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Abstract

Background

The poultry sector is one of the largest and fastest-growing agricultural sub-sector, espe-

cially in developing countries like Ethiopia. In poultry production, poultry farmers use sub-

optimum doses of antibiotics for growth promotion and disease prevention purpose. This

indiscriminate use of antibiotics in poultry farms contributes to the emergence of antibiotic-

resistant bacteria, which has adverse implications for public health. Therefore, this study is

aimed to assess multidrug resistance and extended-spectrum beta-lactamase-producing

Enterobacteriaceae from chicken droppings in poultry farms.

Methods

A total of 87 pooled chicken-dropping samples were collected from poultry farms from

March to June 2022. Samples were transported with buffered peptone water. Selenite F

broth was used for the enrichment and isolation of Salmonella spp. Isolates were cultured

and identified by using MacConkey agar, Xylose lysine deoxycholate agar, and routine bio-

chemical tests. Kirby-Bauer disk diffusion technique and combination disk test were used

for antibiotic susceptibility testing and confirmation of extended-spectrum beta-lactamase

production, respectively. Data were entered using Epi-data version 4.6 and then exported to

SPSS version 26 for analysis.

Result

Out of 87 pooled chicken droppings, 143 Enterobacteriaceae isolates were identified. Of

these, E. coli accounts for 87 (60.8%), followed by Salmonella spp. 23 (16.1%), P. mirabilis

18 (12.6%) and K. pneumoniae 11 (7.7%). A high resistance rate was observed for ampicil-

lin 131 (91.6%), followed by tetracycline 130 (90.9), and trimethoprim-sulfamethoxazole 94

(65.7%). The overall multidrug resistance rate was 116/143 (81.1%; 95% CI: 74.7–87.5). A
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total of 12/143 (8.4%; CI: 3.9–12.9) isolates were extended-spectrum beta-lactamase pro-

ducers, with 11/87 (12.6%) E. coli and 1/11 (9.1%) K. pneumoniae.

Conclusion and recommendations

High prevalence of multi-drug resistant isolates was observed. This study alarms poultry as

a potential reservoir of extended-spectrum beta-lactamase-producing Enterobacteriaceae,

which might shed and contaminate the environment through faecal matter. Prudent use of

antibiotics should be implemented to manage antibiotic resistance in poultry production.

Introduction

Poultry is one of the most widespread food animals and chicken is the largest farmed animal

species worldwide [1]. The poultry sector is one of the largest and fastest-growing agricultural

sub-sector, especially in developing countries like Ethiopia. It is an essential component of the

country’s economy, providing income for farmers and a good source of high-quality protein

for the ever-growing population of Ethiopia [2]. However, in the poultry sector, in addition to

using antibiotics for therapy and disease prevention, antibiotics are regularly added to poultry

feed in sub-therapeutic doses for growth promotion [3].

Globally, over 50% of antibiotics are used by the food animal industry and an increase of

50% in antibiotic usage for farming is estimated by 2030 [4]. An estimated 25 million pounds

of antimicrobials are used for non-therapeutic purposes in chickens, pigs, and cows, while

only 3 million pounds are used for human medicine worldwide [5].

Developed countries have implemented prudent antibiotic use policies and surveillance sys-

tems both in clinical and veterinary settings. There are no such systems in low and middle-

income countries [3]. In these countries, antibiotics are used in poultry for three main reasons:

1) Poultry flock treatment when illness is first recognized in a small proportion of the chickens;

2) to prevent diseases when the physical stress involved in the movement of chickens in large

numbers; and 3) as a growth promoter to boost chickens weight [6, 7].

The irrational use of antibiotics in poultry farms for growth promotion and disease preven-

tion triggers high selection pressure among bacterial agents, which might contribute to the

emergence and development of antibiotic-resistant (ABR) bacteria [8]. Antibiotic resistance

increases time-to-time. It has been declared by World Health Organization as one of the top ten

global public health threats in the 21st century [9]. Currently, an estimated 700,000 people a

year die of ABR infections in the globe. If action is not taken, this number could rise to around

10 million per year, with a global loss of 100 trillion United States dollars by 2050 [10]. More

than 2.8 million ABR occur, resulting in more than 35,000 deaths annually in the United States

alone [11]. In Africa, approximately 4.2 million deaths also occur annually due to ABR [10].

Extended-spectrum beta-lactamase (ESBL) genes have led to the emergence of bacteria that

are resistant to most antibiotics [12]. Extended-spectrum beta-lactamase is an enzyme that can

hydrolyze penicillin, cephalosporins, and aztreonam and is inhibited by beta-lactamase inhibi-

tors, like clavulanic acid [13]. The most common ESBL types found in poultry and poultry

products are CTX-M-1, TEM-52 and SHV-12. Extended-spectrum beta-lactamase-producing

bacteria are also, present in every type of commercial chicken and can be detected even in

newly hatched chickens. This enzyme is most common in gram-negative bacteria, particularly

in Enterobacteriaceae such as Escherichia coli (E. coli) and Klebsiella pneumoniae (K.
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pneumoniae) [12]. Some of these bacteria are significant causes of foodborne, urinary tract,

respiratory tract, bloodstream, and wound infections in humans [14].

