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A B S T R A C T   

As the dominant histological subtype of kidney cancer, clear cell renal cell carcinoma (ccRCC) 
poorly responds to conventional chemotherapy and radiotherapy. Although novel immunother
apies such as immune checkpoint inhibitors could have a durable effect in treating ccRCC pa
tients, the limited availability of dependable biomarkers has restricted their application in clinic. 
In the study of carcinogenesis and cancer therapies, there has been a recent emphasis on 
researching programmed cell death (PCD). In the current study, we discovered the enriched and 
prognostic PCD in ccRCC utilizing gene set enrichment analysis (GSEA) and investigate the 
functional status of ccRCC patients with different PCD risks. Then, genes related to PCD that had 
prognostic value in ccRCC were identified for the conduction of non-negative matrix factorization 
to cluster ccRCC patients. Next, the tumor microenvironment, immunogenicity, and therapeutic 
response in different molecular clusters were analyzed. Among PCD, apoptosis and pyroptosis 
were enriched in ccRCC and correlated with prognosis. Patients with high PCD levels were related 
to poor prognosis and a rich but suppressive immune microenvironment. PCD-based molecular 
clusters were identified to differentiate the clinical status and prognosis of ccRCC. Moreover, the 
molecular cluster with high PCD levels may correlate with high immunogenicity and a favorable 
therapeutic response to ccRCC. Furthermore, a simplified PCD-based gene classifier was estab
lished to facilitate clinical application and used transcriptome sequencing data from clinical 
ccRCC samples to validate the applicability of the gene classifier. We thoroughly extended the 
understanding of PCD in ccRCC and constructed a PCD-based gene classifier for differentiation of 
the prognosis and therapeutic efficacy in ccRCC.  
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1. Introduction 

Kidney and renal pelvis cancers are now among the 10 most commonly diagnosed cancers in both sexes, and 79,000 new cases were 
estimated to be identified in 2022 in the United States [1]. Of this type of cancer, about 85% are renal cell carcinoma (RCC), whose 
principal histological subtype is clear cell (ccRCC) [2]. Although the incidence rate has been steady, the death rate has decreased in 
recent years [3]. This phenomenon could be partly due to the development of novel immunotherapy, among which immune check
point inhibitors (ICIs) were the most popular. Drugs such as Nivolumab and Pembrolizumab have been proven to exert enduring effects 
on responders and listed as the first-line therapies for ccRCC [4,5]. However, it is difficult to identify the responders while the 
resistance remains unpredictable even in the responders [6]. To deal with these problems, substantial effort has focused on discovering 
therapeutic biomarkers for ICIs and the expression level of some related molecules was frequently utilized in the clinic. For example, 
high PD-L1 expression may be more frequently identified in patients with better response toward ICIs. Nonetheless, the measurement 
technique and cutoff value for PD-L1 expression have not been unified and those with low PD-L1 expression could also have 
considerable responses to ICIs [7,8]. Therefore, the discovery of novel reliable biomarkers is required for the individualized application 
of ICIs in ccRCC. 

The therapeutic function of ICIs could be influenced by the tumor microenvironment (TME) in each patient [9]. As one of the major 
components of TME, the infiltration of immune cells was shown to be associated with the ICIs response. Patients with a high density of 
infiltrated cytotoxic lymphocytes respond better toward PD1/PD-L1 blockade [10]. Meanwhile, different subtypes and functional 
statuses of the infiltrated lymphocytes could also influence the therapeutic effect of ICIs [11,12]. Another influencing factor that 
attracted wide attention is the neoantigen load. More neoantigens may be correlated with a higher probability of recognizing the tumor 
cells and eliciting an immune response [13]. In recent years, various measures, including but not limited to tumor mutation burden 
(TMB) have been constructed to reflect the neoantigens load and used as therapeutic biomarkers for ICIs [14,15]. With these concerns, 
a comprehensive understanding of the TME and immunogenicity in ccRCC could facilitate taking full advantage of the therapeutic 
effect of ICIs. 

Programmed cell death (PCD) is an important mechanism for the host to erase damaged cells with tumor propensity and to 
maintain homeostasis. Even among neoplasms, PCD could also serve as a weapon for removing neoplastic cells [16]. With the further 
investigation in recent years, more and more subtypes of PCD were identified and their connectivity with TME gradually emerged [17]. 
Ferroptosis [18], pyroptosis [19], and necroptosis [20] were newly recognized as non-apoptotic PCDs with immunogenic features, 
being able to regulate the tumor immune microenvironment through releasing the cellular contents. Meanwhile, tumor treatments, 
including chemotherapy and radiotherapy, may exert their function by inducing PCD while some explanations for reduced drug ef
ficacy may due to the developed apoptosis resistance in tumor cells [21]. This connection was also discovered while applying ICIs. 
Studies have shown that the induction of PCD, like pyroptosis, could improve the efficacy of ICIs [22,23], and the function of ICIs may 
achieve through PCD induced by CD8+ T cells [24,25]. Hence, a profound investigation of PCD in ccRCC could enhance our overall 
comprehension of the TME in ccRCC and assist in utilizing ICIs in clinic. 

