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Modulation of bone remodeling by the gut microbiota: a new
therapy for osteoporosis
Zhengtian Lyu1, Yongfei Hu1, Yuming Guo1 and Dan Liu1✉

The gut microbiota (GM) plays a crucial role in maintaining the overall health and well-being of the host. Recent studies have
demonstrated that the GM may significantly influence bone metabolism and degenerative skeletal diseases, such as osteoporosis
(OP). Interventions targeting GM modification, including probiotics or antibiotics, have been found to affect bone remodeling. This
review provides a comprehensive summary of recent research on the role of GM in regulating bone remodeling and seeks to
elucidate the regulatory mechanism from various perspectives, such as the interaction with the immune system, interplay with
estrogen or parathyroid hormone (PTH), the impact of GM metabolites, and the effect of extracellular vesicles (EVs). Moreover, this
review explores the potential of probiotics as a therapeutic approach for OP. The insights presented may contribute to the
development of innovative GM-targeted therapies for OP.
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INTRODUCTION
As a severe skeletal disease, osteoporosis (OP) has garnered
considerable attention due to its characteristic symptoms of low
bone mass and deterioration of bone microarchitecture, which
increases fragility and the risk of fractures.1 Individuals over 50
years old, particularly women, are more susceptible to fractures in
the hip, vertebral body, and wrist.2 Women face a greater risk of
developing OP due to bone loss caused by the sharp decline in
estrogen levels during menopause.3 Moreover, estrogen-
independent mechanisms, such as secondary hyperparathyroid-
ism, chronic inflammation, and senility, can also contribute to the
development of OP.4–7

Bone tissue undergoes continuous renewal through bone
remodeling, which is maintained by the equilibrium of osteoclast
(OC)-mediated bone resorption and osteoblast (OB)-mediated
bone formation.8 The development and application of clinical
therapeutics for OP, including antiresorptive agents and anabolic
agents, primarily depend on the structures and functions of OBs
and OCs.2 In their review of the currently available drugs for OP,
Khosla and Hofbauer noted that some drugs are not recom-
mended for long-term use due to their severe side effects and
complications. Consequently, there is an urgent need to develop
more effective anti-OP drugs.9–11

THE GUT MICROBIOTA REGULATES BONE REMODELING
An imbalance in the gut microbiota (GM), known as dysbiosis, has
been observed in individuals with OP.12–14 The use of ovariecto-
mized (OVX) mice, a widely utilized animal model in OP studies,
has revealed a clear association between GM and bone mass.14

Studies involving artificial interference of the GM in animals have
demonstrated that the GM acts as a regulator of bone mineral
density (BMD).15–22 These interventions generally include fecal

microbiota transplantation (FMT) in germ-free (GF) mice15–19 and
antibiotic treatment in conventionally raised mice.20–22 Addition-
ally, under physiological conditions, the GM has been shown to
influence bone development through “maternal vertical transmis-
sion” and “cohabitation transmission”.23 In this review, we
summarize recent findings on the regulation of bone metabolism
by the GM and examine its promising potential as a therapeutic
target for OP.

Evidence from experiments with GF mice
The administration of FMT in GF mice has demonstrated that the
GM plays a significant role in regulating bone mass.15–19 The initial
study that investigated the effect of the GM on bone mass
discovered that GF mice exhibited a higher BMD and fewer OCs
than wild-type (WT) mice.15 Moreover, male GF mice had higher
BMD, a higher ratio of bone volume to total volume (BV/TV), and
an increased trabecular bone (Tb) number (Tb. N.) in the proximal
tibia in comparison to specific pathogen-free (SPF) mice.16

Furthermore, the alveolar BMD of GF mice was found to be
higher than that of SPF mice.17 However, Schwarzer et al. showed
that GF mice had shorter femurs and lower cortical bone (Cb)
thickness, Cb fraction, and Tb fraction than WT mice.18 The
variability in these study results could potentially be attributed to
the differences in the sex and genetic background of the mice
used. The GM exhibited varying regulatory patterns depending on
colonization time, as well as the sex and strain of mice. After one
month of colonization, female GF mice experienced decreased Tb
mass with increased levels of bone absorption marker C-terminal
telopeptides of type I collagen (CTX-I) and bone formation marker
procollagen type I N-terminal propeptide (P1NP). Furthermore,
mice subjected to extended GM colonization had longer femurs
than GF mice, despite comparable Tb mass, bone resorption
markers, and bone formation markers.19
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Evidence from experiments in antibiotic-treated mice
The administration of antibiotics is a model that is widely used to
investigate the relationship between the GM and host metabo-
lism.24 Weaned female mice exhibited a higher BMD after
antibiotic therapy (penicillin, vancomycin, penicillin plus vanco-
mycin, or chlortetracycline; 1 μg·g−1 body weight) for three weeks
than untreated mice.21 Treating parental mice with antibiotics also
altered the skeletal structure of their offspring in a gender-specific
manner. Compared to the control group, male mice displayed
decreased bone mineral content (BMC) and bone area (BA) but
unchanged BMD, while female mice exhibited increased BMD with
no significant changes in BMC or BA.20 One study showed that
female mice exposed to therapeutic doses of amoxicillin, tylosin,
or a mixture of the two (alternating courses of amoxicillin and
tylosin) on days 10–15, 28–31, and 37–40 displayed an increase in
BMC and BA across all administrations, with amoxicillin having the
most significant effect.22 Female mice had increased BV/TV after
one month of treatment with broad-spectrum antibiotics (ampi-
cillin, vancomycin, metronidazole, and neomycin). Oral vancomy-
cin alone also increased bone mass, suggesting that gram-positive
bacteria may play a substantial role in bone remodeling.19

However, administering a four-week course of antibiotics has
been shown to disrupt the Tb architecture of the femur.25

Limitations of using GF mice and antibiotic-treated mouse models
It has been shown that GF mice and antibiotic-treated mice serve
as effective experimental models for demonstrating the regulation
of bone metabolism by the GM. However, they are not considered
suitable as screening models for identifying probiotics as potential
treatments for OP. The use of GF animals as research models is
limited by the absence of a normal GM, which may render the
results of such studies potentially inapplicable to individuals or
animals with a normal GM. The GM is critical for the postnatal
development and maturation of the immune system, which is
essential for bone physiology.26–29 The underdeveloped lymphoid
organs of GF animals, due to a lack of antigenic stimulus, may not
reflect real-life scenarios and result in inaccurate findings
regarding immunity and related pathways.30,31

