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abstract

PURPOSE Artificial intelligence (AI) algorithms improve breast cancer detection on mammography, but their
contribution to long-term risk prediction for advanced and interval cancers is unknown.

METHODSWe identified 2,412 women with invasive breast cancer and 4,995 controls matched on age, race,
and date of mammogram, from two US mammography cohorts, who had two-dimensional full-field digital
mammograms performed 2-5.5 years before cancer diagnosis. We assessed Breast Imaging Reporting and
Data System density, an AI malignancy score (1-10), and volumetric density measures. We used conditional
logistic regression to estimate odds ratios (ORs), 95% CIs, adjusted for age and BMI, and C-statistics (AUC)
to describe the association of AI score with invasive cancer and its contribution to models with breast density
measures. Likelihood ratio tests (LRTs) and bootstrapping methods were used to compare model
performance.

RESULTS On mammograms between 2-5.5 years prior to cancer, a one unit increase in AI score was associated
with 20% greater odds of invasive breast cancer (OR, 1.20; 95%CI, 1.17 to 1.22; AUC, 0.63; 95%CI, 0.62 to 0.64)
and was similarly predictive of interval (OR, 1.20; 95% CI, 1.13 to 1.27; AUC, 0.63) and advanced cancers (OR,
1.23; 95%CI, 1.16 to 1.31; AUC, 0.64) and in dense (OR, 1.18; 95%CI, 1.15 to 1.22; AUC, 0.66) breasts. AI score
improved prediction of all cancer types in models with density measures (PLRT values , .001); discrimination
improved for advanced cancer (ie, AUC for dense volume increased from 0.624 to 0.679, D AUC 0.065, P5 .01)
but did not reach statistical significance for interval cancer.

CONCLUSION AI imaging algorithms coupled with breast density independently contribute to long-term risk
prediction of invasive breast cancers, in particular, advanced cancer.

J Clin Oncol 41:3172-3183. © 2023 by American Society of Clinical Oncology

INTRODUCTION

Multiple artificial intelligence (AI) algorithms based
on deep learning have been developed, which im-
prove accuracy of breast cancer detection on
mammography.1-4 More recently, these algorithms
have been considered for their use in near-term risk
prediction and preliminary data suggest improved
discrimination of breast cancer compared with
conventional clinical risk models.1,2

There are limited data, however, for the perfor-
mance of these AI algorithms in predicting long-
term risk of invasive cancer and risk of advanced
and interval cancers (defined as screening failures),
which would most benefit from early detection
and intervention. Interval cancers are known to be
increased among women with dense breasts,5 be-
cause of decreased mammogram sensitivity.6,7

Wanders et al8 recently validated an AI cancer
detection system integrating area-based breast
density to improve discrimination of interval cancer

within 2 years of a negative mammogram. They did
not have information on screen-detected cancers,
or consider advanced cancers, or long-term risk.
Understanding long-term risk prediction models
that incorporate AI for advanced cancer will provide
insight into their ability to guide screening strategies
to reduce breast cancer morbidity and mortality.9,10

In this article, we extend prior work to evaluate the
contribution of an AI cancer detection system on the
basis of deep convolutional neural networks com-
bined with volumetric density measures to interval,
screen-detected, advanced, and nonadvanced can-
cer risk. We hypothesize that the AI detection score,
which reflects suspicious mammographic findings,
will improve long-term risk prediction of invasive
cancer above volumetric density measures and for
advanced and interval breast cancers. We focus on
assessing mammograms taken at least 2 years but not
more than 5.5 years before the cancer to evaluate
longer-term risk prediction.
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METHODS

Study Sample

Study participants were from two retrospective case-
control studies nested within large breast imaging co-
horts from US-based breast screening practices (Fig 1).
The San Francisco Mammography Registry (SFMR) par-
ticipates in the National Cancer Institute–funded Breast
Cancer Surveillance Consortium (BCSC).11 The SFMR
obtains annual institutional review board approval and
passive permission for data collection and participant
enrollment and data linkages for research purposes. The
Mayo Clinic institutional review board approved a waiver of
informed consent and Health Insurance Portability and
Accountability Act authorization for participants from the
breast screening practice who did not refuse permission to
use their medical records for research (according to
Minnesota Research Authorization).

The SFMR obtained for-processing digital screening exami-
nations from Hologic Selenia machines at four facilities since
2006, which served as the underlying SFMR imaging cohort.
Annual linkage to the California Cancer Registry identified
3,580 incident breast cancers reported from 2007 through
2017. Up to two control participants (n 5 6,841) without
previous breast cancer or breast implants were selected from
the SFMR imaging cohort and matched to each case par-
ticipant by age within 5 years, race, date of screening ex-
amination within 1 year,mammographymachine, and facility.