In the current study, we made use of GSEA to discover the featured PCD in ccRCC and investigate the characteristics of different 

Fig. 1. The flowchart of the construction of PCD-based molecular clusters.  
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levels of PCD. With the help of Weight gene correlation network analysis (WGCNA) and non-negative matrix factorization (CNMF), cell 
death-related genes were identified and utilized to discover different molecular clusters of ccRCC patients whose TME features and 
clinical significance were distinct from each other. At last, a convenient gene classifier was built up for clinicians to predict the 
prognosis of ccRCC patients and prescribe individualized ICI-based therapies for them (Fig. 1). 

2. Materials and methods 

2.1. Data retrieval and gene sets enrichment analysis 

Via Genomic Data Common (GDC) data portal (https://portal.gdc.cancer.gov/), RNA-sequencing data of ccRCC in KIRC project 
was extracted in the format of FPKM from The Cancer Genome Atlas (TCGA) together with the corresponding clinical data. 539 tumor 
samples and 72 normal samples were included in this data and the mRNA expression data were compared between these two groups 
using R package, ‘limma’ [26]. 5137 differentially expressed genes (DEGs) in ccRCC were identified with the threshold of both the 
absolute value of log Fold Change (logFC) > 1 and p-value <0.05. Besides, PCD-related keywords, including apoptosis, autophagy, 
ferroptosis, necroptosis and pyroptosis, were respectively searched in GSEA (http://www.gsea-msigdb.org/gsea/index.jsp) in which 5 
annotated gene sets were acquired (KEGG_APOPTOSIS, WP_AUTOPHAGY, WP_FERROPTOSIS, GOBP_NECROPTOTIC_SIGNA
LING_PATHWAY, REACTOME_PYROPTOSIS). Then, we investigated the enrichment of these 5 PCDs in ccRCC by inputting the 
expression data, sample information from TCGA, and the gene sets into GSEA 4.1.0. During analysis, we regarded FDR q-value less than 
0.05 as significant. Thereafter, 507 ccRCC samples were screened for the following analysis by excluding samples whose recorded 
survival time was less than 30 days. 

2.2. Identification of prognostic PCDs in ccRCC 

Single sample gene sets enrichment analysis (ssGSEA) serves as a method to obtain individual enrichment score of the targeted gene 
set for every single sample by calculating the gene expression data [27]. Achieved by R package ‘GSVA’ [28], the enrichment scores of 
the above 5 PCD-related gene sets for 507 ccRCC samples were calculated. Making use of these scores and the time information, the 
prognostic PCDs in ccRCC was obtained through Kaplan Meier survival analysis. After that, the prognostic PCDs were analyzed by 
multivariate cox regression analysis to establish a model for calculating PCD risk, PCD risk = coefficient A * score A + … + coefficient 
N * score N (A-N represent each PCD). In this way, each ccRCC samples obtained a PCD risk and the mean of these risk was used to 
separate high and low PCD risk groups. 

2.3. Weight gene correlation network analysis (WGCNA) 

To discover PCD-related genes in ccRCC, we introduced WGCNA, which could group interconnective genes into modules and 
correlate them with targeted features [29]. 5137 DEGs and the prognostic PCD mechanisms of 507 ccRCC samples were enrolled in the 
analysis. At first, the samples were clustered to recognize and exclude the outliers. Then, a topology overlap matrix (TOM) was 
transformed from the data matrix with an estimated soft threshold determined by scale independence as well as mean connectivity. 
Next, gene modules were derived from DEGs by calculating the dissimilarity of TOM and each module contained at least 30 genes as 
well as a dissimilarity of less than 0.25. After that, the module eigengenes were calculated and correlated with the prognostic PCDs to 
identify PCD-related gene modules. 

2.4. Unsupervised clustering via consensus non-negative matrix factorization (CNMF) 

DEGs in the PCD-related gene modules were extracted and Kaplan Meier analysis was conducted to deliver PCD-related prognostic 
DEGs with criteria of p-value less than 0.05 and 5-year survival difference more than 0.1. Then, these genes were incorporated into the 
CNMF algorithm to cluster the ccRCC samples. CNMF algorithm is a feasible access to reduce the dimension of large-scale gene 
expression data and recognize molecular patterns [30]. Employing the R package ‘CancerSubtypes’ [31], we respectively tested the 
results of 2, 3, and 4 clustering. The final clustering number was determined according to the calculated silhouette coefficients, which 
could assess the fitness of the clusters. On a scale of − 1 to 1, a silhouette coefficient close to 1 means the cluster is notably distinguished 
from others. Besides, Kaplan Meier analysis aided in demonstrating the survival difference between the molecular clusters. 

2.5. Analysis of the clinical characteristics in the molecular clusters 

Clinical information in the TCGA cohort (age, gender, Fuhrman grade, AJCC stage, T stage, N stage, and M stage) was processed and 
arranged by the characteristics. After that, chi-square test was applied to compared these clinical features between the molecular 
clusters. At the same time, we applied univariate cox regression analysis and multivariate cox regression analysis in recognizing 
whether the molecular clusters as well as the clinical characteristics could predict ccRCC prognosis. 

2.6. Investigation of the TME compositions in ccRCC 

To gather an overview of the ccRCC TME, we introduced a scoring system named ESTIMATE (Estimation of STromal and Immune 
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cells in MAlignant Tumors using Expression data), which could quantify the immune and stromal status and calculate an estimate score 
representing tumor purity [32]. In order to further investigate immune components, the infiltration levels of 23 types of immune cells 
were estimated for each ccRCC samples through ssGSEA algorithm based on a list of immune signatures [33]. Meanwhile, stroma cell 
enrichment data of KIRC project was acquired from xCell (https://xcell.ucsf.edu/), which utilizes both deconvolution and gene set 
enrichment methods [8]. Then, these data were separated in line with the molecular clusters and compared. 

