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Abstract
Chilling Tolerant Divergence 1 (COLD1) gene consists of Golgi pH Receptor (GPHR) as well as Abscisic Acid-linked G 
Protein-Coupled Receptor (ABA_GPCR), which are the major transmembrane proteins in plants. This gene expression has 
been found to be differentially regulated, under various stress conditions, in wild Saccharum-related genera, Erianthus arun-
dinaceus, compared to commercial sugarcane variety. In this study, Rapid Amplification of Genomic Ends (RAGE) technique 
was employed to isolate the 5′ upstream region of COLD1 gene to gain knowledge about the underlying stress regulatory 
mechanism. The current study established the cis-acting elements, main promoter regions, and Transcriptional Start Site 
(TSS) present within the isolated 5′ upstream region (Cold1P) of COLD1, with the help of specific bioinformatics techniques. 
Phylogenetic analysis results revealed that the isolated Cold1P promoter is closely related to the species, Sorghum bicolor. 
Cold1P promoter-GUS gene construct was generated in pCAMBIA 1305.1 vector that displayed a constitutive expression 
of the GUS reporter gene in both monocot as well as dicot plants. The histochemical GUS assay outcomes confirmed that 
Cold1P can drive expression in both monocot as well as dicot plants. Cold1P’s activities under several abiotic stresses such 
as cold, heat, salt, and drought, revealed its differential expression profile in commercial sugarcane variety. The highest 
activity of the GUS gene was found after 24 h of cold stress, driven by the isolated Cold1P promoter. The outcomes from 
GUS fluorimetric assay correlated with that of the GUS expression findings. This is the first report on Cold1P isolated from 
the species, E. arundinaceus.
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Introduction

The development of stress-tolerant plant varieties has 
become crucial in the recent years, due to the rapidly 
increasing human population and the scarcity for arable land 

and fresh water (Mohanan et al. 2020). Across the globe, 
sugarcane (Saccharum spp.) is the most important crop cul-
tivated to produce sugar and ethanol (Mohanan et al. 2021). 
Several physiological aspects of the plants get affected by 
abiotic elements such as cold, heat, salt, and drought, result-
ing in a considerable loss of crop yield for the farmers. A 
sparse study was conducted earlier to explain the tolerance 
mechanisms in plants at molecular level.

Genetic engineering is an advantageous and a power-
ful technique to enhance the crop varieties and yield. This 
technique is applicable especially in case of perennial crops 
like sugarcane that have polyploid nature and consume long 
duration to develop a new variety (14 years) and impair the 
trait-specific traditional breeding (Singh and Rajam 2009; 
Gambino and Gribaudo 2012). Even though genetic trans-
formation is the fastest method to achieve varietal improve-
ment, it takes 4–6 weeks to form a single plantlet through 
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direct regeneration, from the most responsive transformed 
cell or tissue (Takebe et al. 1971; Horsch et al. 1985). On 
the other hand, development of transgenic sugarcane plants 
requires almost one year. To counteract this lengthy time 
requirement, alternative genetic transformation strategies 
such as transient expression have been developed. Transient 
transformation method brings temporary alterations in the 
gene expression and is useful as a rapid analysis technique 
that can provide insights about the functionality of a gene or 
its regulatory elements (Gunadi et al. 2019). Particle bom-
bardment is the most reliable technique that can rapidly ana-
lyze the gene regulatory components like promoters, introns 
and terminators (Hernandez-Garcia et al. 2010).

Promoter is a key cis-acting region that plays a crucial 
role in both gene construction as well as genetic engineering 
processes for the purposes of gene expression and transcrip-
tion. Promoter sequences are located upstream of the cod-
ing area and are confirmed by the proteins, involved in the 
transcription process. Constitutive promoters correspond to 
active promoters that are present in every cell type and dur-
ing every developmental stage (Porto et al. 2014; Potenza 
et al. 2004). Primarily, constitutive promoters are isolated 
from the upstream regions of highly-expressed house-keep-
ing genes, such as one that encodes ubiquitin (Hernandez-
Garcia et al. 2010; Li et al. 2012), actin (He et al. 2009; 
Beringer et al. 2017), elongation factors (Suhandono et al. 
2014; Zhang et al. 2015), nutrient uptake genes (Murugan 
et al. 2022; 2023), etc. Only a few constitutive promoters, 
for instance the maize ubiquitin promoter (M-ubi), are fre-
quently employed in monocots, particularly sugarcane, to 
the best of researcher’s knowledge.