For the Mayo Clinic screening cohort, digital images from
Hologic Selenia machines were collected from women in
the tristate region of Minnesota, Iowa, and Wisconsin seen

at the Rochester, Minnesota facility from 2009 through
2017. Annual linkage to the Mayo Clinic tumor registry
identified cases of incident breast cancer reported
through December 2017 (n 5 1,176). Up to three control
participants (n5 3,239) without previous breast cancer or
breast implants were selected from the Mayo Clinic cohort
and matched on the same criteria as above.

Primary analyses were restricted to invasive cases only
with mammograms between 2 and 5.5 years before di-
agnosis or last follow-up, resulting in 1,700 cases and
3,109 matched controls from SFMR and 712 invasive
cancers and 1,886 matched controls from Mayo (Fig 1).
For participants with multiple images within the time
window of 2-5.5 years before cancer, only one mam-
mogram (closest to 5 years before) was used for all cases
and their matched controls from both studies.

Interval cancer was defined as invasive breast cancer oc-
curring within 12months of a negative mammography result
(Breast Imaging Reporting and Data System [BI-RADS] 1 or
2). Screen-detected cancer was defined as invasive cancer
occurring within 12 months of a positive screening mam-
mography result (BI-RADS 0) with a final BI-RADS of 3, 4, or
5. Advanced cancer was defined using American Joint
Committee on Cancer (AJCC) prognostic pathologic stage II
or higher since it most accurately predicts breast cancer
death.10 All advanced cancers were included regardless of
mammography BI-RADS assessment. Women without
mammograms within the appropriate time window (for de-
fining interval and screen-detected cancers) or tumor
characteristics (for defining advanced cancers) were clas-
sified as missing (Fig 1).

CONTEXT

Key Objective
Does an artificial intelligence (AI) algorithm designed for improved breast cancer detection on mammography contribute to

long-term breast cancer risk prediction, in particular, for interval and advanced cancers, and in combination with breast
density?

Knowledge Generated
In a nested case-control study of 2,412 invasive breast cancers and 4,995 matched controls, an AI score assessed on

mammograms 2-5.5 years before cancer was associated with invasive breast cancer and similarly predictive of interval
and advanced cancers and in dense and nondense breasts. Furthermore, the score improved prediction of all cancer
types in models with density measures. AI imaging algorithms coupled with breast density independently contribute to
long-term risk prediction of invasive breast cancers, including advanced cancers.
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practice.*
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AI Cancer Detection System

A validated AI detection system (Transpara, version 1.7.0;
ScreenPoint Medical) was used to provide a score from 1-10,
representing an increasing probability of malignancy at the
time of breast screening.3,4,12,13 The system is based on deep
convolutional neural networks and automatically detects signs
of malignancy on digital mammography and digital breast
tomosynthesis.4 All four mammogram views were deidentified
and processed in a blinded fashion without knowledge of
clinical information to arrive at the malignancy score.

BI-RADS Breast Density and BI-RADS Assessment

Clinical BI-RADS density was classified into four categories as
part of routine clinical practice: (a) almost entirely fatty,
(b) scattered fibroglandular densities, (c) heterogeneously

dense, and (d) extremely dense. Volumetric density was
assessed in a blinded fashion using Volpara, version 1.5.4, a
fully automated method that uses the measured breast
thickness and x-ray attenuations in the for-processing image
to create estimates of dense volume (DV) and volumetric
percent density (VPD) measures for each woman, incorpo-
rating all four mammogram views,14 as performed in the
clinical setting.

In addition, clinical BI-RADS assessment that describes
mammogram interpretation (05 incomplete, 15 negative,
2 5 benign findings, 3 5 probably benign, 4 5 suspicious
abnormality, and 55 highly suspicious of malignancy) was
available from the clinical review of mammograms from the
Mayo Clinic cohort only.

San Francisco Mammography Registry

Screening Practice

2007-2017

Mayo Clinic, Rochester Breast

Screening Practice

2009-2017

Cases                               (n = 3,580)
Matched (2:1) controls   (n = 6,841)

Cases                                 (n = 1,176)
Matched (3:1) controls   (n = 3,239)

DCIS                            (n = 811)
Matched controls     (n = 1,663)

Without mammograms 
    2-5.5 years before cancer
      Excluded cases   (n = 1,533)
      Controls              (n = 3,422)

With mammogram 2-5.5 
   years before cancer
      Total cases              (n = 3,223)
      Matched controls   (n = 6,658)

Total cases                    (n = 4,756)
Matched controls       (n = 10,080)

Advanced cancer

classificationa

Advanced cancers             (n = 289)
Matched controls              (n = 585)

Nonadvanced cancers   (n = 2,012)
Matched controls           (n = 4,204)

Incomplete datab               (n = 111)
Matched controls              (n = 206)