2.7. Analysis of the immunogenicity in ccRCC 

Data of several immunogenic features, cancer testis antigens (CTA), homologous recombination deficiency (HRD), intratumoral 
heterogeneity (ITH), single-nucleotide variation (SNV), and TMB were acquired [34] and evaluated between different molecular 
clusters. A gene signature related to immune suppression was also collected to aid in understanding the immunogenicity through 
‘GSVA’. Besides, Tumor Immune Dysfunction and Evasion (TIDE) helps calculated T-cell dysfunction scores according to the strategy 
provided by Jiang et al. [35]. If the T-cell dysfunction score of a gene was high, it may tend to counteract the survival benefit of 
cytotoxic T cell, suggesting its association with cytotoxic T cell dysfunction. Furthermore, we extracted the expression data of 
inhibitory immune checkpoints, immune chemokines and receptors as well as major histocompatibility complex (MHC), and analyzed 
their difference in different clusters. In addition, the mutation data of the ccRCC samples from TCGA was available in the public web 
tool cBioPortal (https://www.cbioportal.org/) and we investigated the mutation status in each molecular clusters through the R 
package ‘maftools’ [36]. 

2.8. Functional enrichment analysis 

Gene ontology (GO) is widely known for providing comprehensive annotation of human biology on three levels, biological process, 
cellular component, and molecular function. R package ‘clusterProfiler’ [37] serves as an approach in the current study to investigate 
the enrichment functions in different clusters with the help of the GO database. Additionally, 10 pathways related to oncogenesis were 
retrieved [34] and investigated between clusters through ssGSEA. 

2.9. Analysis of the therapeutic response 

To further validate the clinical significance of the molecular clusters, we analyzed their property in differentiating therapeutic 
responses. TCIA (The Cancer Immunome Database, https://tcia.at/home) provides data on drug response toward immune checkpoint 
inhibitors (PD1, CTLA4, and PD1+CTLA4 inhibitors) through a kind of value called immunophenoscore deduced from integrated 
immunogenomic analysis [38]. Besides, the R package ‘pRRophetic’ [39] is able to utilize the trial data in GDSC (Genomics of Drug 
Sensitivity in Cancer, https://www.cancerrxgene.org/), calculating drug sensitivity for each sample. Axitinib, Pazopanib, Sorafenib, 
and Sunitinib were enrolled and analyzed between the molecular clusters. Furthermore, we analyze the response to the modulation of 
interferon-gamma (IFN-gamma) as well as tumor necrosis factor-beta (TGF-beta) signaling pathways [34]. 

2.10. Validation of the molecular cluster 

An RNA expression dataset of ccRCC, E-MTAB-3267, which contains 59 tumor samples and the corresponding prognostic infor
mation, was acquired from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). The same prognostic PCD-related DEGs were used to 
cluster this cohort in the same way as mentioned above. For advanced clinical application, we constructed a gene classifier from the top 
30 differentially expressed genes of each cluster for identification of the molecular clusters with the help of the nearest template 
prediction (NTP) algorithm which is a validated method to undergo class prediction through a group of signature genes [40]. By using 
the R package ‘CMScaller’ [41], gene-based classes were predicted and validated in the TCGA and E-MTAB-3267 cohorts. 

2.11. Transcriptome sequencing analysis 

In order to provide additional evidence of the practical use of the gene-based classifier, we conducted transcriptome sequencing 
analysis of ccRCC and adjacent normal tissue collected from surgical resected samples. From June 2020 to July 2021, we collected 18 
ccRCC and 6 normal samples from 6 ccRCC patients who were untreated before and underwent laparoscopic nephrectomy in 
Guangdong Provincial People’s Hospital. The resected tumor specimens from these patients were diagnosed as ccRCC through H&E 
staining and Immunohistochemistry staining by 2 independent pathologists from Guangdong Provincial People’s Hospital (Table S1). 
The hospital ethics committee had approved our project with informed consent collected. According to the protocol provided by 
manufacturer, the NovaSeq 6000 high-throughput sequencing platform (Illumina, USA) was used for paired-end sequencing of each 
ccRCC and adjacent normal sample. After that, the sequencing reads that included aptamer sequences and low-quality reads and bases 
were removed Then, the high-quality pairwise reads that remained were aligned to the human genome GRCh38 using HISAT2 (v2.1.1), 
resulting in BAM files. The BAM files were organized using samtools (v1.15.1) and the reads were counted using Subread (v2.0.1). 
Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) were converted from and used to substitute raw counts of 
transcripts per gene, allowing better comparability between samples at the transcriptome level. Thereafter, the genes used to build up 
the predictive classifier were differentially analyzed between the normal and ccRCC samples with the limitation of logFC >0.5 and P 
value < 0.05. 
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2.12. Statistical analysis 

Public databases were the major source of the involved data and no ethical consent was required. R 4.1.0 and R studio April 1, 1717 
were utilized for the analyses mentioned above. Data visualization was achieved through R studio, GSEA 4.1.0. P-value<0.05 and q- 
value<0.05 were regarded as significant. 