Extended-spectrum beta-lactamase-producing bacteria in the poultry sector are recognized

as a potential community health concern. Because, it can be transmitted through food chains,

in close contact with poultry, leafy vegetables and via bodies of water contaminated with poul-

try droppings. So, it is very important to monitor the resistance to antibiotics not only in

human bacterial pathogens but also in pathogenic and commensal bacteria of poultry origin

[15–17].

Awareness of the prevalence of ABR in poultry provides baseline data to implement an inte-

grated ABR surveillance system and also facilitates the evaluation of interventions used to con-

trol the ABR. Monitoring and surveillance of ABR at poultry farms may help to reduce the

transfer of ABR bacteria from poultry to humans directly or indirectly through the environ-

ment [18]. In Ethiopia, Multidrug resistance has not been well-studied and extended-spectrum

beta-lactamase-producing Enterobacteriaceae from poultry droppings are still missing, partic-

ularly in Northwest Ethiopia. Therefore, this study is aimed to determine the multidrug resis-

tance (MDR) and ESBL-producing Enterobacteriaceae from chicken droppings in poultry

farms at Gondar City, Northwest Ethiopia.

Materials and methods

Study design, period, and area

A survey was conducted from March 1, 2022, to June 30, 2022. The study was conducted in

Gondar City Ethiopia. Gondar is one of the ancient historical cities in Ethiopia and is located

737 Km from Addis Ababa, the country’s capital. The city’s total population is estimated to be

395,138 [19]. According to the information obtained from Gondar city’s rural and urban agri-

culture centre, 87 poultry farms supply chickens and eggs to the society.

Data collection and analysis

Data related to general characteristics and antibiotic use in the poultry farms were collected by

face-to-face interview technique from the chicken caregivers or owners using a semi-struc-

tured questionnaire before sample collection. All data were collected and analyzed by a trained

laboratory technologist.

Sample collection, transportation, processing, and identification

A total of 87 chicken-dropping samples were randomly collected from poultry farms. A sample

consisted of a pool of five fresh chicken droppings obtained from the five different parts of the

poultry building [20].

Each farm was visited once, and the samples were collected using sterile applicator sticks

and stored in sterile universal sampling bottles containing 90 ml buffer peptone water (BPW)

(Himedia, India M614). A code was attributed to each universal sampling bottle and placed in

a cooler (icebox) containing ice packs. Immediately, samples were transported to the School of

Biomedical and Laboratory Sciences, Medical Microbiology laboratory section.

After homogenization, about 1 millilitre of the sample was further transferred into two dif-

ferent test tubes containing 9 ml of BPW (Himedia, India, M614) and 5 ml of selenite F broth

(Himedia, India M414). Test tubes were incubated at 37˚C for 18–24 hrs. After incubation,

samples from BPW were streaked on a MacConkey agar plate (Oxoid Ltd, Basingstoke, United

Kingdom (UK)). Samples from selenite F broth were streaked on a xylose lysine deoxycholate
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agar plate (XLD) (HiMedia, India, M608) [21]. All the plates were incubated aerobically at

37˚C for 24 hrs.

At the end of incubation, the MacConkey and XLD agar plates were examined for growth

and preliminary identification of the bacteria was done based on the characteristics of the bac-

teria colony (size, shape, colour, texture, elevation, edge). In addition, the smear was prepared

from each colony observed on the plates and gram staining was performed. The gram reaction

and the shape of the bacteria were observed using a microscope.

After the identification of gram-negative bacteria, a series of biochemical tests were per-

formed on colonies from pure cultures of the isolates. Triple sugar iron agar (TSI) (Oxoid Ltd,

Basingstoke UK), Simon’s citrate agar (Oxoid Ltd, Basingstoke, UK), urease agar (Oxoid Ltd,

Basingstoke, UK), lysine iron agar (Oxoid Ltd, Basingstoke, UK) (LDC), and Sulphur indole

motility medium (SIM) (Oxoid Ltd, Basingstoke, UK) were included in the biochemical tests

for species identification [22].

Antibiotic susceptibility testing

Following bacterial identification, the antibiotic susceptibility testing (AST) of the isolates was

performed by a Kirby-Bauer disk diffusion technique. The colonies of a young culture were

picked from the pure culture using a sterile wire loop and emulsified in 0.85% of normal saline

to make bacterial suspension and compare with 0.5 McFarland turbidity standards. Then the

bacterial suspension was inoculated onto Muller-Hinton agar (MHA) (Oxoid, Basingstoke,

and Hampshire, UK) by lawn culture method. The AST was performed following the recom-

mendation of the Clinical and Laboratory Standards Institute (CLSI) guideline 2021 against—

ampicillin (10μ), gentamicin (10μg), tetracycline (30μg), nalidixic-acid [30] ciprofloxacin

(5μg), chloramphenicol (30μg), trimethoprim-sulfamethoxazole (1.25μg/23.75μg), cefoxitin

(30μg), cefotaxime (30μg), ceftazidime (30μg), ceftriaxone (30μg), and meropenem (10μg). All

the antibiotic disks used were from BD, BBLTM Company, and USA Product. After overnight

incubation at 37˚C for 16–18 hours, the zone of inhibition was measured by a ruler and the

results was interpreted as resistant, intermediate, and sensitive [23]. Bacterial isolates that were

resistant to at least one antibiotic agent in three or more antibiotic classes were considered

MDR isolates [24].