Interval cancer

classificationa

Interval cancers                 (n = 286)
Matched controls              (n = 599)

Screen-detected             (n = 1,670)
Matched controls           (n = 3,567)

Incomplete datab               (n = 456)
Matched controls              (n = 829)

Invasive cases              (n = 2,412)
Matched controls         (n = 4,995)

FIG 1. Study schema. aInvasive breast cancers were classified as advanced cancer and interval cancer, two
primary end points for the study. These are not mutually exclusive categorizations. bUnable to classify
because of missing clinical data (as seen in the Data Supplement [Supplemental Table 1]). DCIS, ductal
carcinoma in situ.
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Statistical Analyses

We used an existing study sample designed to examine the
association of automated density measures with breast
cancer risk.14,15 Descriptive characteristics were compared
by case-control status, for both studies combined and
separately; Kruskal-Wallis and chi-squared tests were used
to examine differences by case status.

Because of the matched study design, conditional logistic
regression was used to examine primary associations of AI
score, breast density measures (BI-RADS density, and log-
transformed VPD%, DV), and breast cancer risk, including
invasive breast cancer, advanced/nonadvanced cancer, and
interval/screen-detected cancer and secondarily, ductal
carcinoma in situ (DCIS). Odds ratios (ORs) and 95% CIs
were estimated. C-statistics (and 95% CIs) were also calcu-
lated as ameasure of discriminatory accuracy or AUC.Models
assumed a linear trend for Transpara, VPD%, and DV and an
ordinal trend for BI-RADS density. The C-statistics accounted
for the matched data by taking the ratio of the total number of
concordant pairs and the total number of pairs, considering
only pairs within matched sets.16

Subgroup analyses were performed to examine differences
in AI score and breast cancer associations by age (,60 and
601 years), dense breasts (BI-RADS a, b v c, d), BMI
(,25, 25-30, and 301), and race/ethnicity (Asian, Black,
Hispanic, White, and Others). We also examined models
with AI score and BI-RADS assessment, using similar
approaches, among the Mayo Clinic studies, where data
were available. All models were adjusted for continuous age
and BMI at the time of mammogram. Stratified analyses of
BI-RADS density required breaking the matched data and
were analyzed using unconditional logistic regression,
adjusted for the matching factors.

We compared the performance of nested models (ie, ad-
dition of AI to breast density models) using the likelihood ratio
test (LRT; PLRT) to evaluate improvement in model fit, as
previously described.17 We also evaluated improvement in
discriminatory accuracy by comparing AUCs between
models on the basis of 1,000 bootstrap samples. Each
bootstrap sample was constructed by selecting n-matched
sets of individuals chosen at random with replacement, with
n equal to the number of cases in the specific analysis.
Matched C-statistics were calculated as described above for
each model using each bootstrap sample. For each model
comparison, the difference in model C-statistics was cal-
culated over all 1,000 samples; 95% confidence limits and
normal distribution P values (PAUC) were calculated using
the standard deviation of this difference as the SE estimate.
We used the same bootstrapping approach to test differ-
ences in AUCs across subgroups (PAUC). SAS version
9.4 (Cary, NC) was used for analyses, and two-sided
P values , .017 (0.05 4 3) were considered statistically
significant to account for multiple testing of invasive, interval,
and advanced cancer.

RESULTS

A total of 2,412 participants with invasive breast cancer and
4,995 matched control participants were eligible from the
two screening cohorts (Table 1; Fig 1; and Data Supplement
[Supplemental Table 1], online only). Of the invasive cases,
286 were interval cancers, 1,670 were screen-detected, and
456 were missing, most of whom (83%) did not have im-
aging within the required time points for classification; there
were 289 advanced cancers, 2,012 nonadvanced cancers,
and 111 missing an essential tumor characteristic required
for AJCC prognostic stage classification (Data Supplement
[Supplemental Table 2]). The median follow-up time was
4.1 years, and 47% of participants were older than age
60 years. BMI, breast density, and AI scores were higher
among cases versus controls (Table 1). AI detection scores
were weakly correlated with breast density measures, age,
and BMI (Data Supplement [Supplemental Table 3]). Mayo
participants were more likely to be older, be White, have a
higher BMI, and have nondense breasts than SFMR par-
ticipants (Data Supplement [Supplemental Table 1]).