Fig. 2. Different clinical and biological presentations of different PCD risk groups in ccRCC. A. Overall survival difference between different PCD 
risk groups. B. Results of functional enrichment analysis between PCD risk groups based on GO database. C. The differences of immune, stromal and 
ESTIMATE scores between PCD risk groups. D. Comparison of the infiltration levels of immune cells between PCD risk groups. E. Genes that were 
related to T-cell dysfunction scores in different PCD risk groups. F-G. The differences of immune suppression score and expression of LAG3, CTLA4, 
PDCD1, TIGIT, and BTLA between PCD risk groups. 
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3. Results 

3.1. Apoptosis and pyroptosis were the enriched and prognostic PCD in ccRCC 

The mRNA expression matrix of ccRCC from TCGA together with the group information (539 tumor and 72 normal samples) were 
inputted into the GSEA software and delivered a result that necroptosis (q-value = 0.046), pyroptosis (q-value = 0.015) and apoptosis 
(q-value = 0.040) were significantly enriched in the ccRCC samples while the enrichment of autophagy and ferroptosis were not 
notable (Figs. S1A–E). The subsequent prognostic analysis demonstrated that these three enriched PCD could differentiate the overall 
survival of ccRCC (Figs. S1F–H). Thus, these three PCD scores were incorporated into multivariate cox regression analysis, inducing a 
model calculating PCD risk based on apoptosis and pyroptosis scores, PCD risk = − 4.76 * (Apoptosis score) + 5.23 * (Pyroptosis score) 
(Fig. S1I). 

3.2. High and low PCD risk groups present heterogeneous survival and immune features 

Based on the mean of PCD risk, the ccRCC samples were separated into two groups with high and low PCD risk. According to Kaplan 
Meier survival analysis, samples with high PCD risk owned poorer prognosis than those with low PCD risk (Fig. 2A). Then, functional 
enrichment analysis was performed on these two groups. Various enriched biological processes were correlated to immunity in high 
PCD risk groups, including humoral immune response, regulation of cell-cell adhesion, regulation of immune effector process, and T 
cell activation. The enrichment of these processes may happen on cytoplasmic vesicle lumen, apical plasma membrane, and external 
side of the plasma membrane, covering some molecular functions like receptor ligand activity, endopeptidase activity, and cytokine 
activity (Fig. 2B). Given the high correlation between enriched function and immunity, we focused on the immune landscape of 

Fig. 3. Identification of 2 PCD-related molecular clusters and their prognostic effect. A. Patients in cluster A had lower overall survival than those in 
cluster B. B–C. Cluster A was notably distinguished from cluster B and both of them had high silhouette scores. D. Differences of the pyroptosis and 
apoptosis scores between cluster A and B. E. The correlation between the PCD-related molecular clusters and PCD risk groups. F. The results of the 
univariate cox regression analysis. G. The results of multivariate cox regression analysis. 
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different PCD risk groups. The ESTIMATE results depicted that high immune scores and ESTIMATE scores were found in group with 
high PCD risk, indicating a high immune involvement and low tumor purity (Fig. 2C). CcRCC samples with high PCD risk had more 
infiltration of immune cells including both inflammatory immune cells and inhibitory immune cells (Fig. 2D). To further investigate 
the immune microenvironment in different PCD risk groups, we calculated the T-cell dysfunction scores and found that most genes 
with notably high T-cell dysfunction scores were differentially overexpressed in the high PCD risk group (Fig. 2E, Table S2). Mean
while, in contrast to low PCD risk groups, the high PCD risk group exhibited heightened immune suppression scores as well as higher 
gene expression level of inhibitory immune checkpoint including LAG3, TIGIT, CTLA4, PDCD1, and BTLA (Fig. 2F–G). Therefore, the 
prognosis and suppressive immune microenvironment of ccRCC could be influenced by PCD risk. 

3.3. Discovering PCD-related gene modules in ccRCC 

After discovering that PCD was related to the prognosis and immune microenvironment of ccRCC, we intended to identify PCD- 
related genes that could cluster different PCD statuses to differentiate the prognosis of ccRCC. In order to discover PCD-related 
genes in ccRCC, differential expression analysis between ccRCC and normal samples was performed, obtaining 5136 DEGs. Then, a 
sample dendrogram was built up to identify the outliers, and those samples with a height greater than 6500 were excluded, leaving 486 
samples for the following analysis (Fig. S2A). After that, the best soft threshold power was predicted as 3 based on the scale inde
pendence as well as mean connectivity (Figs. S2B–C). Based on this soft threshold power, the DEGs were clustered into multiple gene 
modules labeled by different colors (Fig. S2D), and these modules were correlated with pyroptosis and apoptosis scores respectively. It 
was revealed that the red and yellow modules had notably high correlations with both two prognostic PCD in ccRCC (Fig. S2E). 
Besides, as the module membership in these two modules became important, the genes became more significant for apoptosis (red, r =
0.85, p < 0.001; yellow, 0.67, p < 0.001) and pyroptosis (red, r = 0.88, p < 0.001; yellow, r = 0.77, p < 0.001; Figs. S2F–I). Therefore, 
we extracted the genes in the red and yellow modules as the PCD-related genes in ccRCC. 

