated for specific observed data. 
Amortization allows the evaluation of the posterior distribution 
for each experimental observation (i.e. replicate or line) without 
needing to re-train the neural network (in contrast to Markov 
chain Monte Carlo based approaches that require a new run of 
the algorithm to infer a posterior from a new observation). As 
the neural density estimator, we used a masked autoregressive flow
(Papamakarios, Pavlakou, and Murray 2017), which uses a stack 
of autoregressive models (specifically, masked autoencoders for dis-
tribution estimation; Germain, Gregor, and Murray 2015) to model a 
sequence of transformations on random variables.

Ensemble SNPE. We further extend SNPE to the ensemble SNPE
by averaging the posterior distribution estimated by eight den-
sity estimators, each independently trained with non-overlapping 
training sets of 10,000 simulations sampled from the same prior. 
We compare the performance of the ensemble SNPE to individual 
SNPE, which we trained on a training set of 80,000 simulations.

Approximate Bayesian computation with rejection sampling
We compared SNPE with a classical likelihood-free inference 
method, approximate Bayesian computation with rejection sampling
(REJ-ABC) (Pritchard et al. 1999; Sunnåker et al. 2013). ABC is used 
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Table 1. Model parameters.

Description Symbol Prior distribution

Average non-beneficial 
synonymous fitness 
effect

𝑤𝑠 Uniform (0.1, 1)

Average non-beneficial 
non-synonymous fitness 
effect

𝑤𝑛𝑠 Uniform (0.1, 1)

Average beneficial fitness 
effect

𝑤𝑏 Uniform (1, 3) (Sanjuán, 
Moya, and Elena 2004)

Beneficial synonymous 
SNV probability

𝑝𝑏𝑠 Uniform (0, 0.01) (Sanjuán, 
Moya, and Elena 2004)

Beneficial non-
synonymous SNV 
probability

𝑝𝑏𝑛𝑠 Uniform (0, 0.01) (Sanjuán, 
Moya, and Elena 2004)

Average number of syn-
onymous SNVs per 
genotype in the initial 
population

𝑀𝑠 Uniform (0.4, 0.6)

Average number of non-
synonymous SNVs per 
genotype in the initial 
population

𝑀𝑛𝑠 Uniform (0.7, 0.9)

Initial log-fitness 
correlation

𝛿 Uniform (0, 2)

Epistasis 𝜂 Uniform (−1, 3)
Genome-wide mutation 

rate
U Log-Uniform (−4, 0.3) 

(Sanjuán 2010)

to approximate posterior distributions when an underlying likeli-
hood function is analytically and/or computationally intractable. 
In REJ-ABC, parameter sets are independently sampled from the 
prior; a simulation is run for each parameter set; the distance 
between simulation results and the observed data is computed; 
parameter sets that produced the lowest 𝜀-percentile distances 
are accepted (while the rest are rejected); and the posterior dis-
tribution is estimated from the accepted parameter sets. We used 
80,000 parameter sets and simulations (the same simulations that 
we used to train SNPE) to produce the REJ-ABC posterior estima-
tion. As a distance function, we used the root mean square error 
between the simulated and observed summary statistics. We pro-
duced posterior distributions using acceptance rates of 𝜀 = 0.1 per 
cent, 1 per cent, and 5 per cent.

Parameter estimates and posterior predictive checks
To obtain a marginal maximum a-posteriori (MAP) estimate, we 
sample from the posterior distribution and construct a histogram 
with 100 bins. We then estimate the parameter as the center of 
the most frequent bin. We calculated the highest density inter-
vals (HDIs) using the Python package ArviZ (Kumar et al. 2019). 
We performed posterior predictive checks by simulating synthetic 
data with parameters sampled from the posterior and comparing 
it to the observed data.