Detection of extended-spectrum beta-lactamase

All Enterobacteriaceae strains were tested against ceftriaxone, cefotaxime, and ceftazidime for

ESBL screening using the Kirby-Bauer disk diffusion method. If the zone of inhibition

was� 22 mm for ceftazidime,� 25 mm for ceftriaxone, and� 27 for cefotaxime, they were

considered as potential ESBLs-producing strains and selected for a further phenotypic confir-

matory test as described below [23].

A phenotypic confirmatory test was done using a combined-disk diffusion test and inter-

preted by following the CLSI, 2021 guidelines. Pure culture of suspected ESBL producer iso-

lates was emulsified in 0.85% saline and compared with 0.5 McFarland turbidity standard then

inoculated on MHA by lawn culture method using sterile swabs. The following antibiotic disks

such as cefotaxime (30μg), cefotaxime/clavulanic acid (30μg/10μg), ceftazidime (30μg), and

ceftazidime/clavulanic acid (30μg/10μg) were used to confirm the status of the ESBL pheno-

types. The plates were then incubated aerobically at 37˚C for 16–18 hrs. If greater or equal to

5mm an increase in zone diameter for cefotaxime and ceftazidime in combination with clavu-

lanic acid than the zone diameter of the tested alone, it was confirmed as ESBL-producing iso-

lates [23].
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Quality control

All culture media was prepared according to the manufacturer’s instructions and following

standard operational procedures. The sterility of newly prepared culture media was checked

by incubating 5% of prepared culture media at 35–37˚C overnight before use and was evalu-

ated for possible growth or contamination. The performance testing was performed with inoc-

ulating known control strains of E. coli American Type Culture Collection (ATCC) 25922 and

Salmonella Typhimurium ATCC 14028 on culture media. For the ESBL confirmatory test, K.

pneumoniae ATCC 700603 (ESBLs positive) and E. coli ATCC 25922 (ESBLs negative control)

strains were used to check the quality of the culture media and antibiotic disks [23].

Data processing and analysis

All data were checked for completeness, coded, and entered using Epi-data version 4.6 and the

data was exported to Statistical Package for Social Sciences version 26 for further analysis. Fre-

quency analysis was carried out to determine the frequency of independent variables and the

prevalence of MDR isolates. Fisher’s exact test was used to observe an appropriate association

between independent variables and ESBL-producing isolates. A p-value of less than 0.05 at a

95% confidence interval in fisher’s exact test was considered an association between indepen-

dent variables and ESBL-producing isolates. The results were presented in texts, figures, and

tables.

Ethical approval

Ethical clearance was obtained from the Ethical Review Committee of the School of Biomedi-

cal and Laboratory Sciences, College of Medicine and Health Sciences, the University of Gon-

dar with protocol reference number SBMLS/202, dated 14 February 2022. The owner of each

poultry farm was informed about the aim of the study and oral permission was obtained from

the owners/ managers before sampling.

Results

General characteristics of the poultry farms

A total of 87 poultry farms were visited, and a farm owner or chicken caregiver was inter-

viewed about the farm’s characteristics and how to handle the chickens. The majority of the

poultry farms raised eggs layer chickens 55 (63.2%), used deep litter chicken housing systems

82 (94.3%), and used commercially prepared feeds 80 (92%). In most farms, 78 (89.7%) were

not clean from chicken droppings and remained so until a new flock was introduced. In more

than half of the poultry farms, diseased chickens weren’t isolated and separated. Almost all of

the farm owners or the people who looked after the chickens had no profession related to the

poultry industry (Table 1).

Antibiotic use in the poultry farms

Of most poultry farmers 82 (94.3%) used antibiotics on their farms. Antibiotics given in poul-

try farms were enrofloxacin, oxytetracycline, ciprofloxacin, trimethoprim and sulphadiazine.

The majority of poultry farms 75/82 (91.5%) used antibiotics for both preventive and treat-

ment purposes. Out of antibiotic users, most of the poultry farmers purchased their antibiotics

from a veterinary pharmacy and gave them to their chickens by mixing them with feed or

water (Table 2).
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Prevalence of Enterobacteriaceae isolates from chicken droppings

Among a total of 87 poultry farms chicken-dropping samples 143 bacterial isolates were recov-

ered. Of these, the most common isolates were E. coli 87 (60.8%), followed by Salmonella
spp. 23 (16.1%), P. mirabilis 18 (12.6%) and K. pneumoniae 11 (7.7%). E. coli 87 (100%) was

recovered from all samples collected. However, Salmonella spp. were isolated in 23 (26.4%;

95% CI:17.2–35.6) and P. mirabilis in 18 (20.7%; 95% CI:12.6–28.7) samples (Fig 1).