3.4. PCD-based molecular classification could differentiate ccRCC prognosis 

964 PCD-related genes were filtered through Kaplan Meier survival analysis, resulting in 292 genes related to the overall prognosis 
of ccRCC (Table S3). Then, these genes were used for CNMF classification and derived two molecular clusters of the ccRCC samples. 
Compared with cluster B, the overall survival of cluster A was notably lower (Fig. 3A). Besides, the silhouette scores of these two 
clusters (cluster A, 0.98; cluster B, 0.94; Fig. 3B–C) were high, meaning they were significantly distinct. When ccRCC samples were 
classified into 3 and 4 clusters, the silhouette scores for each cluster were relatively low. Thus, the classification of 2-cluster was 
selected (Figs. S3A–F). Comparing the PCD scores between these two clusters, we found that cluster A possessed higher pyroptosis and 
apoptosis scores than cluster B (Fig. 3D). Meanwhile, the molecular clusters were highly concordant with the PCD risk groups, 
indicating a good ability to distinguish PCD status (Fig. 3E). Besides, the chi-square test between the clusters illustrated that cluster A 
tended to have more male patients and patients with advanced grades and stages (Table 1). Thereafter, to discover the prognostic value 
of the PCD-based molecular classification, we included the clinical characteristics and the molecular clusters in univariate cox 
regression analysis followed by multivariate cox regression analysis. As the results shown, the PCD-based molecular classification 
could anticipate the prognosis of ccRCC independent of other factors and a worse prognosis would be happened in patients belong to 
high-PCD cluster (Fig. 3F–G). 

3.5. High-PCD cluster is correlated with an abundant but suppressive immune microenvironment 

Since the molecular clusters presented clinical diversity, we were interested in their difference in the TME of ccRCC. By comparing 
the results of ESTIMATE, it was revealed that cluster A exhibited a lower tumor purity than cluster B and both stromal and immune 

Table 1 
The difference in clinical features between cluster A and cluster B.  

Clinical features Cluster P-value 

A B 

Age <65y 64 73 0.592 
≥65y 41 54 

Gender Female 30 58 0.008 
Male 75 69 

Grade G1&2 30 71 <0.001 
G3&4 75 56 

Stage Stage I&II 36 88 <0.001 
Stage III&IV 69 39 

T T1&2 45 91 <0.001 
T3&4 60 36 

N N0 93 125 0.002 
N1 12 2 

M M0 78 113 0.004 
M1 27 14  
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components were higher in cluster A (Fig. 4A). Analysis of the cellular infiltration demonstrated that some stromal cells (adipocyte, 
fibrocyte, and mesangial cell) tended to infiltrate in cluster A, while other stromal cells, like endothelial cell, lymphatic endothelial 
cell, and microvascular endothelial cell, were more infiltrated in cluster B. Meanwhile, although the inflammatory immune cells like 
activated CD8+ T cell, activated CD 4 T+ cell, activated B cell, and activated dendritic cell (DC), were highly infiltrated in cluster A, the 
inhibitory lymphocytes including regulatory T cell (Treg) and myeloid-derived suppressor cell (MDSC) were also more infiltrated in 
cluster A than cluster B (Fig. 4C). Concerning this considerable immune variation, we further investigated the immunity difference in 
these clusters. Higher immune suppression scores were identified in cluster A compared with cluster B (Fig. 4B), and multiple 
inhibitory immune inhibitor genes like PDCD1, CTLA4, TIGIT, LAG3, and CD80 were upregulated in cluster A (Fig. 4D). Meanwhile, 
most genes related to high T-cell dysfunction scores were significantly upregulated in cluster A (Fig. S3G). These may suggest a 
suppressive immune microenvironment in cluster A despite its abundant infiltrated immune cells. Moreover, we matched the current 
molecular classification with 6 immune subtypes discovered in the previous study [34]. Both clusters contain a substantial proportion 
of C3 (Fig. 4E), which was most common in kidney cancer and had a moderate level of tumor proliferation and elevated lymphocyte 
amount, reaching an immunologic control of cancer. However, cluster A possessed an unignorable scale of C2, C4, and C6. Although C2 
was identified to be an immune-rich subtype, its tumor proliferation rate could surpass the immune response and was correlated with 
an unfavorable prognosis. Besides, C4 and C6 were the two subclasses with immunosuppressive tumor microenvironment and the 
worst outcome. Therefore, compared with cluster B, cluster A had a high level of PCD and may be correlated with an abundant but 
suppressive immune microenvironment. 

Fig. 4. Differences in the immune landscape between molecular clusters. A. Different stromal score, immune score, and ESTIMATE score between 
cluster A and B. B. Cluster A had greater immune suppression scores than cluster B. C. Different molecular clusters exhibit different levels of 
infiltrated immune cells and stromal cells. D. Difference in expression of inhibitory immune checkpoints between molecular clusters. E. Correlation 
between the molecular clusters and previously identified immune subtypes. 
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3.6. High-PCD cluster is related to greater potency of generating immune response 

For more understanding of the difference in the ability to generate immune response between the molecular clusters, several 
related features were introduced and analyzed. Compared with cluster B, higher values of CTA, HRD, and ITH were recognized in 
cluster A while the level of SNV and TMB was not significantly different (Fig. 5A–E). Meanwhile, the top 20 altered genes in these two 
clusters were identified and presented in the form of a waterfall chart (Fig. 5F). As the result showed, VHL (44%) and PBRM1 (38%) 
were the two most altered genes in both clusters followed by TTN (13%), SETD2 (11%), and BAP1 (9%). Moreover, the comparisons of 
immune chemokine, receptor, and MHC elucidated that the expression of these immunity-related factors was notably upregulated in 
cluster A (Fig. S3H). Thus, it may indicate that cluster A possessed a high potential to generate immune responses. 