AI Malignancy Score and Breast Cancer Risk

Adjusted for age and BMI, AI score was associated with
invasive breast cancer (OR, 1.20; 95% CI, 1.17 to 1.22
per unit increase; AUC, 0.63; 95% CI, 0.62 to 0.64). ORs
and discriminatory accuracy were similar for interval and
screen-detected cancers (PAUC 5 .93; Table 2), ad-
vanced and nonadvanced cancers (PAUC 5 .67; Table 2),
and dense and nondense breasts (PAUC 5 .19; Fig 2).
There was an increased cancer risk and higher dis-
crimination associated with AI score among women age
60 years and older compared with those age younger than
60 years (DAUC, 0.04; 95% CI, 0.01 to 0.07; PAUC 5 .01;
Fig 2) but no statistically significant difference in discrimi-
nation by obesity (BMI . 30 relative to normal or under-
weight BMI , 25 [DAUC, 0.03; 95% CI, 0.00 to 0.07;
PAUC 5 .05]) or race (all PAUC . .37; Fig 2).

Association of Breast Density Measures With Breast
Cancer Risk

Adjusted for age and BMI, all breast density measures were
associated with invasive breast cancer (Table 3). Unlike the
AI score, there were stronger associations and discrimi-
nation of interval (v screen-detected) cancer for all density
measures (PAUC values , .02; Table 3). For advanced
versus nonadvanced cancer, the ORs and AUCs were
similar for all density measures (PAUC values . .14;
Table 3).

Contribution of AI to Breast Density Measures

The inclusion of AI scores combined with either clinical or
volumetric density measures improved prediction of all
cancer types compared with models with density alone
(Table 3; All PLRT , .001). For advanced cancers, inclusion
of AI scores with DV also resulted in statistically significant
improvement in discriminatory accuracy relative to models
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TABLE 1. Demographics, Breast Density, and AI Score Distributions by Invasive Breast Cancer (case-control) Status
Characteristic Case (n 5 2,412) Control (n 5 4,995) P

Age, years .81

Mean (SD) 58.9 (11.7) 59.0 (11.5)

Range 33-94 32-93

BMI .02

Mean (SD) 26.5 (5.8) 26.2 (6.0)

Median 25.1 24.8

Missing 39 68

Race/ethnicity, No. (%) .15

Asian 381 (15.8) 713 (14.3)

Black 63 (2.6) 100 (2.0)

Hispanic 52 (2.2) 103 (2.1)

Native American 1 (0.0) 2 (0.0)

Others/Mixed 89 (3.7) 152 (3.0)

Unknown 3 (0.1) 9 (0.2)

White 1,823 (75.6) 3,916 (78.4)

Follow-up time, years,a No. (%) .60

2-3 531 (22.0) 1,102 (22.1)

3-4 612 (25.4) 1,319 (26.4)

4-5.5 1,269 (52.6) 2,574 (51.5)

BI-RADS density, No. (%) ,.0001

a 235 (10.0) 762 (15.6)

b 823 (35.0) 1,956 (40.0)

c 972 (41.3) 1,727 (35.3)

d 321 (13.7) 450 (9.2)

Missing 61 100

Volpara volumetric density

Mean VPD (SD) 10.4 (6.8) 9.3 (6.2) ,.0001

Mean DV (SD) 68.3 (38.3) 58.0 (31.2) ,.0001

AI score, No. (%) ,.0001

1 75 (3.1) 380 (7.6)

2 81 (3.4) 292 (5.8)

3 134 (5.6) 478 (9.6)

4 170 (7.0) 568 (11.4)

5 260 (10.8) 690 (13.8)

6 246 (10.2) 535 (10.7)

7 274 (11.4) 561 (11.2)

8 298 (12.4) 542 (10.9)

9 361 (15.0) 506 (10.1)

10 513 (21.3) 443 (8.9)

AI score, mean (SD) 6.5 (2.6) 5.2 (2.7)

Advanced cancer, No. (%)

Advanced 289 (12.6) NA NA

Nonadvanced 2,012 (87.4) NA

(continued on following page)
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with DV alone (DAUC, 0.065; 95% CI, 0.015 to 0.114;
PAUC 5 .01). Similar improvement was observed with ad-
dition of AI scores to VPD (DAUC, 0.067; 95% CI, 0.018 to
0.116; PAUC5 .007) but did not reach statistical significance
with BI-RADS (DAUC, 0.045; 95% CI, –0.006 to 0.097;
PAUC 5 .09; Table 3). Improvement in discrimination was
also seen with AI scores added to density models for non-
advanced cancers, for all three density measures (VPD, DV,
and BI-RADS) compared with models with density alone
(PAUC values , .001; Table 3).

As expected, all AUCs for screen-detected cancer im-
proved with inclusion of AI scores for models with VPD,
DV, and BI-RADS density (PAUC values # .001; Table 3).
However, for interval cancers, the contribution of AI scores
resulted in smaller gains in AUC, which did not reach
statistical significance for models with any density mea-
sure (Table 3).