Antibiotic resistance patterns of Enterobacteriaceae

Out of 143 Enterobacteriaceae isolates, the highest resistance rate was observed for ampicillin

131 (91.6%) followed by tetracycline 130 (90.9), trimethoprim-sulfamethoxazole 94 (65.7%),

Table 1. General characteristics of the poultry farms at Gondar City, Northwest Ethiopia, March to June 2022.

Variables Category Frequency N

(%)

ESBL-status Fisher’s Exact test p-

valueESBL-

positive

ESBL-

Negative

Type of commercial chicken Layer 55 (63.2) 10 (18.2) 45 (81.8) 0.129

Broiler 6 (6.9) 0 (0) 6 (100)

One day old 26 (29.9) 1 (3.8) 25 (96.2)

Flock size (number of chickens on the farm) <500 48 (55.2) 4 (8.3) 44 (91.7) 0.014*
500–1000 27 (31.0) 2 (7.4) 25 (92.6)

>1000 12 (13.8) 5 (41.7) 7(58.3)

Age of chicken (months) <2 34 (39.1) 6 (17.6) 28 (82.4) 0.037*
2–6 14 (16.1) 1 (7.1) 13 (92.9)

7–12 31 (35.6) 1(3.2) 30 (96.8)

>12 8 (9.2) 3 (37.5) 5 (62.5)

Farm age (years) <5 80 (92.0) 8 (10) 72 (90) 0.040*
5–10 7 (8.0 3 (42.9) 4 (57.1)

Chicken housing system Deep litter system 82 (94.3) 10 (12.2) 72 (87.8) 0.50

Traditional housing 5 (5.7) 1 (20) 4 (80)

Cleaning of chicken droppings When the flock changed (the

flock out)

78 (89.7) 11 (14.1) 67 (85.9) 0.278

By six months per a year 9 (10.3) 0 (0.0) 9 (100)

Timely isolation and separation of diseased chickens Yes 35 (40.2) 8 (22.9) 27 (77.1) 0.024*
No 52 (59.8) 3 (5.8) 49 (94.2)

Professional short-term training is given Yes 81 (93.1) 10 (12.3) 71 (87.7) 0.567

No 6 (6.9) 1 (16.7) 5 (83.3)

Owners and chicken caregiver profession is related to

the chicken farm

Yes 4 (4.6) 1 (25.0) 3 (75.0) 0.424

No 83 (95.4) 10 (12.0) 73 (88.0)

Waste disposal Send to field 82 (94.3) 10 (12.2) 72 (87.) 0.500

Compost 5 (5.7) 1 (20.0) 4 (80.0)

Feeding condition Commercially prepared 80 (92.0) 11 (13.8) 69 (86.3) 0.588

Both commercially and locally

prepared

7 (8.0) 0 (0.0) 7 (100)

Water source Well water 20 (23.0) 3 (15.0) 17 (85.0) 0.710

Pipe water 67 (77.0) 8 (11.9) 59 (88.1)

Chicken feeds contact with their droppings Yes 40 (46.0) 2 (5.0) 38 (95.0) 0.058

No 47 (54.0) 9 (19.1) 38 (80.9)

* Associations between independent variables and ESBL-producing isolates

https://doi.org/10.1371/journal.pone.0287043.t001
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and nalidixic acid 94 (65.7) and lowest resistance was observed against meropenem 13 (9.1%),

gentamicin 16 (11.2%) and cefoxitin 24 (16.8%) (Table 3).

Regarding the resistance rate of individual bacterial isolates, E. coli demonstrated a high

rate of resistance against ampicillin 80/87 (92.0%), tetracycline 79/87 (90.8%), nalidixic acid

59/87 (67%), and trimethoprim-sulfamethoxazole 55/87 (63.2%). Likewise, K. pneumoniae iso-

lates showed a high resistance rate against ampicillin 11/11 (100%), tetracycline 10/11 (90.9%),

trimethoprim-sulfamethoxazole 9/11 (81.8%), and nalidixic acid 7/11 (63.6%). All isolates

showed a lower resistance rate against meropenem and gentamicin, with a range of 9.2% to

18.2% and 4.3% to 25.0%, respectively.

Multi-drug resistant patterns of Enterobacteriaceae

A total of 12 antibiotics from 8 classes (aminoglycosides, amphenicol, carbapenems, cephalo-

sporins, fluoroquinolones, folate pathway inhibitors, penicillin, and tetracycline) were used to

assess the MDR patterns of isolates. The overall MDR prevalence in this study was 116/143

(81.1%; 95% CI: 74.7–87.5). The most common MDR isolates identified in this study were E.

coli 73/87 (83.9%; 95% CI: 76.3–91.5) followed by K. pneumoniae 9/11 (81.8%; 95% CI: 69.1–

94.5), P. mirabilis 14/18 (77.8%; 95% CI: 58.8–96.8), and Salmonella spp. 17/23 (73.9%; 95%

CI: 55.9–91.9) (Table 4).