The use of broad-spectrum antibiotics can have a profound and
long-lasting effect on GM composition. While the GM eventually
returns to baseline within 8 to 31 months, the composition of

bacterial communities often remains altered.32 In addition,
antibiotics can significantly reduce the abundance of bacteria
capable of producing butyrate,32 which has been shown to
promote bone formation.33 Research has also revealed that
antibiotic treatment can dramatically reduce the abundance of
Bacteroidetes, whose reduction is associated with inflammatory
bowel disease (IBD) and type 1 diabetes, both of which involve
excessive bone loss.25,34,35

In summary, various factors, including the host’s sex and
genetics,16–18 GM colonization time,19 and antibiotic treat-
ment,21,25 may influence the composition of the GM. Variations
in GM components could partially explain differences observed
within the same animal model. Even the same strain of mice from
different laboratories may have different GMs.23 As a result, it is
crucial to focus on the function of individual bacterial strains when
evaluating the potential of probiotics as a treatment for OP.

REGULATORY MECHANISM OF BONE REMODELING BY THE GM
As illustrated in Fig. 1, the regulatory mechanism of bone
metabolism by the GM includes direct and indirect effects.
Directly, GM influences bone remodeling through the release of
extracellular vesicles (EVs) or microbial metabolites such as short-
chain fatty acids (SCFAs), polyamines, and hydrogen sulfide (H2S).
Indirectly, the GM regulates bone remodeling by its interaction
with immune cells, such as T helper cells 17 (Th17 cells) and T
regulatory cells (Treg cells), or hormones such as estrogen and
parathyroid hormone (PTH). This section delves into the various
mechanisms through which the GM affects bone remodeling.

The GM regulates bone remodeling through the immune system
The intestine is the largest lymphatic organ and is host to a
diverse array of microorganisms. The instrumental role of the GM
in immune maturation, homeostasis, and inflammatory diseases
has been widely recognized.36 A dysbiotic GM is associated with
increased intestinal permeability, characterized by decreased
expression of intestinal tight junction proteins and leading to
bacterial translocation, chronic inflammation, and the migration of
inflammatory cells.25,30 This persistence of intestinal inflammation
often results in chronic inflammatory diseases that are associated
with bone destruction, even if the inflammatory site is not located
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in the bone, as seen in IBD or Crohn’s disease (CD).37 Significant
bone loss has been observed in various models of intestinal
inflammation, including in dextran sulfate sodium (DSS)-induced
chemical injury, adoptive T-cell transfer of colitis, and Salmonella
enterica infection.38 Several chemokines and inflammatory cyto-
kines in the femur, including granulocyte colony-stimulating factor
(G-CSF), tumor necrosis factor-α (TNF-α), interleukin (IL)-12p40,
MCP-1/CCL-2, RANTES/CCL-5, and keratinocyte-derived chemo-
kine/CXCL1, increased dramatically across multiple colitis models,
resulting in the expansion of osteoclast precursor cells (pre-OC).38

The receptor activator of nuclear factor kappa-B ligand (RANKL),
due to its expression in both activated T cells and mesenchymal
lineage cells, is considered an irreplaceable molecule that bridges
the immune system and skeletal system.39–43 The term “osteoim-
munology” highlights the reciprocal interactions between the
skeletal and immune systems.44,45

T helper 17 cells. Early studies indicated that activated T cells
were an essential source of RANKL.46 Subsequent research,
however, revealed that not all activated T cells have the capability
to stimulate OC differentiation. Only Th17 TNF-α+ cells selectively
express macrophage colony-stimulating factor (M-CSF) and
RANKL, but not interferon (IFN)-γ, which acts as an inhibitor of
OC differentiation.35,46 The mechanism by which Th17 cells
regulate bone metabolism is depicted in Fig. 2. Bone marrow
(BM) Th17 TNF-α+ cells not only promote OC differentiation in the
absence of exogenous osteoclastogenic factors but also stimulate
bone marrow mesenchymal stem cells (BMSCs) to secrete
chemokines (Mcp1, Mip1α, and RANKL) and recruit inflammatory
monocytes (pre-OC) to the BM, resulting in increased bone
resorption.35 Certain bacteria, such as segmented filamentous
bacteria (SFB), Bifidobacterium adolescentis, and Eggerthella lenta,
have been reported to expand Th17 cells.47–49 As a gram-positive
commensal bacterium, SFB stimulates an increase in Th17 cells
and the secretion of IL-17 in the gut.47,50–52 SFB has been
demonstrated to disrupt BMD through maternal vertical transmis-
sion and cohabitation transmission.23,53,54

Th17 cells play a vital role in OVX-induced bone loss.30,55 These
cells stimulate osteoclastogenesis and bone resorption through
the elevated production of IL-17, RANKL, and TNF-α.56 Premeno-
pausal women who underwent OVX have higher numbers of
activated circulating CD3+ CD69+ T cells and CD3+ TNF+ cells in
their peripheral blood than healthy individuals.57 An increase in
Th17 TNF-α+ T-cell-mediated TNF-α is considered the predomi-
nant factor involved in PTH-induced bone loss.5 Th17 cells, which
contain the vβ14+ chain on their T-cell receptor, are typically only
found in the lamina propria under noninflammatory conditions.58

However, the administration of continuous parathyroid hormone
(cPTH) has been shown to increase the number of vβ14+ Th17
cells in the BM, which depends on the presence of SFB.5 TNF
increases Th17 cells (CD4+ IL-17A+ T cells) in the gut in concert
with SFB and guides the migration of intestinal Th17 cells to BM
through the upregulation of CCL20.5 A recent study found that
aging leads to an accumulation of immune cells (including
neutrophils, monocytes-macrophages, and M1-like macrophages)
in the BM of 18-month-old rats.59 The abundance of grancalcin
(GCA) secreted by neutrophils and monocytes-macrophages in
the BM disrupts skeletal microarchitecture by promoting adipo-
genic differentiation and suppressing bone turnover at the
expense of ossification, which are well-known characteristics of
senescent BMSCs.59,60

The following treatment options can be considered based on
the above research: 1. Inhibition of the transportation of immune
cells to the BM. FTY720, an inhibitor of sphingosine 1 phosphate
(S1P) receptor-1, can arrest lymphocyte transportation from
Peyer’s patches (PPs) and mesenteric lymph nodes without
affecting lymphocyte function. FTY720 has been shown to
reduce the number of Th17 cells and Vβ14+ Th17 cells in the