Ma et  al. (2015) recognized a correlation between 
COLD1 and low temperature stress, which induces a down-
stream response. The transcriptome analysis, conducted 
upon wild sugarcane species (Saccharum spontaneum IND 
00-1037) in terms of low temperature stress, have shown that 
COLD1 is highly upregulated and has a key role in stress 
regulatory mechanism (Dharshini et al. 2016; Selvarajan 
et al. 2018 Dharshini et al. 2020a; 2020b). Recently, the 
authors (Anunanthini et al. 2019) identified the COLD1 gene 
and reported its functional confirmation during abiotic stress 
in monocots. With this finding as a preliminary evidence, a 
novel COLD1 gene promoter was isolated from Erianthus 
arundinaceus, a highly abiotic stress-tolerant wild relative of 
the Saccharum family and analyzed under different abiotic 
stresses such as cold, heat, salt and drought under transient 
expression using real-time PCR technique.

Materials and methods

Plant materials and growth conditions

To isolate the COLD1 promoter region, single bud sets 
of E. arundinaceus Bethuadahri clone were planted and 
grown under greenhouse conditions (at a temperature of 
25 ± 2 °C, 16/8 h of photoperiodic light and 75% Rela-
tive Humidity) for about 3 months. To conduct transient 
expression analysis, Saccharum hybrid Co 86032 single 
bud sets and Nicotiana benthamiana seeds were sown 
and grown under greenhouse conditions (at a temperature 
of 28 ± 2 °C, 16/8 h of photoperiodic light and 65–70% 
Relative Humidity, Narayan et al. 2021) until the tobacco 
reached three-leaf stage and the sugarcane reached inter-
node formation stage.

Isolation of the upstream region of COLD1 gene 
using RAGE

Genomic DNA was isolated from the leaf extract of E. 
arundinaceus Bethuadahri using CTAB method (Doyle 
and Doyle 1990). Genomic DNA (2 µg) was partially 
digested using DraI, EcoRV and SmaI blunt-end restriction 
enzymes (Thermo Fisher Scientific Company Ltd., USA) 
individually. Then, the restricted products were purified 
and ligated with flanking adapter sequences (Table  1) 
using T4 DNA ligase at 4 °C overnight. Then, primary 
PCR was executed by employing Adapter Specific forward 
Primer 1 (ASP1) and COLD1 gene-specific reverse primer 
1 (CSR1) under standard conditions as given herewith; 
94 °C for 5 min followed by 35 cycles of 94 °C for 45 s, 
58 °C for 30 s and 72 °C for 2 min. The PCR reaction was 
terminated by a final extension of 72 °C for 10 min. Then, 
the primary PCR product was diluted to 50 ng/µL and 
used as a template for secondary PCR using adapter-spe-
cific forward primer 2 (ASP2) and COLD1 gene-specific 
reverse primer 2 (CSR2) under the same primary PCR 
conditions. The amplified PCR product was then purified, 
cloned using InsTAclone PCR Cloning Kit (Thermo Fisher 
Scientific, USA), sequenced and named as Cold1P. ASP1, 
ASP2, CSR1 and CSR2 primers for which the details are 
listed in Table 2.