Table 2. Type of antibiotics use in the poultry farms at Gondar City, Northwest Ethiopia, March to June 2022.

Variables Category Frequency N

(%)

ESBL-status Fisher’s Exact test p-

valueESBL-

positive

ESBL-

Negative

Antibiotics use Yes 82 (94.3) 11 (13.4) 71(86.6) 1.00

No 5 (5.7) 0 (0.0) 5 (100)

Use of enrofloxacin Yes 68 (82.9) 11 (16.2) 57(83.8) 0.197

No 14 (17.1) 0 (0.0) 14 (100)

Use of oxytetracycline Yes 62 (75.6) 10 (16.1) 52 (83.9) 0.279

No 20 (24.4) 1 (5.0) 19 (95.0)

Use of trimethoprim and sulphadiazine Yes 14 (17.1) 5 (35.7) 9 (64.3 0.018*
No 68 (82.9) 6 (8.8) 62 (91.2)

Use of ciprofloxacin Yes 8 (9.8) 5 (62.5) 3 (37.5) 0.001*
No 74 (90.2) 6 (8.1) 68 (91.9)

Antibiotics used for treatment purposes Yes 71 (86.6) 11 (15.5) 60 (84.5) 0.345

No 11 (13.4) 0 (0.0) 11 (100)

Antibiotics used for prevention purposes Yes 4 (4.9) 0 (0.0) 4 (100) 1.00

No 78 (95.1) 11 (13.8) 67 (85.9)

Antibiotics are used for both prevention and treatment

purposes

Yes 75 (91.5) 11 (14.1) 64 (85.3) 0.586

No 7 (8.5) 0 (0.0) 7 (100)

Frequency of antibiotics use Regularly 8 (9.8) 1 (12.5) 7 (87.5) 1.00

Occasionally 74 (90.2) 10 (13.5) 64 (86.5)

Sources of antibiotics Veterinary drug store 73 (89) 7 (9.6) 66 (90.4) 0.016*
Parallel market 9 (11) 4 (44.4) 5 (55.6)

A common route of antibiotics administration Mixed with feed and/or

water

76 (92.7) 11 (14.5) 65(85.5) 1.00

Injection or others 6 (7.3) 0 (0) 6 (100)

* Associations between independent variables and ESBL-producing isolates

https://doi.org/10.1371/journal.pone.0287043.t002
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The prevalence of ESBL-producing Enterobacteriaceae

Among 143 bacterial isolates tested for ESBL, 12 (8.4%; CI: 3.9-12-9) were found to be positive.

Of these, 11/87 (12.6%; 95% CI: 5.5–20.1) were E. coli and only one of the isolates was 1/11

(9.1%; 95% CI: 1.5–27.3) K. pneumoniae.

Discussion

Antibiotic-resistant bacteria are a significant public health concern because the resistant bacte-

ria and their mobile genetic elements disseminate among animals, humans, and the environ-

ment [25].

In this study, a total of 87 pooled chicken droppings were collected for bacteriological anal-

ysis and all of them were culture-positive. The culture-positivity rate in this study is in agree-

ment with reports from Tanzania (100%) [26] and Indonesia (100%) [27]. However, it is

higher than a study conducted in Jimma, Ethiopia 43.6% [28], Tanzania 55.2% [29], Egypt

12.5% and 25.6% [30, 31] Cameroon 44.1% [32], Nigeria 29.5% [33] and Albania 52.9% [34].

The difference in culture positivity rate may be due to the methods used to isolate the bacteria,

the types of samples, and hygienic conditions in different places. In this study, for example, dif-

ferent types of samples were pooled, and most farms did not clean chicken droppings until a

new flock was introduced, resulting in them being mixed with chicken feed, which fosters the

cross-contamination of chickens [35].

Fig 1. The proportion of Enterobacteriaceae isolates from chicken droppings in poultry farms at Gondar City, Northwest Ethiopia, March to

June 2022.

https://doi.org/10.1371/journal.pone.0287043.g001
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In the current study, 143 Enterobacteriaceae isolates were identified, and the most predom-

inant isolate was E. coli 87 (60.8%), followed by Salmonella spp. 23 (16.1%) and P. mirabilis 18

(12.6%). The same finding was also reported from Jimma, Ethiopia [28], Kenya [21], Nigeria

[36], Côte d’Ivoire [20], and Malaysia [37]. The predominance of E. coli in this and many other

studies may be because E. coli is a ubiquitous commensal bacterium that is predominantly

found in the gastrointestinal tracts of animals and humans as a normal flora [38].