BM.5 2. Transport BM immune cells back to the intestinal tract.
Oral administration of synthetic retinoid AM80 upregulates the
expression of gut-homing molecule α4β7 on T cells, transferring
T follicular helper cells (CD19− CD4+ CXCR+ PD-1+ T cells) from
the inflammation site to PPs and thereby reducing the
inflammatory response.61 Increasing the migration of T cells
from bone to intestine-related lymphoid tissues theoretically
minimizes T-cell-derived RANKL. However, some drugs used to
treat IBD target anti-α4β7 integrin (vedolizumab), which acts
therapeutically by blocking the gut homing of T lympho-
cytes.62–64 Consequently, methods that address both conditions
(OP or IBD) are urgently needed. 3. Neutralize inflammatory
factors with antibodies. A neutralizing IL-17A antibody can
inhibit RANKL expression and bone loss in OVX mice. Deficiency
of IL-17RA or Act1, an IL-17RA-interacting protein, protects mice
from OVX-induced bone loss.65

T Regulatory cells. Contrary to the impact of Th17 cells, Treg cells,
which are CD4+ T cells with immunosuppressive functions, have a
beneficial impact on bone remodeling.48 Certain microbes
regulate bone remodeling by altering the balance between Th17
cells and Treg cells. For example, oral administration of Bacillus
clausii has been shown to significantly increase the population of
CD4+ Foxp3+ Treg cells and decrease the proportion of CD4+

Rorγt+ Th17 cells in the BM and spleen, thereby preventing OVX-
induced bone loss.66 Clostridia have demonstrated considerable
benefits in Treg cell populations.67–70 Furthermore, specific
bacterial species such as Lactobacillus rhamnosus GG (LGG),
Lactobacillus reuteri (L. reuteri), Bifidobacterium breve (B. breve)
AH1205, Bifidobacterium longum (B. longum) AH1206 and probiotic
mixture VSL#3 (a mixture of B. breve, B. longum, Bifidobacterium
infantis, Lactobacillus acidophilus, Lactobacillus plantarum (L.
plantarum), Lactobacillus paracasei, Lactobacillus bulgaricus, and
Streptococcus thermophilus) have the potential to impact both the
abundance and functionality of Treg cells.33,71–74

The mechanism by which Treg cells regulate bone metabo-
lism is illustrated in Fig. 2. Treg cells inhibit osteoclastogenesis
and promote bone formation by secreting anti-inflammatory
cytokines such as IL-4, IL-10, and transforming growth factor-β
(TGF-β).44,75,76 IL-10, an inhibitory cytokine, helps to down-
regulate the expression of RANKL and M-CSF and enhances the
secretion of osteoprotegerin (OPG), thereby inhibiting OC
differentiation and maturation.77 TGF-β plays a critical role in
regulating various stages of OB differentiation, promoting the
proliferation and early differentiation of OB progenitor cells and
stimulating matrix production but inhibiting later differentiation
and matrix mineralization.78 A mixture of Clostridia strains
belonging to clusters IV, XIVa, and XVIII can activate intestinal
epithelial cells to produce TGF-β in the colon.69 Furthermore,
Treg cells have the capacity to stimulate CD8+ T cells to secrete
the Wnt ligand Wnt10b, which stimulates bone formation by
activating Wnt signaling in OBs.33 The administration of LGG did
not result in any increase in BV and bone formation in mice
depleted of Treg cells through anti-CD25 antibody treatment,
highlighting the crucial role of Treg cells in the bone anabolic
activity of LGG.33

The role of the GM in estrogen regulation of bone metabolism
Accumulated research has revealed the irreplaceable role of
estrogen in osteogenesis and osteoclastogenesis.46,79–83 As
illustrated in Fig. 3, estrogen receptor α (ERα) mediates an
estrogen-stimulated net increase in bone formation.84,85 A lack of
ERα results in reduced femur length in female adult mice.86 The
regulation of bone metabolism by estrogen also has close ties to
the immune system, as it protects bone mass through the
downregulation of immune responses and modulation of the
balance between OB and OC.87 Estrogen suppresses RANKL
located in CD3+ T cells and CD20+ B cells88 and elevates the
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production of OPG in osteoblastic cells.89,90 Bone loss resulting
from decreased estrogen is due to the T-cell-mediated increase in
TNF-α, which indirectly enhances OC differentiation.91–94 The
activation of nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) in response to sex steroid deficiency
promotes bone resorption and impedes bone formation.90

The role of the GM in regulating estrogen metabolism is
attracting growing interest. The GM directly contributes to the
control of host sex steroid levels.95 The term “sterolbiome” refers
to the collection of gut microbes that modify these cholesterol-
derived molecules.96 The most critical estrogen-metabolizing
enzymes encoded by the sterolbiome are β-glucuronidases,
β-glucosidases, hydroxysteroid hydrolases, and sulfatases, which
deconjugate estrogens to enhance intestinal reuptake.97,98 These
enzymes and their activities are well represented in the human

GM and are modulated by diet and bacterial density, leading to
changes in local and systemic estrogen levels.99,100 Li et al.
reported that sex steroid deficiency-associated bone loss was
dependent on the GM. Estrogen deficiency induced by leupro-
lide, a gonadotrophin-releasing hormone agonist, was insuffi-
cient to increase bone resorption and Tb loss in GF mice.
Mechanistically, estrogen deficiency led to decreased expression
of intestinal tight junction proteins, increased intestinal perme-
ability, and elevated serum endotoxin levels; however, these
phenotypes were unaffected in GF mice. Only conventionally
raised mice showed increased expression of osteoclastogenic
cytokines in both the BM and small intestine after estrogen
deprivation,30 thus indicating that the bone loss associated with
estrogen deficiency is linked to GM-driven inflammatory
signaling.

3
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The role of the GM in parathyroid hormone regulation of bone
metabolism
As a pivotal hormone regulating calcium balance, PTH plays a
critical role in postnatal skeletal development.101 The effect of PTH
on bone remodeling, as depicted in Fig. 4, is contingent upon the
pattern of exposure of target cells to PTH - whether it is
continuous or intermittent.