Table 1   Adapter sequences used for RAGE technique to isolate Cold1P

Long arm 5′ CTA​ATA​CGA​CTC​ACT​ATA​GGG​CTC​GAG​CGG​CCG​CCC​ GGG​CAG​GT 3′
Short arm 5′ ACC​TGC​CC 3′
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In silico analysis of 5′ regulatory region of COLD1 
gene

Homology of the isolated Cold1 promoter (Cold1P) was 
analyzed using BLASTN search that is available at NCBI 
(http://​blast.​ncbi.​nlm.​nih.​gov). Plant CARE (http://​bioin​
forma​tics.​psb.​ugent.​be/​webto​ols/​plant​care/​html) and 
PLACE (https://​sogo.​dna.​affrc.​go.​jp/​cgibin/​sogo.​cgi?​lang=​
en&​pj=​640&​action=​page&​page=​newpl​ace; Suhandono 
et al. 2014) tools were used to predict the core and cis-acting 
elements, present in the 5′ regulatory region of COLD1 gene 
sequence, obtained through RAGE technique. Transcrip-
tional Start Site (TSS), located in the sequence, was pre-
dicted with the help of Neural Network Promoter Prediction 
(NNPP) (https://​www.​fruit​fly.​org/​seq_​tools/ promoter.html) 
tool (Basyuni et al. 2018). Secondary RNA structure of the 
isolated 5′ region was projected using Vienna suit (http://​
rna.​tbi.​univie.​ac.​at/​cgi-​bin/​RNAfo​ld.​cgi; Philip et al. 2013). 
Both Multiple Sequence Alignment (MSA) and phyloge-
netic tree were constructed using BLASTN search sequence 
results obtained from NCBI using MEGA6 software.

Plasmid construction

The isolated Cold1P was ligated into pCAMBIA 1305.1 vec-
tor with the help of BamHI and NcoI restriction enzymes 
by switching the CaMV35S. Finally, the obtained construct 
was named as pSBI C1P::GUS (Fig. S1A). In this study, 
the commercially available pCAMBIA 1305.1 (pCAMBIA 
1305.1 CaMV35S::GUS) vector was used as a control.

Agrobacterium transformation

Agrobacterium tumefaciens LBA4404 strain, harbouring 
binary vectors such as pSBI C1P::GUS and pCAMBIA 
1305.1 used for this study was prepared by freeze–thaw 
method, followed by 3  h of shaking at 28  °C in YEP 
medium. The grown culture was then pelleted and resus-
pended in 100 µL of fresh YEP medium to plate it over YEP 
plates, containing 10 mg/L rifampicin and 50 mg/L kanamy-
cin. The positive colonies were screened with hygromycin 

and Cold1P through colony PCR using specific primers 
(Table 3).

Transient plant transformation

Sugarcane transformation

To conduct transient plant expression experiments, shoots 
were selected from 6 to 8 months grown sugarcane of geno-
type Co 86032. Young meristematic leaf bits were incubated 
in dark at 25 °C for seven days under basal Murashgee and 
Skoog (MS) medium, standardized as per Chakravarthi et al. 
(2015). The 1-week old meristematic leaf bits, of 1–2 cm2 in 
length, were then transferred to Murashgee and Skoog (MS) 
osmotic media, containing 50 g/L Sorbitol and 50 g/L Man-
nitol, 4 h prior to particle bombardment so as to enhance 
the transformation efficiency. The leaf bits were arranged 
in a circular manner at the center and the petri dishes were 
placed in a particle inflow chamber at 4 and 8 cm distance. 
About 1 µg of plasmid DNAs such as pSBI C1P::GUS and 
pCAMBIA 1305.1 were bombarded separately in the plates 
containing meristematic leaf bits.

Tobacco transformation

Agrobacterium, containing pSBI C1P::GUS and pCAMBIA 
1305.1 plasmid DNAs, were cultured in Luria Bertani (LB) 
broth overnight. Then, the cultures were centrifuged and 
dissolved in agroinfiltration medium (full strength MS with 
0.5 M MgCl2 and pH 5.7) with 100 µM acetosyringone. 
Afterwards, these Agrobacterium cells were infiltrated into 
intercellular spaces of the intact plant leaves (N. benthami-
ana) with a needleless syringe. About 100 µL of Agrobacte-
rium suspension was infiltrated into 2–4 spots (about 2–4 cm 
in the infiltrated area) in a single N. benthamiana leaf as 
per the procedure recommended by Yang et al. (2000). The 
infiltrated N. benthamiana plants were then transferred to 
controlled transgenic glasshouse conditions.