Secondary Analyses

We examined the association of the AI score with 811 in situ
cancers and 1,663 matched controls with mammograms
2-5.5 years before breast cancer (Fig 1). The associations
of AI score and in situ breast cancer were like invasive cancer
(OR, 1.16; 95%CI, 1.13 to 1.20; AUC, 0.62; 95%CI, 0.59 to
0.64) and showed similar improvement in risk prediction
(PLRT , .001) and discrimination (PAUC values , .01) with
the addition of AI to all density measures (Data Supplement
[Supplemental Table 4]).

We also examined the contribution of AI score to the BI-RADS
assessment and breast cancer association. As expected, BI-
RADS assessment was associated with breast cancer

(Data Supplement [Supplemental Tables 5 and 6]), with
increased odds of breast cancer among all categories
relative to BI-RADS 1 or negative findings; the AUC was
0.566 (95% CI, 0.543 to 0.587). However, across all BI-
RADS assessments, the mean AI score was higher among
cases than controls (Data Supplement [Supplemental
Figure 1]). The addition of the AI score resulted in at-
tenuation of the risk estimates for BI-RADS assessment
and a higher AUC (0.643; 95% CI, 0.621 to 0.664).
Importantly, the AI score and breast cancer association
did not change in models with (OR, 1.20; 95% CI, 1.16 to
1.24) or without BI-RADS assessment (OR, 1.19; 95% CI,
1.15 to 1.23).

In addition, we examined how Transpara performed in our
study population closer to the cancer for comparison with
prior studies. Of our invasive case-control sample, 1,010
cases and 2,140 controls also had mammograms within
2 years of the cancer (cases) or follow-up date (controls). We
found statistically significant, but stronger association and
higher discrimination of AI models (without density mea-
sures) within 2 years of cancer (OR, 1.30; 95% CI, 1.26 to
1.34; AUC, 0.70; 95% CI, 0.68 to 0.72) relative to AI models
assessed on mammograms 2-5.5 years before the cancer
(OR, 1.20; 95% CI, 1.17 to 1.24; AUC, 0.63; 95% CI, 0.61
to 0.65).

DISCUSSION

The Transpara AI algorithm assessed on mammograms
2-5.5 years before breast cancer showed similar asso-
ciations with invasive cancer and discriminatory accuracy

TABLE 1. Demographics, Breast Density, and AI Score Distributions by Invasive Breast Cancer (case-control) Status (continued)
Characteristic Case (n 5 2,412) Control (n 5 4,995) P

Incomplete datab 111 NA

Interval cancer, No. (%)

Interval 286 (14.6) NA NA

Screen-detected 1,670 (85.4) NA

Incomplete datab 456 NA

Abbreviations: AI, artificial intelligence; BI-RADS, Breast Imaging Reporting and Data System; DV, dense volume; SD, standard deviation; VPD, volumetric
percent density.

aFor cases, follow-up to cancer. For controls, follow-up from mammogram to matched date of case.
bIncomplete clinical data were available to classify cases (see the Data Supplement [Supplemental Table 1]).

TABLE 2. Association of Transpara Artificial Intelligence Malignancy Score With Breast Cancer Risk
Breast Cancer Outcome Cases, No./Controls, No. OR (95% CI) AUC (95% CI)

All invasive cancer 2,412/4,995 1.20 (1.17 to 1.22) 0.630 (0.617 to 0.644)

Screen-detected 1,670/3,567 1.21 (1.18 to 1.24) 0.641 (0.625 to 0.657)

Interval cancer 286/599 1.20 (1.13 to 1.27) 0.631 (0.592 to 0.670)

Advanced cancer 289/585 1.23 (1.16 to 1.31) 0.638 (0.599 to 0.677)

Nonadvanced cancer 2,012/4,204 1.19 (1.17 to 1.22) 0.630 (0.616 to 0.645)

Abbreviation: OR, odds ratio.
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in dense and nondense breasts and for interval versus
screen-detected and advanced versus nonadvanced
cancers. These findings imply that the AI score is robust
for long-term risk prediction by severity of cancer and
extent of density. Furthermore, the incorporation of AI
score into models combined with breast density showed
improved prediction for all invasive cancer types, with the
highest discriminatory accuracy seen for advanced and
interval cancers, suggesting that the combination will be
important for prediction of these cancers with worse
prognosis.