Continuous parathyroid hormone. Primary hyperparathyroidism,
a condition characterized by chronic continuous overproduction
of PTH by the parathyroid glands,102 can be modeled in animals
through cPTH infusion.103 This condition, which is a common
cause of OP and fractures,104,105 is characterized by the critical role
of osteocyte-derived RANKL and T-cell-derived IL-17A in promot-
ing bone catabolism.106 However, cPTH was unable to induce
bone loss in either antibiotic-treated or GF mice. The presence of
SFB in the GM enabled cPTH to increase the number of intestinal
TNF+ T cells and Th17 cells, as well as the recruitment of these
cells from the intestine to the BM. The TNF+ T cells in the BM

upregulated CCL20, a chemoattractant that facilitated the recruit-
ment of Th17 cells from the intestine to the BM.5

Intermittent parathyroid hormone. Maximizing the bone anabolic
effects of PTH can be achieved by administering daily injections of
intermittent PTH (iPTH) in young mice.107,108 This intervention
results in a marked increase in both BV and strength by
stimulating bone formation.109,110 The activation of Wnt signaling
in osteoblastic cells drives these effects, which are characterized
by enhanced OB formation, extended lifespan, and reactivation of
bone lining cells.110,111

A recent study revealed that the permissive levels of butyrate
produced by the GM are essential for iPTH to induce bone
anabolism in mice.54 In the absence of the GM, the anabolic
effects of iPTH and antibiotic treatment resulted in no increase in
Treg cells in the gut and BM. However, the administration of
butyrate restored the bone anabolic activity of iPTH and increased
the number of Treg cells. By binding to G-protein-coupled
receptor 43 (GPR43) located in dendritic cells, butyrate stimulates
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Treg differentiation, which then triggers the expression of the Wnt
ligand Wnt10b in BM CD8+ T cells and activates Wnt-dependent
bone formation.54

The GM regulates bone physiology via metabolites
The GM exerts positive effects on distal organs through the
production of secondary metabolites, which serve as essential
regulators of anatomically distant organs.112 These metabolites
are now commonly referred to as “postbiotics”.113

Short-chain fatty acids (SCFAs). Vegetable fiber is a dietary
element that plays an important role in human health and
microbial composition.112 SCFAs, including acetate, propionate,

and butyrate, are produced through microbial fermentation of
nondigestible dietary fiber.114 While acetate can be produced by
various bacterial species, the production pathways for propionate
and butyrate are more limited and involve specific bacterial
strains.115 Akkermansia muciniphila (A. muciniphila) generates
propionate by digesting intestinal mucin.116 Additionally, several
bacterial species, including Eubacterium dolichum, Ruminococcus
bromii (R. bromii), Bacteroides eggerthii, Bacteroides fragilis, and
Veillonella parvula, have been linked to propionate production in
the intestine.117 The majority of butyrate-producing bacteria in the
human gut belong to the families Clostridiaceae, Eubacteriaceae,
Lachnospiraceae, and Ruminococcaceae.118 Representative spe-
cies of these families, such as Faecalibacterium prausnitzii,
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Eubacterium rectale, Eubacterium hallii, R. bromii, and Clostridium
butyricum, have been identified as the key butyrate
producers.119–121

Acetate, propionate, and butyrate significantly increased bone
mass through distinct mechanisms. Acetate inhibits OC numbers
in a T-cell- and B-cell-dependent manner,120 while propionate and
butyrate effectively prevent OVX-induced bone loss by decreasing
OC number and serum CTX-I levels. However, acetate did not
show any protection against OVX-induced bone loss.120 Addition-
ally, acetate, propionate, and butyrate also suppressed OC
differentiation in vitro,120 which may be related to their inhibition
of histone deacetylase activity.112,122–124 Butyrate inhibits osteo-
clastogenesis by suppressing c-Fos, tumor necrosis factor receptor
associated Factor 6 (TRAF6), and nuclear factor of activated T cells
cytoplasmic 1 (NFATc1) expression.120,125,126

Studies of SCFAs in bone formation have mainly focused on
butyrate. After treatment with butyrate, mice exhibited a
substantial increase in BV/TV, serum osteocalcin (OCN), and
mineral apposition rate (MAR) after two and four weeks compared
to those treated with a control vehicle.33 The increase in femoral
BV/TV by butyrate disappeared following inhibition of Treg cells
with a CD25 antibody, demonstrating that the capacity of butyrate
to stimulate bone formation was Treg-dependent.33 While Lucas
et al. reported that butyrate improves bone mass by inhibiting
osteoclastogenesis instead of promoting bone formation,120 early
studies in the 2000s showed that butyrate promotes osteogenic
differentiation of human BMSCs.127,128 These studies demonstrate
butyrate’s ability to promote bone formation, although the
mechanisms appear contradictory. While studies have shown that
the administration of butyrate increased BMSC proliferation in WT
mice but not in mice treated with CD25 antibodies,33 it remains
unclear whether CD25 antibodies affect OB mineralization by
butyrate in vitro. Although initial studies have explored the
mechanism of butyrate’s promotion of bone formation in BMSCs,
further research is necessary using various cell lines or animal
models to provide a complete understanding. Studies of acetate
and propionate on OB are limited. Acetate was recently reported
to increase the differentiation of aging BMSCs by restoring
cytosolic acetyl-CoA levels and remodeling the chromatin
landscape.60

The effective regulation of SCFAs in bone remodeling highlights
their potential role in novel therapeutic strategies in OP treatment.
Researchers have reported that a vegetarian diet or a Mediterra-
nean diet is beneficial to bone health.129,130 Maximizing SCFA
levels by supplementing a diet rich in vegetable fiber or SCFA-
producing bacteria may provide an approach to prevent
against OP.