This study revealed that isolates from chicken droppings showed high resistance against

ampicillin, tetracycline, and trimethoprim-sulfamethoxazole. This was also reported from

Jimma, Ethiopia [28], Hawassa, Ethiopia [39], Tanzania [26, 29], Zambia [40], Cameroon [32],

Côte d’Ivoire [20], Bangladesh [41], and Indonesia [42]. This demonstrates that these antibiot-

ics are relatively cheap, easily accessible, and widely used antibiotics in the countries [43]. Dur-

ing farming, antibiotics are used for treatment or preventive purposes that favours the spread

of ABR Enterobacteriaceae which can infect humans through the food chain [44]. In this

study, these antibiotics were used in poultry for treatment or preventive purposes.

Moreover, the current study recorded higher resistance to quinolones like nalidixic acid 94

(65.7%) and ciprofloxacin 38 (26.6%). The use of quinolones for therapeutic purposes on the

farm may be a possible contribution. The resistant pattern of Enterobacteriaceae in poultry to

clinically important antibiotics in humans that are used for treating infections is a great

Table 3. Antibiotic resistance patterns of Enterobacteriaceae from chicken droppings in poultry farms at Gondar city, Northwest Ethiopia, March to June 2022.

Class Antibiotics E. coli Salmonella
species

P. mirabilis K. pneumoniae E. cloacae Total

N = 87 N = 23 N = 18 N = 11 N = 4 N = 143

S R S R S R S R S R S R

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%)

Aminoglycosides GEN 78

(89.7)

9 (10.3) 22

(95.7)

1 (4.3) 15

(83.3)

3 (16.7) 9

(81.8)

2 (18.2) 3

(75.0)

1

(25.0)

127

(88.8)

16 (11.2)

Carbapenems MER 79

(90.8)

8 (9.2) 23

(100)

- 15

(83.3)

3 (16.7) 9

(81.8)

2 (18.2) 4 (100) - 130

(90.9)

13 (9.1)

Cephalosporins CXT 76

(87.4)

11

(12.6)

21

(91.3)

2 (8.7) 13

(72.2)

5 (27.8) 8

(72.7)

3 (27.3) 1

(25.0)

3

(75.0)

119

(83.2)

24 (16.8)

CAZ 72

(82.8)

15

(17.2)

18

(78.3)

5 (21.7) 14

(77.8)

4 (22.2) 7

(63.6)

4 (36.4) 1

(25.0)

3

(75.0)

112

(78.3)

31 (21.7)

CRO 75

(86.2)

12

(13.8)

19

(82.6)

4 (17.4) 15

(83.3)

3 (16.7) 8

(72.7)

3 (27.3) 3

(75.0)

1

(25.0)

120

(83.9)

23 (16.1)

CTX 72

(82.8)

15

(17.2)

18

(78.3)

5 (21.7) 14

(77.8)

4 (22.2) 7

(63.6)

4 (36.4) 1

(25.0)

3

(75.0)

112

(78.3)

31 (21.7)

Quinolones NAL 28

(32.2)

59

(67.8)

11

(47.8)

12

(52.2)

5 (27.8) 13

(72.2)

4

(36.4)

7 (63.6) 1

(25.0)

3

(75.0)

49 (34.3) 94 (65.7)

CIP 68

(78.2)

19

(21.8)

20

(87.0)

3 (13.0) 7 (38.9) 11

(61.1)

8

(72.7)

3 (27.3) 2

(50.0)

2

(50.0)

105

(73.4)

38 (26.6)

Penicillin AMP 7 (8.0) 80

(92.0)

5 (21.7) 18

(78.3)

- 18

(100)

- 11

(100)

- 4 (100) 12 (8.4) 131

(91.6)

Phenicol CHL 62

(72.3)

25

(28.7)

21

(91.3)

2 (8.7) 10

(55.6)

8 (44.5) 6

(54.5)

5 (45.5) 3

(75.0)

1

(25.0)

102

(71.3)

41 (28.7)

Sulfonamides (folate pathway

inhibitors)

SXT 32

(36.8)

55

(63.2)

9 (39.1) 14

(60.9)

5 (27.8) 13

(72.2)

2

(18.2)

9 (81.8) 1 (25.0 3

(75.0)

49 (34.3) 94 (65.7)

Tetracycline TET 8 (9.2) 79

(90.8)

4 (17.4) 19

(82.6)

- 18

(100)

1 (9.1) 10

(90.9)

- 4 (100) 13 (9.1) 130

(90.9)

Key: S = Sensitive, R = Resistance, AMP = ampicillin; TET = tetracycline; SXT = trimethoprim-sulfamethoxazole; NAL = nalidixic acid; CHL = chloramphenicol;

CIP = ciprofloxacin; CAZ = ceftazidime; CTX = cefotaxime, CRO = ceftriaxone; CXT = cefoxitin; GEN = gentamicin; MER = meropenem

https://doi.org/10.1371/journal.pone.0287043.t003

PLOS ONE Multidrug-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0287043 June 9, 2023 9 / 16

https://doi.org/10.1371/journal.pone.0287043.t003
https://doi.org/10.1371/journal.pone.0287043


concern [45]. For instance, in this study, enrofloxacin and ciprofloxacin are the most used

antibiotics in poultry farms.