Previous studies have developed and validated AI algo-
rithms, including Mirai and iCAD, that show high dis-
crimination of breast cancer1,2,18-20 (invasive cancer and
DCIS combined) with AUCs above 0.75, surpassing that of
established clinical risk models, such as Gail and Tyrer-
Cuzick/IBIS.1,2 iCAD was developed for a near-term 2-year
risk prediction, whereas Mirai was developed for risk
prediction up to 5 years. Although our AUCs for longer-term
risk are lower than those reported by Mirai, it is difficult to
directly compare for multiple reasons. First, we excluded
mammograms within 2 years of the cancer, where the
algorithms show optimal performance, whereas these
previous studies using Mirai and iCAD did not. When we
investigated the performance of Transpara only using
mammograms within 2 years of the cancer, we show higher
discrimination (AUC, 0.70), comparable with these other
studies. Second, our case-control study design matched

closely on age, mammogram date, and race/ethnicity, all of
which limit the ability to examine their contributions to AUC
and direct comparison across other study designs. Finally,
we evaluated invasive breast cancer that may benefit from
targeted screening, whereas Mirai and iCAD algorithms
include invasive cancer and DCIS. Ensuring accurate
prediction of the cancers with worst prognosis, that is,
advanced cancer defined as pathologic prognostic stage,
should be a priority of AI risk models to allow early inter-
vention or prevention. In fact, the TMIST clinical trial is
using study-defined definition of advanced cancer as its
primary end point21 although their definition has been shown
to be less predictive of breast cancer death than prognostic
pathologic stage.9 We found that the Transpara AI score
assessed on mammograms 2-5.5 years before cancer was
similarly predictive of advanced and nonadvanced cancers.
When AI score was incorporatedwith breast densitymeasures,
the AUC improved for both cancer types. It will be important to
evaluate the contribution of the AI scores to the new BCSC
model for advanced cancer22 that includes age, breast density,
race/ethnicity, first-degree family history of breast cancer,
history of benign breast biopsy, BMI, menopausal status, and
screening interval, with the goal of improving identification of
those most needing supplemental or alternative screening
strategies to biennial mammographic screening. With the al-
ready high AUCs for advanced cancer seen in our study (ie,
AUC5 0.679) for AI score with only DV, BMI, and age (albeit

OR
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Overall
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2,412/4,995

1,293/2,177

1,058/2,718

1,274/2,621

1,138/2,374

1,148/2,562

694/1,305

531/1,060

381/713

63/100
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1.20 (1.17-1.22)
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Cases, No./

Controls, No. OR (95% CI) AUC (95% CI)

FIG 2. Associations (ORs, 95% CI) of Transpara AI malignancy score with breast cancer by age, density, BMI,
and race/ethnicity. AI, artificial intelligence; OR, odds ratio.
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TABLE 3. Association of Transpara AI Score and Breast Density Measures With Invasive Breast Cancer and With Screen-Detected and Interval Cancers and Advanced and Nonadvanced Cancers

Breast Density Measure

Modelb With Density Measure Only Modelb With Density Measure 1 Transpara AI Score
Comparison of Modelsb With and Without

Transpara AI Score

OR Density Measure
(95% CI) AUC (95% CI)

OR Density Measure
(95% CI)

OR Transpara AI Score
(95% CI) AUC (95% CI) D AUC (95% CI) P LRT (P)

All invasive cancer
(2,412 cases/
4,995 controls)

VPD %a 1.47 (1.37 to 1.58) 0.583 (0.569 to 0.597) 1.33 (1.23 to 1.43) 1.18 (1.16 to 1.21) 0.648 (0.634 to 0.661) D 0.064
(0.046 to 0.082)

,.001

284.6 (,.001)

DVa 1.45 (1.37 to 1.53) 0.587 (0.573 to 0.600) 1.34 (1.26 to 1.42) 1.18 (1.16 to 1.20) 0.648 (0.635 to 0.661) D 0.060
(0.043 to 0.076)

,.001

272.0 (,.001)

BI-RADS densityc

a 0.62 (0.52 to 0.74) 0.585 (0.572 to 0.599) 0.78 (0.65 to 0.94) 1.19 (1.16 to 1.21) 0.645 (0.632 to 0.660) D 0.059
(0.039 to 0.079)

,.001

277.7 (,.001)

b 1.0 (ref) 1.0 (ref)

c 1.55 (1.37 to 1.75) 1.39 (1.22 to 1.58)

d 2.24 (1.85 to 2.71) 2.00 (1.64 to 2.43)

Screen-detected
(1,670 cases/
3,567 controls)

VPD %a 1.35 (1.24 to 1.47) 0.579 (0.563 to 0.595) 1.20 (1.10 to 1.31) 1.20 (1.17 to 1.23) 0.652 (0.636 to 0.668) D 0.072
(0.050 to 0.094)

,.001

229.1 (,.001)

DVa 1.41 (1.31 to 1.50) 0.585 (0.569 to 0.602) 1.28 (1.19 to 1.38) 1.19 (1.16 to 1.22) 0.650 (0.635 to 0.666) D 0.065
(0.046 to 0.084)

,.001

209.3 (,.001)

BI-RADS density

a 0.60 (0.49 to 0.73) 0.592 (0.576 to 0.608) 0.76 (0.61 to 0.93) 1.19 (1.16 to 1.22) 0.654 (0.638 to 0.669) D 0.061
(0.040 to 0.083)