Polyamines. Ubiquitous in all organisms, polyamines are naturally
occurring organic polycations derived from amino acids and are
involved in various biological processes, such as proliferation,
differentiation, and apoptosis.131 With a fast plasma turnover and
the ability to quickly reach target tissues,132 the majority of the
host polyamine pool is comprised of polyamines originating from
the GM.133 Gut microbes primarily produce polyamines through
the transamination of ingested amino acids, particularly arginine,
by catalytic enzymes.134,135 The decrease in total bacteria by
antibiotic administration resulted in the depletion of spermine
levels in the intestine.133 Additionally, an increased abundance of
A. muciniphila may be associated with polyamine biosynthesis.8

Polyamines have been shown to promote osteogenic differ-
entiation of goat adipose tissue‐derived mesenchymal stem cells
(ADSCs) and mouse BMSCs.8,136,137 Lee et al. demonstrated that
exogenous polyamines regulated osteogenic and adipogenic
differentiation in a reciprocal manner,131 upregulating osteogenic
gene expression (including runt-related transcription Factor 2
(RUNX2), alkaline phosphatase (ALP), osteopontin, and OCN) and
downregulating adipogenic gene expression (such as peroxisome

proliferator-activated receptor (PPAR-γ)), thereby reducing fat
accumulation and promoting extracellular matrix mineralization
and osteogenesis in human BMSCs.131 Additionally, polyamines
are known inhibitors of osteoclastogenesis, with oral administra-
tion of spermidine or spermine directly preventing an increase in
the OC surface/bone surface ratio and a decrease in the BV in OVX
mice.138 Either spermine or spermidine could reduce the number
of multinucleated tartrate-resistant acid phosphatase (TRAP)+ cells
in a concentration-dependent manner in vitro.138 More recently,
daily oral supplementation of a diet containing polyamine-rich
yeast was found to inhibit osteoclastic activation in OVX mice.139

However, inhibition of polyamine biosynthesis in vivo has limited
the beneficial effects of spermine and spermidine on bone
strength.8

Excessive spermidine concentrations were associated with an
increased risk of osteoporotic fracture.140 Spermine synthase is
responsible for synthesizing spermine from spermidine. Deficiency
of spermine synthase causes excessive spermidine accumulation
and a lack of spermine.141 Patients with Snyder-Robinson
syndrome, a syndrome caused by loss-of-function mutations of
the spermine synthase gene, exhibit severe OP and kyphoscoliosis
and have BMSCs with impaired capacities for osteogenic
differentiation and mineralization.142

Hydrogen sulfide. As a vital endogenous gasotransmitter, H2S is
produced through endogenous cysteine catabolism and sulfate-
reducing bacteria (SRB).112,143–145 Germ-free mice have been
found to have significantly lower levels of free H2S in the cecum
and colon than conventional mice.143 Cysteine catabolic bacteria,
including Fusobacterium, Clostridium, Escherichia, Salmonella,
Klebsiella, Streptococcus, Desulfovibrio, and Enterobacter, convert
cysteine to H2S, pyruvate, and ammonia through the action of
cysteine desulfhydrase. Sulfate-reducing bacteria, including Desul-
fovibrio, Desulfobacter, Desulfobulbus, and Desulfotomaculum, are
responsible for producing H2S, with Desulfovibrio being the
dominant genus, and Desulfovibrio piger and Desulfovibrio
desulfuricans being the dominant species.145 H2S serves as a
critical metabolite for GM-mediated bone remodeling.
H2S has been implicated in bone formation and postnatal

skeletal development, with the ability to maintain the self-renewal
and osteogenic differentiation of BMSCs through the Wnt/
β-catenin signaling pathway.146 Sodium hydrosulfide (NaHS), a
common H2S donor, has been shown to decrease the RANKL/OPG
mRNA ratio in human BMSCs.147 In pre-OCs, NaHS inhibited OC
differentiation by reducing intracellular reactive oxygen species
(ROS) levels and triggering nuclear factor erythroid 2-related
Factor 2 (NRF2)-dependent antioxidant responses.147 In pathologic
bone loss, OVX decreased the concentration of serum H2S and two
key H2S-generating enzymes (cystathione β-synthase and
cystathione γ-lyase) in the BM.148 H2S deficiency in cystathione
β-synthase knockout mice leads to a consistently osteoporotic
phenotype149 with impaired BMSCs and impaired bone forma-
tion.146 Restoration of H2S levels by the H2S donor GYY4317
reversed the osteopenia phenotype and osteogenic deficiency of
BMSCs.146 The administration of GYY4137 increases serum H2S
levels and bone formation by activating Wnt signaling via
increased Wnt10b production and prevents the loss of Tb.148

Gut microbe-derived extracellular vesicles
Extracellular vesicles (EVs), which bacteria release as a means of
interspecies communication, are spherical lipid bilayer nanostruc-
tures with diameters ranging from 10 to 400 nm. These
nanostructures are comprised of various components, including
bioactive proteins, lipids, nucleic acids, and virulence factors.150

Their unique nanoscale structure ensures the long-distance
transport of EVs and their interior molecules throughout the
intracellular compartments in a concentrated, protected, and
targeted manner.151 Moreover, EVs released by different microbes

Gut microbiota and bone remodeling
Z Lyu et al.

7

Bone Research           (2023) 11:31 



exhibit different characteristics, such as different morphology,
composition, and biogenesis. Additionally, environmental condi-
tions can impact the protein profiles of EVs.152

Tong et al. isolated EVs from LGG that had a diameter of
161.9 ± 54.8 nm and expressed the exosomal protein TSG101. Oral
administration of LGG-released EVs effectively ameliorated DSS-
induced colitis by inhibiting Toll-like receptor (TLR) 4/NF-κB/nod-
like receptor family 3 (NLRP3) axis activation. Treatment with LGG-
EVs also reshaped the GM in colitis mice, with characteristic
beneficial bacteria such as A. muciniphila and Bifidobacterium
animalis clustering in the LGG-EV group.153 Administration of L.
reuteri-EVs attenuated LPS-induced inflammation in broilers,
thereby improving growth performance, reducing mortality, and
reducing intestinal injury.154 Administration of EVs released from
Lactobacillus sakei NBRC15893 was reported to enhance immu-
noglobulin A production by activating host TLR2 signaling.155 In
addition, EVs derived from A. muciniphila were effective in
protecting against DSS-induced colitis.156 Administration of A.
muciniphila-released EVs was also found to regulate lipid
metabolism and inhibit inflammation in the colon, adipose tissue,
and liver, thereby ameliorating high-fat diet-induced obe-
sity.157,158 The “gut-bone axis” has received limited attention
regarding research on EVs, with only one study demonstrating
that the protective effect of A. muciniphila on bone is mediated by
the secretion of EVs. These nanovesicles enter and accumulate in
bone tissues, inhibiting osteoclastogenesis and promoting
osteogenesis.159

Due to the potential dangers of genetically modified organisms
in clinical settings, EVs are considered an alternative to probiotics
in some immunocompromised individuals.152 Chronic diseases
such as inflammation or obesity are recognized as being closely
related to bone metabolism. Further investigation is required to
clarify the mechanism of the GM in the “gut-bone axis” from the
perspective of EVs. However, producing sufficient quantities of EVs
with high purity and reproducibility remains a critical challenge for
subsequent studies.160

THE PROSPECT OF PROBIOTICS IN OSTEOPOROSIS THERAPY
Fecal microbiota transplantation may not be an effective option
for the treatment of OP due to the presence of harmful bacteria
within the transplant material. Studies have shown that the
therapeutic effects of FMT for IBD are also inconsistent.36

Therefore, it is essential to thoroughly study the function of
bacterial species and evaluate their safety. Probiotics are defined
as viable microorganisms that provide a health benefit when
administered in adequate quantities.161 As a potential new
therapy for OP, probiotics are gaining attention. The effects and
involved mechanisms of probiotics on bone remodeling are
summarized in Table 1.