Flexible inference from time series
We also compared SNPE to a previous method developed by some 
of us called flexible inference from time series (FITS) (Zinger et al. 
2019). In contrast to the above-mentioned REJ-ABC and SNPE, 
FITS applies a single-locus Wright–Fisher model to all synony-
mous SNVs, assuming that they are all neutral, and uses rejec-
tion sampling to approximate the posterior distribution of model 

parameters. Thus, FITS does not use the evolutionary model, prior 
distributions, and summary statistics described earlier.

Premature stop codons
We counted the number of premature stop codons across the 
genome in all reads from all passages and replicas and divided 
by the number of possible SNVs that could have resulted in a pre-
mature stop codon. Assuming premature stop codons are lethal, 
under a mutation–selection balance, this ratio is expected to be 
equal to the mutation rate. The problem with this approach is 
that the observed premature stop codons due to mutations cannot 
be distinguished from sequencing errors (with a rate estimated at 
𝑒𝑟𝑟𝑠𝑒𝑞 =5 ⋅ 10−5, see earlier) and so this method only provides an 
upper bound on the estimated mutation rate.

Results
Individual SNV frequencies suggest positive 
selection
We began by inspecting the haplotype sequencing data, which 
was derived from passages 3, 7, and 10 from three independent 
biological replicas (A, B, and C). We first examined the SNV fre-
quencies, focusing on those segregating at frequencies more than 
3 per cent in all three replicas by the end of the experiment. Four 
SNVs were at a frequency more than 5 per cent already at passage 
3 and remained at more or less constant frequencies through-
out the experiment. Hence, we assumed that they reflect standing 
variation in the initial founding population (Methods) and denote 
them as founder SNVs (Fig. 2A). Conversely, we noted a set of four 
SNVs that increased dramatically in frequency, rising from less 
than 1 per cent to frequencies ranging between ∼5 per cent and 
∼20 per cent in all three replicas (Fig. 2A). This increase suggests 
that these four SNVs are under positive selection, and we thus 
denote them as beneficial SNVs.

We next examined haplotype composition, starting with pairs 
of SNVs. We compared the observed frequency of each SNV pair 
with its expected frequency assuming that they are pairwise 
independent, which is the product of their individual frequen-
cies (Fig. 2B). We find that the four founder SNVs appear almost 
exclusively in two specific pairs (C3299T with C224T and G1554A 
with G522A, Fig. 2A, not shown in 2B). In contrast, the four bene-
ficial SNVs rarely or never appear on the same genome (only one 
pair appears in one genome), exhibiting negative linkage disequi-
librium. The low observed frequency of the beneficial SNV pairs 
can have two explanations: negative or sign epistasis between the 
beneficial SNVs and a combination of strong selection and low 
mutation rate, which together do not allow enough time for the 
accumulation of two beneficial SNVs on the same genome.

Next, we examined the genome diversity across replicas and 
passages. We noted that by passage 10, 55 per cent, 54 per cent, 
and 65 per cent of the genomes had a beneficial SNV in repli-
cas A, B, and C, respectively. We also observed high genome 
diversity across all replicas and all passages (Fig. 2C). Indeed, 
except for the wildtype genome, which was present in 10 per cent,
10 per cent, and 7 per cent in replicas A, B, and C, respectively, no 
genotype exceeded 7 per cent, and 70 per cent of genotypes were 
rare, i.e. present at frequencies lower than 0.5 per cent. For exam-
ple, the beneficial SNV A1697C reached a frequency of ∼20 per 
cent by passage 10, but no single genotype bearing A1697C had 
a frequency more than 7 per cent (Fig. S6). This high level of diver-
sity, including the abundance of rare genotypes, is suggestive of a 
high mutation rate, the occurrence of soft selective sweeps, and 
possible epistatic effects. We therefore developed a framework 
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Figure 3. Parameter estimation accuracy on synthetic data. Ratio of MAP estimate and true parameter value on 2,000 synthetic datasets. Inferences 
used SNPE with three different summary statistics (SR, blue; LR, orange; and L-LR, green) and REJ-ABC (LR, white). See Fig. S10 for a direct comparison 
of true vs. estimated parameter values and Fig. S13 for parameter values that lead to estimation errors.

to jointly estimate the various evolutionary parameters from our 
time-series haplotype data (Methods).