,.001

212.9 (,.001)

b 1.0 (ref) 1.0 (ref)

c 1.45 (1.25 to 1.68) 1.31 (1.12 to 1.53)

d 1.88 (1.48 to 2.39) 1.65 (1.29 to 2.12)

(continued on following page)
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TABLE 3. Association of Transpara AI Score and Breast Density Measures With Invasive Breast Cancer and With Screen-Detected and Interval Cancers and Advanced and Nonadvanced Cancers
(continued)

Breast Density Measure

Modelb With Density Measure Only Modelb With Density Measure 1 Transpara AI Score
Comparison of Modelsb With and Without

Transpara AI Score

OR Density Measure
(95% CI) AUC (95% CI)

OR Density Measure
(95% CI)

OR Transpara AI Score
(95% CI) AUC (95% CI) D AUC (95% CI) P LRT (P)

Interval cancer
(286 cases/
599 controls)

VPD %a 2.36 (1.87 to 2.97) 0.671 (0.633 to 0.709) 2.23 (1.76 to 2.83) 1.17 (1.10 to 1.25) 0.699 (0.663 to 0.736) D 0.027
(–0.015 to 0.070)

.20

26.5 (,.001)

DVa 1.73 (1.45 to 2.06) 0.646 (0.608 to 0.684) 1.68 (1.40 to 2.01) 1.19 (1.11 to 1.26) 0.694 (0.658 to 0.731) D 0.043
(–0.007 to 0.092)

.09

31.4 (,.001

BI-RADSc density

a 0.47 (0.23 to 0.95) 0.659 (0.621 to 0.697) 0.58 (0.28 to 1.18) 1.18 (1.10 to 1.25) 0.683 (0.645 to 0.720) D 0.032
(–0.019 to 0.084)

.21

27.0 (,.001)

b 1.0 (ref) 1.0 (ref)

c 2.36 (1.59 to 3.51) 2.15 (1.43 to 3.23)

d 4.62 (2.64 to 8.06) 4.33 (2.43 to 7.70)

Advanced cancer
(289 cases/
585 controls)

VPD %a 1.53 (1.26 to 1.86) 0.602 (0.562 to 0.641) 1.34 (1.08 to 1.65) 1.21 (1.14 to 1.29) 0.662 (0.623 to 0.700) D 0.067
(0.018 to 0.116)

.007

41.3 (,.001)

DVa 1.66 (1.40 to 1.96) 0.624 (0.585 to 0.663) 1.54 (1.29 to 1.83) 1.21 (1.13 to 1.29) 0.679 (0.641 to 0.716) D 0.065
(0.015 to 0.114)

.01

39.3 (,.001)

BI-RADSc density

a 0.44 (0.25 to 0.77) 0.603 (0.564 to 0.643) 0.61 (0.34 to 1.09) 1.21 (1.13 to 1.29) 0.646 (0.607 to 0.684) D 0.045
(–0.006 to 0.097)

.09

37.2 (,.001)

b 1.0 (ref) 1.0 (ref)

c 1.62 (1.15 to 2.30) 1.50 (1.04 to 2.14)

d 1.86 (1.07 to 3.24) 1.31 (0.73 to 2.38)

(continued on following page)
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TABLE 3. Association of Transpara AI Score and Breast Density Measures With Invasive Breast Cancer and With Screen-Detected and Interval Cancers and Advanced and Nonadvanced Cancers
(continued)

Breast Density Measure

Modelb With Density Measure Only Modelb With Density Measure 1 Transpara AI Score
Comparison of Modelsb With and Without

Transpara AI Score

OR Density Measure
(95% CI) AUC (95% CI)

OR Density Measure
(95% CI)

OR Transpara AI Score
(95% CI) AUC (95% CI) D AUC (95% CI) P LRT (P)

Nonadvanced cancer
(2,012 cases/
4,204 controls)

VPD %a 1.44 (1.33 to 1.56) 0.583 (0.568 to 0.598) 1.31 (1.21 to 1.42) 1.18 (1.15 to 1.21) 0.645 (0.630 to 0.659) D 0.063
(0.043 to 0.082)

,.001

229.2 (,.001)

DVa 1.40 (1.32 to 1.49) 0.581 (0.566 to 0.596) 1.30 (1.22 to 1.39) 1.18 (1.15 to 1.20) 0.644 (0.630 to 0.659) D 0.060
(0.041 to 0.079)

,.001

219.5 (,.001)

BI-RADSc density

a 0.65 (0.53 to 0.78) 0.586 (0.571 to 0.601) 0.81 (0.66 to 0.99) 1.18 (1.16 to 1.21) 0.646 (0.632 to 0.661) D 0.059
(0.038 to 0.080)

,.001

227.6 (,.001)

b 1.0 (ref) 1.0 (ref)

c 1.54 (1.35 to 1.77) 1.39 (1.21 to 1.60)

d 2.26 (1.84 to 2.78) 2.09 (1.69 to 2.59)