Table 2   Gene specific and adapter specific primers used for the isola-
tion of Cold1P using RAGE

Name Sequence

ASP1 GGA​TCC​TAA​TAC​GAC​TCA​CTA​TAG​GGC​
ASP2 AAT​AGG​GCT​CGA​GCGGC​
CSR1 TCT​GTT​GGA​AAT​TTA​ACT​CGG​TGT​GG
CSR2 CTG​CGG​CCA​TGT​TCT​TTT​TCC​

Table 3   Primers used to confirm promoter of interest (Cold1P) and 
hygromycin in transformed Agrobacterium cells through colony PCR

Name Sequence

HPT FP ATG​TCC​TGC​GGG​TAA​ATA​GCT​
HPT RP ATC​GCG​CAT​ATG​AAA​TCA​CGCC​
C1P FP ATG​CGG​ATC​CTA​ATA​GGG​GGA​AAG​CGGC​
C1P RP ATG​CCC​ATG​GCC​TTT​GCT​GTA​TTC​CTTGC​

http://blast.ncbi.nlm.nih.gov
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
https://sogo.dna.affrc.go.jp/cgibin/sogo.cgi?lang=en&pj=640&action=page&page=newplace
https://sogo.dna.affrc.go.jp/cgibin/sogo.cgi?lang=en&pj=640&action=page&page=newplace
https://www.fruitfly.org/seq_tools/
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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Abiotic stress treatment

For heat stress, the bombarded leaf bits were incubated at 
40 °C whereas for cold stress, the bombarded explants were 
incubated at 4 °C. To expose the plants to salinity stress, the 
explants were incubated in MS media (3 mg/L 2,4-d and 
30 mg/L hygromycin) containing 150 mM NaCl, whereas for 
drought treatment, the explants were incubated in MS media 
(3 mg/L 2,4-d, 30 mg/L hygromycin) containing 200 mM 
Mannitol (Errabii et al. 2007). Expression analysis was con-
ducted using the explants collected after treatment up to 
12 and 24 h of stress induction, against a set of untreated 
controls.

Expression analysis using quantitative real‑time PCR 
(qRT‑PCR)

Total RNA was isolated from treated leaf samples and 
untreated control samples by TRIzol method. Genomic DNA 
contaminant was removed by the addition of DNaseI (Inv-
itrogen, USA). 1 µg of RNA samples was taken for cDNA 
synthesis using the kit as per manufacturer’s instructions 
(Thermo Fisher Scientific Company Ltd., USA).

cDNA synthesized from treated and untreated control 
RNA samples was used to perform quantitative GUS expres-
sion analysis using real-time PCR (RT-PCR) technique. IDT 
software was used to design the primers for specific amplifi-
cation of GUS and housekeeping gene i.e., glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (Table 4). Quantita-
tive Real-Time PCR (qRT-PCR) was performed in a final 
volume of 25 µL, consisting 12.5 µL of SYBR Green Master 
Mix (Thermo Fisher Scientific Company Ltd., USA), 2.0 
µL of ROX reference dye, 1 µL of cDNA, 0.2 µL of forward 
and reverse primers and 9.1 µL of nuclease-free water. qRT-
PCR was conducted for all the cDNA samples (retrieved 
from cold, heat, salt and the drought-exposed leaf samples) 
along with control in Applied Biosystems, USA, using the 
procedure recommended by Manoj et al. (2019) and Narayan 
et al. (2019). These experiments were repeated with three 
biological and three technical replications. 2−ΔΔCT method 
was used to estimate the relative expression as per the litera-
ture, Livak and Schmittgen (2001).

Histochemical GUS staining

Both bombarded leaf bits and the agro-infiltrated leaf bits 
were incubated with 50 mM phosphate buffer (pH 7.2) for 
about 1 h after which leaf bits were transferred to 5-bromo-4 
chloro-3-indoyl-β-d-glucuronide (X-gluc) and incubated at 
37 °C overnight. The leaf bits were then decolorized using 
70% ethanol. The modified procedure of Kapila et al. (1997) 
was followed in this study. The observations, in terms of 
formation of number of blue loci on leaf fragments, were 
recorded using a stereomicroscope. Transient GUS expres-
sion was quantified based on the average number of GUS 
foci per explant.