Conventional probiotics: Lactobacillus and Bifidobacterium
As a conventional probiotic, Lactobacillus has a long history of
use.162 It is associated with various health benefits, including relief
from diarrhea, irritable bowel syndrome (IBS), IBD, lactose
intolerance, and obesity.163–167 Lactobacillus-fermented products,
such as milk, soy skim milk, and kefir (fermented milk similar to
yogurt with a history of over one hundred years), have been
reported to have a beneficial effect on bone health.168–172

Lactobacillus supplementation has been shown to prevent bone
loss induced by OVX,25,30,34,173–179 reduce the number of TRAP+

cells, receptor activator of nuclear factor kappa-B (RANK)+ cells,
and RANKL+ cells in rheumatoid arthritis (RA) mice,180 and
improve skeletal health in intact animals.33,181 Bifidobacterium,
on the other hand, was markedly reduced in the senescence-
induced OP model.182 Mice fed a low-calcium diet also had lower
BMD and a decreased abundance of Bifidobacterium.183 Bifido-
bacterium has been proven to prevent bone loss induced by OVX

or obesity,184,185 inhibit pre-OC differentiation in vitro,186 and
accelerate callus cartilage remodeling in fractured mice.187

Administration of a probiotic cocktail (VSL#3 or a mixture of
Lactobacillus paracasei (L. paracasei) DSM 13434, L. plantarum DSM
15312, and DSM 15313) could increase femur BV/TV and Cb. BMC
in OVX mice.30,179 The mixture of L. paracasei DSM 13434, DSM
15312, and DSM 15313 has been used in clinical trials and proven
to prevent lumbar spine bone loss in postmenopausal women
with OP.188 Treatment with L. reuteri ATCC PTA 6475 or
Lactobacillus casei Shirota (L. casei Shirota) alone could reduce
BMD or accelerate distal radius fracture healing in the
elderly.189,190

In addition, Lactobacillus and Bifidobacterium have been
engineered as delivery vectors for specific molecules.191,192 The
premise is that such bacterial vectors do not produce any
virulence factors and are tolerated by the host.162 For example,
Lactococcus lactis (L. lactis) was engineered to deliver IL-10 to
control allergen sensitivity.193 Oral administration of L. lactis,
engineered to express and deliver elafin (a natural protease
inhibitor with pleiotropic anti-inflammatory properties), could
decrease inflammation and restore intestinal homeostasis in
mouse models of acute and chronic colitis.191 Another human
commensal bacterium, Bacteroides ovatus, was also engineered for
in situ delivery of TGF-β and treatment of colitis.192 Further studies
are needed to explore the role of such engineered bacteria in
bone metabolism.

Next-generation probiotics
The development of new probiotics, also known as “next-generation
probiotics,” has gradually gained traction recently.162 One such
probiotic is A. muciniphila, a newly identified genus in the phylum
Verrucomicrobia that is a symbiotic bacterium in the mucus layer
and utilizes mucus as a single nutrient source.116,194 Given its safety
and pivotal roles in alleviating obesity and IBD, A. muciniphila is
widely considered a next-generation probiotic.194–200

Research has shown that A. muciniphila is abundant in children’s
GM, which may explain why FMT from children provides better
protection against OVX-induced bone loss compared to GM
transplantation from older people.159 A. muciniphila is also
correlated with bone physiology, and there is a direct correlation
to bone formation. For example, Chevalier et al. reported that
warm temperature exposure (34 °C), rather than room tempera-
ture (RT) conditions, improved the tibial BV/TV and the abundance
of Akkermansia in 24-week-old female mice.8 In contrast, OVX mice
had a lower abundance of A. muciniphila than mice with sham
operations (Sham).159 Warm-exposed-FMT increased tibial break-
ing strength and BV in OVX mice compared with RT-exposed-
FMT.8 A. muciniphila has also been reported to promote the
healing of bone fractures and mitigate Porphyromonas gingivalis-
induced alveolar bone destruction.201–203 Accumulated research
has revealed that both live and pasteurized A. muciniphila could
prevent or treat obesity-related metabolic disorders and systemic
inflammation.194–199,204–208 However, pasteurized A. muciniphila
provides no protection against OVX-induced bone loss.209

Despite the growing interest in the use of next-generation
probiotics as a potential therapy for OP, research in this field
remains in its infancy. Many novel probiotics, which were
discussed in the review by O’Toole et al., have not been used in
bone research.162 For instance, Clostridium butyricum (C. butyr-
icum) is a strain of the Clostridium genus found in various
environments, including soil, cultured milk products, vegetables,
and the human colon.210 C. butyricum can utilize undigested
dietary fibers and generate SCFAs, specifically butyrate and
acetate.121 C. butyricum MIYAIRI 588 (CBM 588) is widely used as
a novel food ingredient or a treatment for diarrhea due to its safe,
nonpathogenic, and nontoxic profile.210–212 Given the benefits of
butyrate on bone formation, we suggest that CBM 588 or other
SCFA-producing GM can be applied to research on the gut-bone
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Table 1. The effects and underlying mechanisms of probiotics on bone remodeling in animal models and population-based studies

Genus Species Research models
or population

Effects Mechanisms References

Lactobacillus L. reuteri ATCC PTA 6475 OVX Balb/c mice Femur and vertebrae BV/TV, BMD,
BMC, Tb. N. ↑ ,
Tb spacing ↓

TRAP5 and RANKL mRNA
expression ↓ ,
BM CD4+ T cells,
OC differentiation in vitro ↓

173

L. reuteri ATCC PTA 6475 Type 1 diabetic
C57BL/6 mice

Tb. BV/TV, Tb. N., Tb. Th., BMD, BMC ↑ ,
Tb spacing ↓

MAR, OB surface, serum OCN,
Wnt10b expression and
Wnt10b+ cells in gut and
bone ↑ , BM adipocyte area and
size ↓

34

L. reuteri ATCC PTA 6475 BALB/c mice with
OP

Femur and vertebrae BV/TV, BMD,
BMC, Tb. N., MAR, serum OCN ↑ ,
Tb spacing, serum TRAP 5b ↓

Colon permeability, colon TNF-
α/IL-10 ratio ↓

25

L. reuteri ATCC PTA 6475 Rag knockout
C57BL/6 mice
(deficient in
mature T- and B-
cells)

Femur BV/TV, BMC, Tb. Th. in WT mice
↑

IL-10, IFN-γ, TGF-β, osterix gene
expression ↑ ,
L. reuteri requires lymphocytes
to exert beneficial effects on
bone.