Bacterial isolates in the present study showed a relatively lower rate of resistance against

meropenem 13 (9.1%) and gentamicin 16 (11.2%). This finding is supported by other studies,

in Hawassa, Ethiopia [39], Kenya [21], and Albania [34]. Those studies reported 0% to 15%

resistance for gentamicin and meropenem. Also, in Tanzania, gentamicin 10.3%, and 10.8%

[26, 29], However, our result is lower than the studies conducted in Zambia, gentamicin 37.7%

[40], Cameroon, meropenem 45% [32], Côte d’Ivoire, gentamicin 47.2% [20], Bangladesh,

gentamicin 53% [41], and Indonesia, gentamicin 37% [27]. The possible explanation for a

lower rate of resistance could be because of the inaccessibility of antibiotic agents that may not

be given to poultry in the study area.

The prevalence of MDR E. coli in this study was 73 (83.9%). This finding is consistent with

reports from Tanzania 86.8% [26], Zambia 85.7% [40], and Cameroon 83.1% [32] and lower

Table 4. Multidrug resistance profiles of Enterobacteriaceae isolates from chicken droppings in poultry farms at Gondar city, Northwest Ethiopia, March to June

2022.

Resistance pattern No. of antibiotics

(classes)

Type of isolate N

E. coli
N = 87

K. pneumoniae
N = 11

P. mirabilis
N = 18

E. cloacae
N = 4

Salmonella spp.

N = 23

Total

N = 143

Susceptible for all drug – 4 - - - 3 7

TET 1 (1) 3 - - - 2 5

AMP 1 (1) 4 1 - - - 5

AMP TET 2 (2) 3 1 4 1 - 9

AMP SXT 2 (2) - - - - 1 1

AMP, TET, SXT 3 (3) 12 2 1 - 5 20

AMP, TET, NAL 3 (3) 11 - 1 - 3 15

AMP, TET, SXT, NAL 4 (4) 12 - - - 1 13

AMP, TET, SXT, CHL 4 (4) 2 - - - - 2

AMP, TET, NAL, CIP 4 (3) 5 - - - 1 6

AMP, TET, SXT, NAL, CIP 5 (4) - - 3 - 1 4

AMP, TET, SXT, NAL, CHL 5 (5) 8 1 1 - 1 11

AMP, TET, NAL, CIP, CXT 5 (4) 2 - - - - 2

AMP, TET, SXT, NAL, CIP, CHL 6 (5) 2 - - - - 2

AMP, TET, SXT, NAL, CHL, CXT 6 (6) 3 2 - - - 5

AMP, TET, SXT, NAL, CIP, CHL, CXT 7 (6) 1 - 4 - - 5

AMP, TET, SXT, NAL, CAZ CTX, CRO 7 (5) 4 1 - - 3 8

AMP, TET, SXT, NAL, CIP CXT, CAZ,

CTX

8 (5) 2 1 1 2 1 7

AMP, TET, SXT, NAL, CIP, CHL, CAZ

CTX, CRO, GEN, MER

9 (6) 6 2 3 - - 11

AMP, TET, SXT, NAL, CHL, CXT, CAZ

CTX, CRO, GEN

9 (6) 1 - - 1 1 3

AMP, TET, SXT, NAL, CIP, CHL, CXT,

CAZ CTX, CRO, GEN, MER

10 (6) 2 - - - - 2

Total non-MDR isolates N (%) – 14 (16.1%) 2 (18.2%) 4 (22.2%) 1 (25.0%) 6 (26.1%) 27 (18.9%)

Total MDR isolates N (%) – 73 (83.9%) 9 (81.8%) 14 (77.8%) 3 (75.0%) 17 (73.9%) 116

(81.1%)

Key: AMP = ampicillin; TET = tetracycline; SXT = trimethoprim-sulfamethoxazole; NAL = nalidixic acid; CHL = chloramphenicol; CIP = ciprofloxacin;

CAZ = ceftazidime; CTX = cefotaxime, CRO = ceftriaxone; CXT = cefoxitin; GEN = gentamicin; MER = meropenem; MDR = multidrug-resistant (against�3

antimicrobial classes)

https://doi.org/10.1371/journal.pone.0287043.t004
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than the study in Albania 95% [34], and in Malaysia 100% [37]. However, it is higher than a

study conducted in Jimma, Ethiopia 54.2% [28], Tanzania 69.3% [29], and Egypt 57.8% [30].

This bacteria strain might be human pathogenic E. coli since, similar virulence factors with the

same mechanism between avian pathogenic E. coli and human extra-intestinal pathogenic E.

coli strains [46], and genetic similarity between E. coli involved in urinary tract infections in

humans and those found in poultry and poultry products has been demonstrated [47].

The multidrug resistance rate of Salmonella spp. was 17 (73.9%). This is in agreement with

a report from Debre Zeit, Ethiopia 86.0% [48], Albania 82% [34], and Malaysia 82% [37]. How-

ever, it is higher than a study conducted in Jimma, Ethiopia 44.4% [28]. This discrepancy

could be due to the inappropriate use of antibiotics on the farms represents a selective pressure

for resistant bacteria which can develop cross-resistance between several classes of antibiotics

[49].