Validation of inference method on synthetic data
To validate the performance of our method, we simulated 2,000 
synthetic datasets using the evolutionary model and a set of 
known parameter values (denoted as the ‘true’ parameter values). 
We tested three summary statistics, each with more information 
than the previous one (SR, LR, and L-LR; see Methods).

Coverage
We first measured the coverage, defined as the proportion of 
inferred posterior distributions in which the credible interval for a 
parameter contains the true parameter value (Prangle et al. 2014). 
We found that individual SNPE (a single neural density estimator 
trained on 80,000 simulations) produced posteriors that were over-
confident, i.e. the 95 per cent HDI contained the true parameter in 
less than 95 per cent of the test cases (Fig. S1).

Indeed, it has been suggested that simulation-based inference 
methods may produce overconfident posterior approximations 
and that this issue may be mitigated by using ensembles of esti-
mators (Hermans et al. 2022). We therefore extended the indi-
vidual SNPE to an ensemble SNPE that comprises eight individual 
SNPEs, each independently trained with non-overlapping training 
set (with a total simulation budget fixed at 80,000 simulations). We 

found that while individual SNPE mostly produces overconfident 
posteriors, the ensemble SNPE produces posteriors that are less 
confident, i.e. has superior coverage compared to the individual 
SNPE (Fig. S1).

Parameter estimate accuracy
We compared our MAP estimates, which are point estimates of 
model parameters, with those of a simpler method, REJ-ABC. The 
latter was run with a 1 per cent acceptance rate using the same 
dataset of 80,000 simulations used to train the ensemble SNPE 
(Methods). REJ-ABC produced the largest MAP errors, on average, 
and did not seem to improve with more informative summary 
statistics (Fig. S2). For the SNPE inference methods, we found that 
more informative summary statistics produced similar or smaller 
MAP errors (Fig. S2). Ensemble SNPE performed similarly to the 
individual SNPE (Fig. S2). We chose to henceforth focus on ensem-
ble SNPE because it had better coverage in most cases, especially 
for the mutation rate (Fig. S1).

As expected, the more informative the summary statistic, the 
narrower the posterior distributions, and thus, the higher the 
information gain calculated by the Kullback–Leibler divergence 
(Fig. S3). The MAP error ratios of the ensemble SNPE were cen-
tered around zero, suggesting that they were unbiased (Figs 3 and 
S10). We also observed a slight improvement in the MAP error 
ratio when increasing the information in the summary statistics. 
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Table 2. Mutation rate estimates. MAP estimates and 95 per cent 
HDIs of the posterior distributions of the genomic mutation rate 
U from Fig. 4A. Note that all estimates are similar, but ensemble 
SNPE produced HDI that is two orders of magnitude narrower than 
FITS (single-locus Wright–Fisher model with rejection sampling 
applied to all synonymous SNVs).

Method
MAP estimate 
of U 95% HDI

FITS 0.197 0.0004–0.796
Premature stop codon frequencya ≤0.187 N/A
Ensemble SNPE with SR 0.161 0.013–1.396
Ensemble SNPE with LR 0.221 0.014–1.548
Ensemble SNPE with L-LR 0.194 0.056–0.73

aFrequency of premature stop codons does not produce an HDI; rather, it 
produces an upper bound on the mutation rate and therefore reflects either 
the mutation rate or the sequencing error.

All ensemble SNPE produced lower absolute MAP error ratios 
compared with REJ-ABC (Fig. 3). 