Protein extraction and GUS quantitative assay

Both treated as well as the control leaf samples were ground 
using protein extraction buffer (Na2 EDTA, dithiothreitol 
(DTT), NaPO4 (pH 7.0), triton X-100 and sodium lauryl 
sarcosine). Then, the extracted proteins were added to assay 
buffer (4-methyl umbelliferyl b-d-glucuronide), followed by 
the addition of stop buffer (Na2CO3). The liberated 4-methyl 
umbelliferone was measured for its fluorescence using spec-
trofluorometer with excitation at 365 nm and emission at 
455 nm (Jefferson et al. 1987).

Results

Isolation of 5′ regulatory region of COLD1 gene 
through RAGE and in silico analysis

COLD1 gene, isolated from the highly abiotic stress tolerant 
wild relative of sugarcane i.e., E. arundinaceus IK 76-81, 
was studied earlier under abiotic stress conditions (Anunan-
thini et al. 2019). The current study attempted to isolate and 
characterize the 5′ regulatory region so as to extensively 
analyze its expression and signals that drive the expression 
of COLD1 gene. The secondary PCR results arrived at only 
one 600-bp band in the template DNA that was digested 
with DraI restriction enzyme (Fig. S2). The 600-bp pro-
moter contained a few parts of the gene sequence along with 
5′ upstream promoter region (Cold1P). Therefore, the 484 
bps of COLD1 5′ regulatory region was further processed 
for functional characterization.

PlantCARE database and PLACE tool were utilized to 
analyze the putative transcriptional binding site/cis-acting 
elements that revealed the presence of putative abiotic and 
biotic stress-inducing elements and sites (Rombauts et al. 
1999; Koul et al. 2019) as listed in Table 5. MYB, AP2, Sp1, 
ERF, Dehydrin, LEA_5, bZIP, WRKY and MYB are some 
of the commonly known stress-inducible transcriptional 
binding sites that are present across the stress-inducible 

Table 4   qRT-PCR primers designed for expression analysis

Name Sequence

Forward primer (GAPDH RT) AAG​GGT​GGT​GCC​AAG​AAG​G
Reverse primer (GAPDH RT) CAA​GGG​GAG​CAA​GGC​AGT​T
GUSPLUS RT GGA​ATG​GTG​ATT​ACC​GAC​G
GUSPLUS RT ATA​CCT​GTT​CAC​CGA​CGA​CG
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promoter region. Figure S1B illustrates the cis-acting ele-
ments present in Cold1P. The TSS, predicted using Neural 
Network Predictor, helped in identifying its region (Table 6). 
RNA secondary prediction revealed that the promoter has a 
free energy of thermodynamic ensemble −170.70 kcal/mol 
with ensemble diversity being 149.36 (Fig. S1C). Phyloge-
netic tree constructed using MEGA6 software displays that 
the isolated promoter region has high similarities towards 
the closely-related cereal crops like Sorghum bicolor, 
Setaria italica and Zea mays (Fig. 1).

Histochemical GUS analysis

Bombarded sugarcane leaf bits and agro-infiltrated tobacco 
leaves were visualized for blue colour, attributed by the 
expression of GUS reporter gene (Shi et  al. 2019; Yan 
et al. 2019), under a light microscope and the blue colora-
tion proved the expression driven by Cold1P (Fig. 2A, B). 
This phenomenon initially proved that the 484 bps of the 
5′ regulatory region have the ability to transcribe a gene 
sequence that results in its expression. The elevated GUS 
readings, from quantitative fluorometric assay, also proved 

that Cold1P can drive the GUS gene with precision during 
stress induction.

Relative transient expression profiling of GUS gene 
by qRT‑PCR

Comparative CT method was used to examine the transcript 
expression pattern of GUS gene under cold, heat, salt and 
drought conditions using real-time experiment. Overall, the 
expression patterns driven by CaMV35S and Cold1P under 
cold stress were comparatively higher than the rest of abiotic 
stresses. During cold stress, Cold1P-driven GUS gene got 
upregulated up to 1.6 folds whereas CaMV35s-driven GUS 
got upregulated up to 1.3 folds, in comparison with the con-
trol after 12 h of stress. Cold1P-driven GUS gene had a 3.1-
fold upregulation after 24 h whereas CaMV35S-driven GUS 
gene exhibited an upregulation up to 2.1 folds than control.