The prevalence of MDR K. pneumoniae, P. mirabilis, and E. cloacae in this study was 81.8%,

77.8%, and 75%, respectively. This is in line with the study conducted in Bangladesh P. mirabi-
lis 83% [41]. However, these findings are higher than a study conducted in Jimma, Ethiopia,

where 57.1% of K. pneumoniae and 50.0% of P. mirabilis reported as MDR [28], and 53.57% of

K. pneumoniae was also reported as MDR by a study from Indonesia [42]. These bacteria may

develop ABR via acquired mechanisms. The acquired resistance occurs through horizontal

gene transfer such as conjugation, transduction, and transformation from other resistant bac-

teria. Additionally, mutations in the gene could also cause this MDR when the bacteria are

constantly under pressure after being exposed to antibiotics [50].

The overall prevalence of MDR Enterobacteriaceae was 116 (81.1%; 95% CI: 74.7–87.5).

This is higher than a report from Jimma, Ethiopia where the MDR prevalence was 52.5% [28].

This difference may be due to the types of commercial chicken, and the number of farms

included in the study [51]. For instance, the present study includes multiple poultry farms and

different types of commercial chickens such as layer, broiler, and day-old chickens.

In the present study, the ESBL-producing Enterobacteriaceae from chicken droppings was

8.4%, and the prevalence of ESBL-producing E. coli and K. pneumoniae was 12.6% and 9.1%,

respectively. This finding is in line with the studies conducted in Uganda E. coli 17.5% [52],

Egypt E. coli 12.5% [31], Tanzania E. coli 10.29% [26], India K. pneumoniae 5% [53], and Indo-

nesia E. coli 7.03% [27], and it is lower than studies in Zambia E. coli 20.1% [40], Nigeria E. coli
37.8% [54], Ghana E. coli 29% [44]. In contrast, our result is higher than the study conducted

in Tanzania E. coli 4.7% [29], India E. coli 5.3% [53], and Indonesia E. coli 3.3% [55]. This vari-

ation in prevalence rates could be the difference in ESBL screening methods used and it might

be due to poor animal management practices and hygienic conditions; chicken dropping has

contact with chicken feedings that enhance the spread of MDR bacteria in the flock [35].

Extended-spectrum beta-lactamase-producing E. coli and K. pneumoniae have been fre-

quently reported in poultry and therefore poultry production might serve as a reservoir for

ESBL-producing strains [56]. Different ESBL genes might exist and spread on various mobile

genetic elements like plasmids that can transfer horizontally between bacterial species [57].

There is a significant association between the prevalence of ESBL and flock size (p = 0.014).

The occurrence of ESBL increased with high flock size than the lower number of chickens on

the farm. This finding is in agreement with the results of a study conducted in Uganda [52].

High flock size may increase stocking density which led to increased levels of airborne and

respiratory disease transmission, thus increasing the risk of their environmental contamina-

tion with different bacterial strains. This is probably the cause of the reduced immune

responses observed at high stocking densities, as high stocking density causes reduced feed

consumption and lower growth rates. This leads to more susceptibility to ESBL-producing

bacterial infection [58].
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In this study, chickens aged less than two months were high risk to ESBL-producing Enter-

obacteriaceae carriage (p = 0.037). Because the gut normal flora of these birds is still maturing,

making it easy for colonization by various pathogenic bacteria if they are exposed to the poul-

try environment. Additionally, due to their lower immunity, survival and multiplication of

ingested ESBL-producing Enterobacteriaceae via the gastrointestinal tract is increased [59].

The occurrence of ESBL was significantly associated with the use of ciprofloxacin

(p = 0.001) and trimethoprim-sulphadiazine (p = 0.018). This may be because the inappropri-

ate use of these antibiotics in the farms represents a selective pressure for resistant bacteria

which can develop cross-resistance between several classes of antibiotics like beta-lactam anti-

biotics [49]. In addition, these antibiotics were used for the treatment and prevent diseases in

commercial farms in mass with crowded poultry flocks, these practices lead to a massive accu-

mulation of antibiotics in the farm environment and facilitate the acquisition of resistance

genes in bacteria coming in contact with them [60]. These bacteria are capable of being trans-

mitted to humans through direct contact with infected birds and the consumption of contami-

nated food chains [15].

Limitations of the study

Isolation was performed on MacConkey and XLD agar which limits the isolation of fastidious

Enterobacteriaceae and molecular characterization of the isolates wasn’t conducted.

Conclusions and recommendations

A high prevalence of clinically important bacterial pathogens with a high prevalence of MDR

and ESBL-producing E. coli and K. pneumoniae were recovered in the present study. Poultry

farms may be one potential reservoir for Enterobacteriaceae that shed into the environment

through faecal matter contamination which might be a potential public health concern. There-

fore, close supervision of poultry farms handling large flocks and day-old chickens should not

be underestimated. The prudent use of antibiotics in poultry farms is better to be strictly

supervised.
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