3.7. Patients in high-PCD cluster respond better toward immune and targeted therapies 

Taking advantage of the online materials, we investigated the potential effect of the molecular clusters on the therapeutic decision. 
Through introducing immunophenoscore, which is positively correlated with therapeutic response to ICIs, it was demonstrated that 
samples in cluster A responded better toward PD1 blockade and combined blockade of PD1 and CTLA4 (Fig. 6A). Besides, the 50% 
inhibition concentration of Pazopanib, Sorafenib, and Sunitinib in cluster A was lower compared with those in cluster B, which means 
the samples in cluster A had higher sensitivity to these drugs (Fig. 6B). In addition, cluster A responded better to immune therapeutic 
measures like modulation of the TGF-beta pathway and IFN-gamma pathway (Fig. 6C–D). Furthermore, we investigated the enrich
ment of 10 oncogenic pathways in these clusters and identified that cell cycle and TP53 were more activated in cluster A (Fig. 6E), 
revealing a potential therapeutic target. 

Fig. 5. Analysis of the immunogenicity-related features in the molecular clusters. A-C. Different levels of CTA, HRD, and ITH among cluster A and B. 
D-E. No significant difference of SNV and TMB scores were recognized between the molecular clusters. F. A waterfall plot displaying the top 20 
altered genes in cluster A and B. 

Y. Tang et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e15693

10

3.8. Validation of the molecular clusters 

To support that the molecular clusters were reproducible, we extracted a separate ccRCC mRNA dataset, E-MTAB-3267, for 
validation. The prognostic PCD-related genes were utilized in the same way mentioned above to group the E-MTAB-3267 cohort into 
two molecular clusters whose overall survival was significantly different (Fig. 7A). Each cluster was independent and their silhouette 
scores were 0.83 and 0.82 respectively (Fig. 7B–C). Meanwhile, the classification of 3 and 4 clusters presented poor silhouette scores 
and were excluded (Figs. S4A–F). Besides, cluster B, whose overall survival was relatively low, had higher scores of pyroptosis and 
apoptosis than cluster A (Fig. 7D). These were all in line with the results of the molecular clusters constructed from the TCGA cohort. 
For the convenience of clinical usage, we made use of the NTP algorithm to produce a genetic classifier derived from the top 30 
upregulated genes in each cluster (Table S4) and validated the classifier in TCGA and E-MTAB-3267 cohorts. The predicted results 
presented pleasant concordance with the molecular clusters (Fig. 7E–F) and had a similar outcome of survival analysis (Figs. S4G–H). 
demonstrating that the genetic classifier could conveniently and reliably represent the molecular classification. Furthermore, analysis 
of the transcriptome sequencing data from clinical samples indicated that most genes in the classifier were differentially expressed in 
ccRCC (Table 2), supporting the clinical application of the current gene classifier. 

4. Discussion 

As the major histological subtype of renal cancers, ccRCC would lead to an unfavorable prognosis at the advanced stage and poorly 
responds to traditional chemotherapy and radiotherapy [42]. Fortunately, novel immunotherapies such as ICIs were confirmed to be 
curative in ccRCC, though reliable biomarkers were required for predicting the therapeutic effect and toxicity [43]. ICIs exert their 
function by activating anti-tumor immunity to clear cancer cells [44]. With ongoing investigation, several PCDs, such as pyroptosis, 
were revealed to participate in the war against cancer and possessed potential synergistic effects on neoplastic therapies including 
immunotherapies [45]. In the current study, we investigate the status of programmed cell death in ccRCC and build up a cell 
death-based classifier to differentiate the survival and therapeutic response of ccRCC. 

Through thorough analysis, apoptosis and pyroptosis were identified to be enriched in ccRCC and correlated with prognosis, among 
which apoptosis was positively related to survival and pyroptosis was associated with worse survival. Apoptosis has been widely 

Fig. 6. Investigation of the therapeutic response between molecular clusters. A. Differences of immunophenoscore of PD1, CTLA4 and PD1+CTLA4 
blockades between the molecular clusters. B. Differences of IC50 of Axitinib, Pazopanib, Sorafenib, and Sunitinib among the molecular clusters. C-D. 
Patients in cluster A responded better to modulation of TGFβ and IFNγ signaling pathways than those in cluster B. E. Difference of 10 oncogenic 
pathways among cluster A and B. 
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investigated and demonstrated to be a biological process through which cells automatically step toward death under some particular 
stimuli. It is characterized by the condensation of chromatin and fragmentation of nuclear while the plasma membrane is intact during 
the whole process [46]. Involved in various diseases, apoptosis plays an important role in cell proliferation and survival and is critical 
for tumorigenesis. The evasion of apoptosis was one of the essential alterations for normal cells to transform into tumor cells [47]. 
Besides, apoptosis reduction, for example, by the downregulation of p53, was shown to be correlated with tumor growth and pro
liferation [48]. Nonetheless, as demonstrated in the results, cluster A with a high apoptosis level still had a worse prognosis than cluster 
B. This could partly due to the development of resistance to apoptosis in ccRCC. Mutation of the Von-Hippel Linda (VHL) gene, which 
happened in more than 70% of RCC patients, could protect RCC cells from apoptosis by preventing the degradation of 
hypoxia-inducible factor (HIF) [49]. Meanwhile, the NF-κB activation resulting from VHL mutation may induce an increased TNFα 
level which contributes to RIPK1-dependent inhibition of apoptosis in RCC cells [50]. 