The expression patterns of Cold1P-driven GUS gene, 
under heat, salt and drought conditions, got upregulated 
in terms of 1.4, 1.3 and 1.5 folds respectively. However, 
CaMV35S promoter-driven GUS gene got upregulated in 
terms of 1.1, 1.1 and 1.2 folds only after 12 h. GUS gene, 
driven by Cold1P, also got upregulated up to 1.9, 1.4 and 
1.7 folds whereas GUS gene, driven by CaMV35S promoter, 
exhibited 1.6, 1.3 and 1.4 folds upregulation after getting 
exposed to 24 h of heat, salt and drought stress respectively 
(Fig. 2C).

Discussion

Although the application of transgenic technology has 
improved a number of crop species, the significance of 
transcriptional control and the underlying mechanisms that 
involve gene promoters still remain insignificant. Only a 
handful of monocot-specific ubiquitin promoters have been 
described to date (Philip et al. 2013; Moyle and Birch 2013). 

Table 6   Transcription start site prediction of Cold1P isolated from E. 
arundinaceus using neural network predictor

Bold value indicates the possible transcription start site

Start End Score Promoter sequence

181 231 0.98 GGC​CCA​TAT​ATC​ACT​
GCC​GAA​GCC​GTA​
TAG​CCG​GAG​ATAA​
GGC​ATA​

270 320 0.97 TCA​GGC​TTA​AAG​TCC​
AGC​CCG​GCC​CAC​
AAA​TGG​CGC​ATCA​
CCG​CGG​

Fig. 1   Phylogenetic tree of Cold1P promoter from different related 
genera with Erianthus arundinaceus was constructed using Neigh-
bour-Joining method with 1000 bootstrap replicates using MEGA6 

software. The figures next to the branch demonstrate the result of 
1000 bootstrap repeats expressed in percentage. Isolated Cold1P pro-
moter has shown highly related to Sorghum bicolor 
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Using RAGE approach, a new promoter (Cold1P) was iso-
lated for the first time in this study, from wild Saccharum 
genus, E. arundinaceus. The primary objective of this work 
was to comprehend how plants perceive abiotic stress and 
transmit this information to induce gene expression changes 
that lead to tolerance. One of the strategies followed in this 
study to achieve the objective was to discover the cis-acting 
elements that are present upstream of the gene sequence that 
encodes the abiotic stress regulatory components (Doherty 
et al. 2009). The in silico characterization of Cold1P, using 
PlantCare and PLACE tools, detailed about the probable 
presence of cis-acting elements within the promoter region. 
Even though the isolated Cold1P was short (484 bp), it was 
found that a large number of potential biotic and abiotic 
stress-responsive components is dispersed across the region. 
The extremely compact distribution of stress-responsive ele-
ments that surround the TSS, demonstrates the adaptability 
of gene expression in eukaryotic systems (Zhang and Peter-
son 2005; Lin et al. 2010). Further, deletion studies should 
be conducted to confirm the function of each element pre-
sent within the isolated regulatory region of COLD1.

The 5′UTR area of E. arundinaceus COLD1 was found 
to be highly homologous to the 5′UTR regions of S. bicolor, 
S. italica, and Z. mays, from Multiple Sequence Alignment 
(MSA) of Cold1P region and BLAST search results (Fig. 
S3). The phylogenetic tree demonstrates that Cold1P region 
is closely linked to the cereals. These connections have been 
investigated earlier and can be correlated with the current 
study findings on COLD1 gene (Anunanthini et al. 2019).