Inference of evolutionary parameters from 
empirical data
Mutation rate
We next applied the ensemble SNPE to the haplotype data from 
the MS2 experiment (Fig. 2A), averaging the estimated posteriors 
over the three experimental replicas, and assuming sequencing 
errors at a rate of 5 ⋅ 10−5 per base, as reported by Loop Genomics 
(Callahan et al. 2021). We found that the ensemble SNPE with 
the SR and LR summary statistics produced similar posteriors, 
whereas using the L-LR summary statistic produced a narrower 
posterior distribution and was able to reproduce the dynamics 
of the evolving population (Fig. S8). All MAP estimates of the 
mutation rate U are between 0.15 and 0.2 mutations per genome 
per replication cycle (Table 2) and the widest HDI 95 per cent is 
between 0.016 and 1.6. Given a genome length of 3,569 bases, this 
corresponds to between 4.2 ⋅ 10−5 and 5.6 ⋅ 10−5 SNVs per base per 
replication cycle.

Comparison to other methods
We next compared our ensemble SNPE inference method to two 
alternative mutation rate inference methods: one based on the 
frequency of premature stop codons and the other FITS (Zinger 
et al. 2019), which is based on changes in the frequency of neu-
tral SNVs (Methods). We found that the MAP estimates from SNPE 
are in line with the frequency of premature stop codons, which is 
highly susceptible to sequencing errors and is therefore only an 
upper bound. Furthermore, SNPE produces a substantially nar-
rower posterior distribution compared to FITS, regardless of the 
summary statistic (Fig. 4A and Table 2).

Sequencing error rate
Reassuringly, when assuming a tenfold increase in the sequence 
error rate (5 ⋅ 10−4), inference with the L-LR summary statistic 
was robust. Importantly, the MAP estimate of the mutation rate 
only slightly shifted from 0.194 (95 per cent HDI, 0.056–0.73) to 
0.282 (0.037–1.26). Overall, the posterior distribution of the muta-
tion rate and most other parameters remained similar (Figs 4C 
and S9) although the mode of the posterior distributions of non-
synonymous fitness effect (wns) and beneficial non-synonymous 
probability (pbns) shifted under a higher error rate. However, 
using the SR and LR summary statistics produced wider poste-
rior distributions for most model parameters (Figs S4–S5). These 

results underscore the inherent difficulty in inferring mutation 
rates and fitness effects with error-prone short-read sequenc-
ing approaches and suggest that there is a much-added value in 
labeling beneficial SNVs when possible.

Fitness effects
We report estimates from the ensemble SNPE with L-LR summary 
statistics given its superior performance (Table S2). The estimated 
non-beneficial synonymous mutation fitness effect to be about 0.9 
(95 per cent HDI, 0.651–1), implying that most synonymous muta-
tions are neutral or slightly deleterious (Sanjuán, Moya, and Elena 
2004; Cuevas, Domingo-Calap, and Sanjuán 2012). The estimated 
non-beneficial non-synonymous mutation fitness effect is about 
0.7 (95 per cent HDI, 0.311–0.922; Fig. 4B). This estimate implicitly 
averages slightly deleterious, deleterious, and lethal mutations. 
The fitness effect of beneficial SNVs is estimated at about 1.8 
(95 per cent HDI, 1.5–2.2).

Epistasis
We also estimate the epistasis between beneficial SNVs. The epis-
tasis parameter 𝜂 is estimated at about −0.3 (95 per cent HDI, −1 to 
0.443), which implies sign epistasis and likely even reciprocal sign 
epistasis, in which the combined effect of two beneficial mutations 
is deleterious. To further validate this estimate, we used simula-
tions to determine if the observation that pairs of beneficial SNVs 
rarely reside on the same genome (Fig. 2B) could be explained 
by a two-locus bi-allelic Wright–Fisher model with just mutation, 
genetic drift, and strong selection, but without epistasis. Our sim-
ulation results strongly suggest that such a model cannot explain 
the experimental results (Fig. S7), providing further support for 
sign epistasis between beneficial SNVs in MS2.