181

L. rhamnosus GG OP C57BL/6 J
mice induced by
leuprolide
administration

Spine and femur BV/TV, serum OCN ↑ ,
serum CTX ↓

Intestinal barrier integrity ↑ ,
TNF-α, RANKL, IL-17 mRNA
expression ↓

30

L. rhamnosus GG Conventionally
raised C57BL/6
mice

Femur BV/TV, Spine BV/TV ↑ , serum
CTX ↓

MAR, P1NP,
Wnt10b expression in BM and
CD8+ T cells, Foxp3+ T cells in
BM, spleen, and PP ↑

33

L. acidophilus ATCC 4356 OVX Balb/c mice Bone mass ↑ ,
Femur resorption pits/lacunae ↓

CD4+ Foxp3+ Treg cells, CD8+

Foxp3+ Treg cells, serum IL-10,
IFN-γ ↑ ,
CD4+Rorγt+ Th17 cells, serum
IL-17, TNF-α, RANKL ↓

174

L. sakei RA DBA/1 J mice Arthritis score, TRAP+-, RANK+-,
RANKL+ -cells ↓

TNF-α, IL-1β, IL-6, IL-17 ↓ 180

L. fermentum ZS40 OP Wistar rats BV/TV, Tb. N., Tb. Th., BMD ↑, the
number of OC, Tb spacing ↓

β-catenin, Wnt10b, Lrp5, Lrp6,
Runx2, ALP, RANKL, OPG mRNA
expression ↑ ,
DKK1, RANK, TRAP, CTSK mRNA
expression ↓

175

L. Plantarum HFY15 OP Wistar rats BV/TV, Tb. N., Tb. Th., BMD ↑, the
number of OC, Tb spacing ↓

β-Catenin, Wnt10b, Lrp5, Lrp6,
Runx2, ALP mRNA
expression ↑ ,
DKK1, RANK, TRAP, CTSK mRNA
expression ↓

176

L. helveticus ATCC 27558 OVX
Sprague–Dawley
rats

Femur BMD, breaking forces, serum
OCN ↑ , serum CTX ↓

Runx2 and BMP2 mRNA
expression ↑ ,
Lactobacillus enumeration in
the feces ↑

177

L. curvatus Wikim 38 OVX C57BL/6
mice

BV/TV, BMD, Tb. Th. ↑ F-actin ring formation, bone
resorption, osteoclastogenesis,
RANKL/TRAF6/
NF-κB/MAPK gene expression ↓

178

L. paracasei DSM13434, or a
mixture of L. paracasei
DSM13434, L. plantarum
DSM 15312 and DSM 15313

OVX C57BL/6 N
mice

Cb. BMC., Cb. Area ↑ BM TNF-α, IL-1β, OPG ↑ 179

L. reuteri ATCC PTA 6475 Postmenopausal
women with
osteopenia

The loss of total BMD ↓ 189

L. casei Shirota Elderly patients
with an acute
distal radius
fracture

DASH (disabilities of the arm, shoulder,
and hand) score, pain, complex
regional pain syndrome score, wrist
flexion, and grip strength of patients
receiving probiotics exhibited a
significantly faster pace of
improvement.

190
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axis. Faecalibacterium prausnitzii (F. prausnitzii) is a major member
of Firmicutes phylum. The reduction in F. prausnitzii is associated
with a higher risk of postoperative recurrence of ileal CD. The
metabolites of F. prausnitzii suppress NF-κB activation and IL-8
production.213,214 F. prausnitzii increased plasma anti-Th17 cyto-
kines (IL-10 and IL-12) and decreased plasma IL-17 levels in
colorectal colitis rats. The culture supernatant of F. prausnitzii also
suppressed Th17 cell differentiation in vitro.215 Given that immune
cytokines regulate bone metabolism, it is necessary to explore the
effect of these anti-inflammatory probiotics in protecting against
bone loss.

Problems with probiotic screening
Khosla and Hofbauer conducted a comprehensive review of the
advancements and challenges in OP treatment and indicated
that the progression of recent OP drugs and new

pharmacological approaches will probably be based on
mechanisms of rare diseases and fundamental bone biology.9

The development of these new medications provides a basis for
the exploration of probiotic treatments. The prolonged use of
anti-resorption drugs, however, is associated with certain risks.
For example, combined hormone therapy increases the risk of
cardiovascular disease in patients over 70 years old, denosumab
is associated with the risk of osteonecrosis of the jaw and
atypical femur fractures, and bisphosphonates have been shown
to suppress bone turnover markers for at least five years after
discontinuation.2,9 Apart from these limitations, most drugs,
except bisphosphonates and strontium ranelate, have failed to
sustain their bone-anabolic effects following discontinuation.9

Probiotic treatments are expected to address such drawbacks
and provide sustained benefits in terms of bone mass, provided
they are effectively colonized in the host body. Nonetheless,

Table 1. continued

Genus Species Research models
or population

Effects Mechanisms References

L. paracasei DSM 13434,
DSM 15312, and DSM
15313

Postmenopausal
women with
osteopenia

Lumbar spine bone loss ↓ 188

Bifidobacterium B. longum OVX Sprague-
Dawley rats

Serum OCN, femur BMD, Tb. Th., femur
strength ↑ ,
Serum CTX ↓

Sparc and BMP2 mRNA
expression ↑ ,
Total Bifidobacteria in the feces
↑

184

B. longum 35624 OC precursors
from C57BL/6 N
mice

OC differentiation ↓ Surface exopolysaccharide of B.
longum 35624 mediated
inhibition of osteoclast
formation is TLR2-dependent.