Distinguished from apoptosis, pyroptosis is a kind of PCD that could induce inflammation. When undergoing pyroptosis, the cell 
membrane had pores formed on both sides and produced bubble-like protrusions leading to the rupture of the cell and release of pro- 
inflammatory molecules [51]. Pyroptosis recently had been found to be involved in carcinogenesis, and its role varies in different types 
of cancer [52]. Pyroptosis could be a protective factor for hepatocellular carcinoma, in which the expression of NLRP3, a 
pyroptosis-related protein, had a negative relationship with the clinical stage and pathologic grade [53]. Besides, AIM2 in 
HIV-infective cervical cancer cells could induce pyroptosis to protect against cancer cells [54]. However, as demonstrated by the above 
results, ccRCC patients and clusters with high pyroptosis as well as apoptosis levels were related to advanced clinical features and poor 
survival. There was a limited message about the relationship between pyroptosis and ccRCC, but the carcinogenic feature of pyroptosis 
in cancers had been identified. In breast cancer, the high expression of GSDMB, which is one of the pyroptosis effectors, was related to 

Fig. 7. Validation of the molecular clusters and gene classifier. A. Patients in cluster A had higher overall survival than those in cluster B. B–C. 
Cluster A was notably distinguished from cluster B and both of them had high silhouette scores. D. The level of pyroptosis and apoptosis were higher 
in cluster A than those in cluster B. E-F. Correlation between the molecular clusters and gene classes in TCGA and E-MTAB-3267 cohorts 
respectively. 
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distance metastasis and poor prognosis [55]. Another effector, GSDMC, was found to be expressed in malignant melanoma and may 
participate in the invasive and metastatic features of the cancer cells [56]. Therefore, the enriched pyroptosis in ccRCC may serve as a 
pro-carcinogenic factor while the protective effect of apoptosis could be suppressed. 

The carcinogenic effect of PCD could be achieved through modulating the tumor immune microenvironment [57] and our results 
also indicated the cluster with high levels of PCD was immune-rich with substantial infiltration of multiple types of immune cells. 
Although apoptosis is not inflammable, it induced the secretion of factors like ATP and lysophosphatidylcholine (LPC) to serve as 
chemo-attractants for the recruitment of immune cells to the neighboring microenvironment [58,59]. As an inflammable PCD, 
pyroptosis could induce the formation of multiple inflammasomes to modulate the immune system. Inflammasome NLRP3 was able to 
mediate IL-18 production and assist in the maturation of natural killer (NK) cells [60]. Besides, NLRP3 was essential for the production 
of IL-1β which could induce the priming of CD8+ T cells [61]. It was discovered that inducing pyroptosis was able to increase the 
infiltration of CD4+ T cells and CD8+ T cells [62]. However, despite the high level of inflammatory immune cells, the immune 

Table 2 
Differential expression of the genes in the classifier between ccRCC and normal 
samples.  