Discussion
Both selection and sequencing errors can complicate the estima-
tion of mutation rates from sequencing data (Peck, Lauring, and 
Sullivan 2018; Gelbart et al. 2020). Nevertheless, we show that 
our approach, which applies Bayesian inference to evolutionary 
experimental data using simulations and artificial neural net-
works, performs well on synthetic simulated data and allows us 
for the first time to estimate the point mutation rate of MS2 with 
a narrow confidence interval. In contrast to methods based on 
single-locus models, we set out to develop a multi-locus model 
that can account for background selection on full viral genomes 
as well as for standing variation in the founding population. This 
represents a challenge: even with the short genome of the MS2 
virus, a high mutation rate leads to high genetic diversity (Fig. 3D), 
which makes the number of possible haplotypes huge (∼43500). 
Thus, our model groups genomes by the number of mutant alleles 
they accumulated in several mutation types (Fig. 1). This model 
is simple enough to simulate efficiently but complex enough to 
capture the genome frequency dynamics. Furthermore, SNPE is 
also computationally more efficient than sampling methods such 
as REJ-ABC due to its application of neural density estimators 
to directly approximate the posterior distribution using state-
of-the-art deep-learning algorithms and hardware acceleration; 
furthermore, amortization allows us to estimate a posterior distri-
bution for new datasets without running the inference algorithm 
again, which cannot be done with sampling methods (Avecilla 
et al. 2022).

Our estimate of the MS2 mutation rate is roughly U = 0.2 muta-
tions per genome per replication cycle (95 per cent HDI, 0.056–0.73; 
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Figure 4. Posterior distributions of model parameters inferred for MS2. (A) Posterior distributions of the mutation rate using three summary statistics 
for the mutation rate produce a substantially narrower distribution compared to FITS (single-locus Wright–Fisher model with rejection sampling 
applied to all synonymous SNVs). Shown are marginal posteriors of model parameters using ensemble SNPE with three different summary statistics. 
In most cases, the L-LR produces a narrower posterior, and generally all posteriors agree. For epistasis, the left of the dotted line are values indicating 
sign epistasis. (B) The marginal posterior distribution of the mutation rate U inferred with ensemble SNPE with the L-LR summary statistic compared 
to an estimate that assumes a tenfold increase in the sequencing error rate. See Fig. S11 for joint posterior distributions of the mutation rate with 
other model parameters.

Table 2). Reassuringly, we find that our method is robust to 
sequencing errors, which present a challenge for any method that 
relies on rare SNV frequencies (Acevedo, Brodsky, and Andino 
2014; Gelbart et al. 2020). Compared with a close relative of 
MS2, Q β, our inferred mutation rate is an order-of-magnitude 
lower than the early estimates of the mutation rate of Q β, which 
were around U = 6.5 (Batschelet, Domingo, and Weissmann 1976; 
Domingo, Flavell, and Weissmann 1976). These studies quantified 

the mutation rate of one specific nucleotide at position 40 of the 
genome of Qβ. Therefore, their estimates may be biased for that 
specific site, while our estimates represent a genome-wide muta-
tion rate. A more recent estimate of the Qβ mutation rate at about 
U = 0.08 was based on phenotypic scores (Garcia-Villada, Drake, 
and Hughes 2012). Another study (Bradwell et al. 2013) corrected 
this estimate using the distribution of fitness effects obtained pre-
viously for this phage (Domingo-Calap, Cuevas, and Sanjuán 2009) 
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and estimated a mutation rate of U = 0.6. This estimate is three 
times higher than our estimate and within our estimated HDI. 
Importantly, the difference between mutation rate estimates for 
Qβ and MS2 may represent true biological differences between 
the two phages; indeed, their genomes share only ∼45 per cent 
identity.

The inferred mutation rate, together with the very large pop-
ulation size (𝜃=N⋅ U/3,500 = 1,142), puts this virus population in 
the regime of rapid adaptation unlimited by mutation (Feder, 
Pennings, and Petrov 2021). In this regime, soft sweeps are 
expected to occur and leave their mark on the genome. Indeed, 
we find evidence for multiple beneficial SNVs segregating in 
the population in multiple genotypes (Fig. 2). It would be inter-
esting to estimate 𝜃 from SNV polymorphism dynamics (Pen-
nings and Hermisson 2006; Feder, Pennings, and Petrov 2021) to 
see if it agrees with our inference results, which directly esti-
mates the mutation rate, as the population size is known in our
experiment.