Transient expression briefs the gene expression process 
and is often considered as a preliminary screening stage for 
the evaluation of the components, involved in gene expres-
sion (Gunadi et al. 2019). This method is useful since the 
gene expression can be evaluated with in a short period, 
without the need for regeneration of transformed cell or tis-
sue (Porto et al. 2014). pSBI C1P::GUS, a binary vector, was 
constructed for plant expression study. Histochemical GUS 
assay results revealed that Cold1P can drive the expression 
in both monocot and dicot plants and this inference opens 
new opportunities for the development of stress-tolerant 
crops through overexpression of abiotic stress-related genes. 
Several studies have been conducted earlier globally, in 
which GUS gene was employed as a reporter gene on numer-
ous plant species, including sugarcane (Nomura et al. 2000; 
Maghuly et al. 2008; Philip et al. 2013; Chakravarthi et al. 
2015; Palaniswamy et al. 2016). Translation, splicing, and 
several key biological processes depend on the interaction 
between RNA and protein molecules. However, it is not pos-
sible to empirically evaluate their intensity and specificity 
(Kappel et al. 2019). RNA secondary structure prediction, 
by Vienna suit for the 5′UTR of COLD1, exhibited short 
secondary structural branches. The finding is supportive in 

Fig. 2   GUS histochemical staining of bombarded sugarcane (A) and 
infiltrated tobacco (B) leaf segments visualized under a light micro-
scope. The blue colour represents expression of GUS gene in the tis-
sues. Expression profiling of GUS gene driven by Cold1P compared 
to CaMV35S constitutive promoter in bombarded sugarcane leaf bits 
upon various abiotic stresses (Heat, Cold, Drought, Salt) through 
qRT-PCR (C). Where, different stress treatments are given in X-axis 
and relative expression is given on Y-axis. GUS histochemical analy-
sis in bombarded sugarcane leaf bits on exposure to different abiotic 
stresses (D). Where, different stress treatments are given in X-axis 
and GUS activity is given on Y-axis. Higher level of GUS activity 
was observed with Cold1P compared to CaMV35S in both expression 
profiling and GUS assay
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envisaging the RNA degradation and protein production 
processes.

Real-time measurement of the desired gene, in tran-
siently-expressed explants, can shorten the time required 
for analysis than the stable transgenic plants. In this study, 
transient expression of the desired genes was quantified via 
RT-PCR expression analysis to reduce the long duration, 
taken for its validation (Zeinipour et al. 2018; Klay et al. 
2018; Vera-Guzmán et al. 2019). The outcomes from the 
comparative expression analysis, conducted using qRT-PCR, 
infer that the expression of GUS gene, driven by Cold1P, 
is higher than that of the CaMV35S promoter-driven GUS 
gene expression among the meristematic leaf bits of sugar-
cane. Of all the abiotic stresses analyzed in this study, GUS 
gene had a significantly elevated rate of expression, when 
driven by Cold1P during cold stress after 24 h of cold induc-
tion. This indicates that the Cold1P region plays a prominent 
role in driving the GUS gene expression in sugarcane, a 
monocot plant. When this promoter was deployed in dicot 
plants such as tobacco, the expression rate was limited. The 
results achieved from the transient expression analysis of 
Cold1P in tobacco, clearly show the elevated levels of GUS 
in  tobacco sample, a dicot plant. It proves its suitability to 
drive transgene in dicot plants as well.

The expression pattern of Cold1P was monitored after 
inducing stress, along with control explants, through GUS 
assay in sugarcane meristematic leaf bits at different time 
points. The analysis exhibited an increase in GUS gene 
activity (Fig. 2D) to further demonstrate the activity of the 
isolated promoter region, which correlates with the values 
of earlier studies (Agarwal et al. 2017; Yedahalli et al. 2018; 
Gallo-Meagher and Irvine 1993).

Conclusion

The binary vector construct, developed with COLD1 gene 
regulatory region (Cold1P), has proved to drive the expres-
sion of transgene among different plant species viz., sug-
arcane and tobacco. Overall, the current study on Cold1P, 
isolated from E. arundinaceus, is built in an appropriate 
manner for transgene overexpression in monocot and dicot 
plants. The new promoter, isolated in this study, opens the 
possibility to replace existing promoters or to be used in 
addition to existing promoters in genetic engineering strate-
gies for the improvement of both monocot and dicot crops.
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