NOTE. All models adjusted for age and BMI.a

Abbreviations: AI, artificial intelligence; BI-RADS, Breast Imaging Reporting and Data System; DV, dense volume; LRT, likelihood ratio test; OR, odds ratio; ref, reference; SD, standard deviation; VPD,
volumetric percent density.

aORs represent a change per 1 SD on the log-transformed scale.
bORs for age (per year) ranged from 1.02 (0.99-1.06) to 1.03 (0.99-1.06), and ORs for BMI (per 1 kg/m2) ranged from 1.00 (0.99-1.01) to 1.05 (1.04-1.06). BMI was not significant in models with DV.
cn 5 2,351 cases/4,895 controls for overall BI-RADS analyses (n 5 1,626/3,496 for screen-detected; n 5 275/584 for interval, and 279/570 for advanced cancer analyses and n 5 1,965/4,128 for

nonadvanced cancer analyses).
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with matching), we expect strong discrimination of advanced
cancer with the addition of these other model factors.

Although the AI score significantly increased prediction
across all types of cancer, there was less evidence for
improvement in discrimination of interval cancers with AI
score added to density measures. The smaller gains in AUC
likely reflect the strong association of breast density with
interval cancers, even when assessed years before the
cancers.15 A prior report8 showed that inclusion of the AI
score with density measures assessed within 2 years of the
cancer resulted in improved discrimination of interval cancer
but differed from our study in its focus on near versus long-
termprediction, its definition of interval cancers over a 2-year
versus 1-year period, and use of area-based density23 versus
clinical BI-RADS density or volumetric measures, which
may show stronger associations with interval cancer than
area-based density measures. Both reports suggest, though,
that breast density measures may be complementary to AI
detection and risk and need to be considered for prediction
of all invasive cancer types.

With the advent of new AI and other imaging risk factors for
breast cancer risk, it is important to consider clinically versus
statistically significant improvement in discrimination for risk
prediction. We define clinically important changes in AUC
using prior work on the addition of new risk factors, including
benign breast disease (BBD) and the polygenic risk score
(PRS), to established risk models for invasive breast cancer.
Inclusion of BBD to the BCSC riskmodel resulted in a change
in AUC of 0.65 to 0.66,24 and inclusion of the breast cancer
PRS to the BCSC model resulted in a change in AUC from
0.66 to 0.69.25 Thus, we propose a change in AUC of 0.01 to
0.03 as clinically significant. Importantly, the inclusion of the
Transpara AI score to all models with breast density sur-
passes this threshold across all invasive cancer types.

Finally, our study cannot disentangle whether the AI score on
mammograms 2-5.5 years before the cancer is reflective of
suspicious findings underlying breast cancers missed at
review or identifying suspicious changes that may develop
into a detectable breast cancer in the future. Our models that
incorporate both BI-RADS assessment and the AI score show

that the AI score is robust and contributes additional risk
information not contained in the BI-RADS assessment. Im-
portantly, some of the high AI scores, reflective of suspicious
changes, are subsequently associated with a diagnosis of
advanced cancer or aggressive tumors that are not detect-
able until rapid growth into a detectable mass. It is an ad-
vantage of AI algorithms to identify suspicious areas that
could develop into advanced cancer since it provides the
opportunity to apply screening strategies among those at high
risk of these cancers to potentially increase detection of these
tumors at an earlier stage.

We acknowledge several limitations in our study including
focus on two-dimensional mammography instead of
digital breast tomosynthesis or three-dimensional mam-
mography, the focus on one AI algorithm, and the limited
power to evaluate groups by race or ethnicity. In particular,
our statistical power for comparisons within advanced
cancer and interval cancer groups might have limited our
ability to detect smaller contributions to discriminatory
accuracy of imaging-based AI score to density models.
Although racial and ethnic differences have not been seen
to date for Mirai,1 there have been differences seen in
volumetric density by race,26 and it will be important to
consider future analyses within multiple races and eth-
nicities. In addition, the retrospective and case/control
nature of the study design limits absolute risk estimation
and enriches for cancer, not allowing for actual estimates
for the impact of AI when in wider use; prospective cohort
studies will allow the estimation of absolute as opposed to
relative risk and evaluate the impact of the AI score on
relevant clinical thresholds.

In conclusion, the Transpara AI score improves long-term
risk prediction when combined with clinical risk factors
including breast density for overall invasive cancers,
screen-detected, advanced, and nonadvanced cancers.
For interval cancers, density measures remain of greatest
importance for discrimination, even years before the
cancer. Incorporating both density and AI scores into long-
term risk models will be important for accurate prediction of
invasive cancer outcomes, in particular, advanced cancer.
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