The posterior distribution of the non-beneficial non-synonym-
ous fitness effect wns is wide (Table S2). On the one hand, it is 
reassuring that it is clearly different from the posterior of the 
non-beneficial synonymous fitness effect ws (Fig. 3). However, 
the MAP estimate of 0.7 for wns is higher than previous esti-
mates in the literature that found a high frequency of lethal SNVs 
(Sanjuán, Moya, and Elena 2004; Cuevas, Domingo-Calap, and 
Sanjuán 2012). This difference may be explained by our use of a 
single fitness effect parameter to describe all non-beneficial non-
synonymous SNVs, the distribution of which is likely bi-modal, 
with one ‘peak’ for lethal mutations and one ‘peak’ for slightly 
deleterious mutations (Sanjuán, Moya, and Elena 2004; Domingo-
Calap, Cuevas, and Sanjuán 2009; Cuevas, Domingo-Calap, and 
Sanjuán 2012).

Epistatic effects are notoriously difficult to estimate from 
empirical data as they require departing from simple linear 
models, and more complex models require more data and 
stronger effect sizes to achieve statistical power (Tromas and 
Elena 2010). We first suspected epistatic effects when we observed 
that the beneficial SNVs are rarely found together on the same 
genome (Fig. 2B). To address this, we added an epistasis parameter 
to our model (Equation 4). All our inferences estimated the epis-
tasis parameter to be less than 0.5, implying sign epistasis (Fig. 4). 
Notably, this inference relied on the L-LR summary statistic, which 
uses labeled beneficial SNVs.

Interestingly, all four beneficial SNVs reside on the same RNA 
structure (Fig. 2D) and are close to the ribosomal binding site of 
the lysis protein. These SNVs are synonymous for the coat pro-
tein, and three are non-synonymous for the lysis protein, whereas 
the fourth is not within the lysis gene. This may suggest that 
these beneficial SNVs either affect lysis translation or change 
the lysis protein itself. Moreover, a previous work has inferred 
that each of the single SNVs increases lysis expression, whereas 
a double mutant creates an unstable RNA structure that does 
not allow for lysis protein production and is therefore deleterious 
(Betancourt 2009). Increased lysis expression in single mutants 
may provide a strong fitness benefit due to the completion of two 
replication cycles in a single passage (this effect may slightly shift 
our estimates, see Fig. S14). An alternative explanation for the ben-
eficial effect of these SNVs is that these mutations decrease lysis 
expression, which gives the genome more time to replicate and 
create more progeny.

We next discuss the applicability of our method to other organ-
isms and experimental setups. Our method includes several parts: 
an evolutionary model, summary statistics, and an inference 

framework that uses simulations and neural networks to approx-
imate a posterior distribution over the model parameters. Our 
best-performing summary statistics (LR and L-LR) require long-
read sequencing data. This restricts its application mostly to study 
either laboratory evolution or within-host virus evolution. The 
inference framework (SNPE) has recently been applied to yeast 
growing in nutrient-limited chemostats, with a simpler model 
focusing on the frequency of cells with increased copy number 
variation (Avecilla et al. 2022). Similar approaches can be applied 
to other microbial species (e.g. E. coli) in evolutionary experiments 
and can include additional factors such as fluctuating population 
sizes and structured populations.

Conclusions
Here, we applied recent innovations in likelihood-free inference 
that use neural-network density estimators to directly approx-
imate the posterior distribution rather than sampling from it 
and long-read sequencing that covers the full length of a viral 
genome. This allowed us to efficiently and precisely infer the joint 
posterior distributions of the parameters governing the genome 
frequency dynamics in an evolutionary experiment with the MS2 
bacteriophage, thereby estimating its mutation rate and fitness 
effects.
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