186

B. adolescentis Fractured C57BL/
6 mice

Serum P1NP, callus cartilage
remodeling ↑ , post-traumatic bone
loss ↓

Tight junction protein ↑ ,
Systemic inflammation ↓

187

B. pseudocatenulatum CECT
7765

Obesity C57BL/6
mice

Tb. N., Serum OCN ↑ ,
Tb spacing, Serum CTX ↓ ;

Canonical Wnt/β-catenin
pathway ↑

185

VSL#3 (B. breve,
B. longum, B. infantis,
L. acidophilus,
L. plantarum,
L. paracasei,
L. bulgaricus,
and Streptococcus
thermophilus)

OP C57BL6/J
mice induced by
leuprolide
administration

Femur BV/TV, Cb. V., serum OCN ↑ Intestinal tight junction ↑ 30

Akkermansia A. muciniphila OVX C57BL/6
mice

BMD, Tb. BV/TV., Tb. N., serum OCN,
MAR ↑ ,
Tb spacing, the number and size of
OC ↓

EVs are required for the A.
muciniphila‐induced bone
protective effects.

159

A. muciniphila C57/BL6 mice
with
experimental
periodontitis

Alveolar bone loss ↓ M2 macrophages, IL-10 gene
expression ↑

201

A. muciniphila Fractured C57BL/
6 mice

BV/TV, tissue mineral density of callus,
femoral ultimate load, serum OCN,
bone fracture healing ↑

Type H vessel formation in
callus ↑,
inflammatory responses in
fracture healing, intestinal
permeability, and inflammation
↓

203

↑: up-regulated or increased compared to those mice without treatment
↓: down-regulated or decreased compared to those mice without treatment
ALP Alkaline phosphatase, BM Bone marrow, BMC Bone mineral content, BMD Bone mineral density, BMP2 Bone morphogenetic protein 2, BV/TV The ratio of
bone volume to total volume, Cb Cortical bone, CTSK Cathepsin K, CTX-I C-terminal telopeptides of type I collagen, DKK1 Dickkopf-related protein 1, EVs
Extracellular vesicles, IFN-γ Interferon-γ, IL Interleukin, LRP Low-density lipoprotein receptor-related protein, MAPK Mitogen-activated protein kinase, MAR
Mineral apposition rate, OB Osteoblasts, OC Osteoclasts, OCN Osteocalcin, OP Osteoporosis, OPG Osteoprotegerin, OVX Ovariectomized, P1NP Procollagen type I
N-terminal propeptide, PPs Peyer’s patches, RA Rheumatoid arthritis, RANKL Receptor activator of nuclear factor kappa-B ligand, Tb. N. Trabecular bone number,
Tb. Th. Trabecular bone thickness, Tb Trabecular bone, TGF-β Transforming growth factor-β, TLR Toll-like receptor, TNF-α Tumor necrosis factor-α, TRAF6 Tumor
necrosis factor receptor associated factor 6, TRAP Tartrate-resistant acid phosphatase, WT Wild-type

Gut microbiota and bone remodeling
Z Lyu et al.

10

Bone Research           (2023) 11:31 



further research is necessary to fully comprehend the mechan-
isms of host colonization and the long-term effects of such
colonization.
A decreased diversity in the GM is regarded as an indicator of

various pathological conditions, such as inflammatory and
metabolic disorders.216,217 The causal relationship between GM
composition and OP remains controversial. Huang et al. con-
ducted an analysis of 12 prior studies to examine the differences
in GM abundance between OP patients and healthy individuals,
which included fecal GM data from 2 033 people (604 with OP
and 1 429 healthy controls).218 The findings revealed that the
relative abundance of Lactobacillus and Ruminococcus increased
in the OP group, while the relative abundance of Bacteroides in
the Bacteroidetes phylum increased (with the exception of
Ireland). Conversely, the relative abundance of the genera
Blautia, Alistipes, Megamonas, and Anaerostipes decreased in
Chinese OP patients.218 However, as mentioned by the author,
most of the included studies exhibited significant heterogeneity,
and individual differences, such as sample size, race, residence,
diet, medication, age, gender, physical exercise, and stress
levels, often impacted GM composition. As a result, it remains
uncertain whether changes in GM composition can serve as a
biomarker for OP. Nonetheless, these findings provide valuable
insights for the selection of probiotics. For instance, Blautia is a
genus of anaerobic bacteria that can generate SCFAs from
dietary fiber and modulate the immune response of Treg
cells.219,220 Alistipes, which belongs to the Bacteroidetes phylum,
was reported to generate acetate and propionate.221,222 Alistipes
finegoldii is suggested to be protective against colitis.223

Anaerostipes was suggested to have potential benefits due to
its ability to produce SCFAs.224,225 It is important to determine
the changes in GM composition, particularly with regards to
bacteria that have potential benefits, following probiotic
administration. For instance, the relative abundance of phylum
Verrucomicrobia and genus Akkermansia was decreased in OP
mice,25,159 but transplantation of GM rich in A. muciniphila or
administration of LGG could restore their abundance.25,159

Administration of LGG has also been reported to alter microbial
diversity and increase the proportion of SCFA-producing
Clostridia in conventionally raised mice.33 Furthermore, feeding
rats Lactobacillus helveticus was associated with a significant
increase in the number of Lactobacillus colonies in their feces
compared to the sham and OVX groups.177

Studies that assess the impact of probiotics on bone health
have primarily used OVX animals as experimental models. It is
important to consider not only preventing adverse health
outcomes but also promoting positive ones, especially increas-
ing bone mass during skeletal maturity (peak BMD). Maintaining
peak BMD is crucial for good bone health, as a 10% increase in
peak BMD has been estimated to delay the onset of OP by 13
years.226

CONCLUSION
Research on the GM in the gut–bone axis has yielded novel
insights into the pathogenesis of OP and the potential for
using gut microbes as a treatment strategy. However, the
inconsistency of test environments, the host’s genetic back-
grounds, and the sources of gut microbes pose significant
challenges in controlling variables in research. Furthermore,
the response of the host GM to FMT or probiotic stimulation
could potentially interfere with the colonization of exogenous
gut microbes. Therefore, the transition from basic research to
clinical research and the practical application of probiotics
remains a challenge. It is imperative to continue the search for
effective probiotics for OP treatment and to meticulously
evaluate their quality, safety, dosage, stability, and interactions
with other medications.
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