Gene logFC P value 

AIM2 5.793991 0.000595 
ADAMTS14 5.752162 1.49E-05 
FCGR1A 5.059712 1.49E-05 
CD72 4.823266 2.97E-05 
BATF 4.72691 2.97E-05 
GPR84 4.5812 0.001538 
SLAMF8 4.450916 1.49E-05 
TNFSF13B 4.100381 1.49E-05 
CARD11 3.8562 1.49E-05 
DOK3 3.654485 1.49E-05 
SPI1 3.636505 1.49E-05 
SH3BP1 3.596266 0.000178 
JAK3 3.581513 1.49E-05 
FOXP3 3.570916 5.94E-05 
FMNL1 3.275528 1.49E-05 
C1S 3.256804 1.49E-05 
PYCARD 3.215839 2.97E-05 
FCHO1 3.174602 0.000104 
FERMT3 3.172103 1.49E-05 
WAS 3.144529 2.97E-05 
LY96 3.043022 1.49E-05 
NCF4 2.925219 1.49E-05 
DEF6 2.92065 2.97E-05 
C1R 2.902083 0.000104 
ADAM12 2.755361 0.001337 
GMIP 2.714427 1.49E-05 
RGS19 2.661285 1.49E-05 
SERPINF1 2.221644 0.000178 
RGS10 2.135263 0.000104 
CDKL2 − 0.828 0.018277 
PRKD1 − 1.23519 0.000951 
CDKL1 − 1.41258 0.000104 
AUH − 1.57794 1.49E-05 
BPHL − 1.64492 0.000951 
NDRG2 − 1.73313 1.49E-05 
ANK3 − 1.74848 0.000178 
CLCN5 − 1.84616 0.000654 
L2HGDH − 1.90637 0.000446 
FREM2 − 1.91142 0.001506 
C1orf210 − 1.93118 0.000957 
HIBCH − 1.96072 5.94E-05 
PANK1 − 2.06053 0.000282 
PCCA − 2.2461 2.97E-05 
EPB41L5 − 2.29522 1.49E-05 
CA4 − 2.34603 0.000282 
ACAT1 − 2.4016 2.97E-05 
WDR72 − 2.4042 0.000104 
NR3C2 − 2.41463 1.49E-05 
TRPM3 − 2.43423 2.97E-05 
MYL3 − 2.79221 1.49E-05 
ACADSB − 2.96291 1.49E-05 
ALDH6A1 − 3.86785 1.49E-05 
TMEM174 − 5.48751 0.000325  
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microenvironment in ccRCC with a high level of PCD was shown to be suppressive. It may be partially due to the co-infiltration of 
inhibitory immune cells in cluster A including MDSCs and Treg. Characterized by the co-expression of surface markers CD4, CD25, and 
FOXP3, Treg was revealed to be correlated with the poor prognosis of RCC probably through assisting the immune escape of tumor cells 
[63]. MDSC was another type of immune cell responsible for the suppressive state of anti-tumor T lymphocytes. Inflammasomes 
resulting from pyroptosis may facilitate the accumulation of these suppressive immune cells in TME [64]. Besides, Daley et al. found 
that pyroptosis could induce the differentiation of CD4+ T cells to inhibitory Th2 cells and Treg whereas the polarization of Th1 cells 
was suppressed [65]. Moreover, the overexpression of MHC-I molecules in the high cell death cluster could attribute to the suppressive 
environment. RCC cells expressing HLA-G possessed higher resistance toward the cytotoxic effect of CD8+ T cells and NK [66]. 
Meanwhile, HLA-E may serve as a promoter for RCC to escape from immune surveillance [67]. The inhibitory immune checkpoint is an 
additional mechanism through which tumor cells achieve immune evasion. PD-1 expression on lymphocytes could interact with the 
ligand of PD-1 on tumor cells to conduct suppressive signals to the anti-tumor lymphocytes and protect the tumor cells from the 
immune response. CTLA-4 is another popular inhibitory immune checkpoint that could competitively bind CD80 and CD86 against 
CD28, interrupting the activation of anti-tumor immunity [68]. The unregulated expression of these two inhibitory checkpoints 
together with others such as LAG3 and TIM3 may further support the suppressive immune microenvironment in ccRCC with a high 
level of PCD. Thus, it seems that the counterbalance between inflammatory and inhibitory immune cells in ccRCC with high PCD levels 
was inclined to the suppressive one. 

Despite the suppressive immune microenvironment, ccRCC with high cell death levels respond better to ICIs thanks to the 
considerable immune reservoir and immunogenicity. Considering ICIs function through reactivating the anti-tumor immune system, a 
TME with substantial infiltrating cytotoxic immune cells was preferred for ICIs therapy [69]. In addition, the ability to generate 
tumor-associated antigens was also essential for ICIs to exert functions. Cancer testis antigen (CTA) was a kind of tumor-associated 
antigen specifically expressed in tumor tissues. A notable relationship had been identified between CTA and the activation of cyto
toxic T lymphocytes as well as their anti-tumor ability, representing the immunogenicity of CTA [70]. Homologous recombination is 
important for DNA to stay intact and it was frequently disrupted in cancers. Homologous recombination deficiency (HRD) enhanced 
the potential of tumors to generate neoantigens, which could enhance the efficacy of ICIs [15]. Although high intratumoral hetero
geneity (ITH) potentiates the tumor cells to proliferate and progress, it could be a reliable target for developing combination therapies 
of ICIs with greater efficacy [71]. With this concern, the high PCD cluster could not only instruct the monotherapy of ICIs in ccRCC but 
also could facilitate the combination therapies with other curative drugs. Tyrosine kinase inhibitors (TKIs) also belong to the 
FDA-approved therapies for ccRCC. In addition, to act as one of the first-line therapies for ccRCC, TKIs were demonstrated to 
reprogram the immune microenvironment and synergize with ICIs [72]. Distinguished from pre-treatment examinations, the amount 
of Treg decreased while the level of IFNγ-producing CD4+ lymphocytes increased after 2 cycles of Sunitinib administration [73]. 
Meanwhile, the proportion of MDSCs in ccRCC could also be negatively modulated after TKIs therapy [74]. These may serve as a 
biological basis to support the combined administration of TKIs and ICIs. A recent study discovered that ICIs therapy achieved better 
efficacy in patients pre-treated with TKI [75]. Except for this kind of combination, the current study also provided some potential 
therapeutic choices. TGF-β was revealed to act as a suppressor for adaptive immune response by inducing Treg proliferation and 
interrupting the function of cytotoxic lymphocytes [76]. On the contrary, IFN-γ could assist the recognition of tumor cells by the 
immune system to enhance anti-tumor function [77]. Considering that patients with a high level of PCD respond well to the modu
lation of TGF-beta and IFN-gamma, it would be beneficial to combine them with ICIs therapy. Moreover, cell cycle-related pathway 
and p53 signaling were enriched in the high PCD group. The signaling of p53 was essential for the cell cycle, apoptosis, and drug 
resistance. The modulation of p53 could promote the sorafenib response in RCC cells and induce cell apoptosis [78], providing 
additional selection for combination therapies in ccRCC. 

After all, the current study thoroughly investigated the PCD status in ccRCC and uncover the immune-modulating and prognostic 
roles of apoptosis and pyroptosis. A simple and reproducible PCD-based gene classifier was constructed to help clinicians differentiate 
the prognosis of ccRCC patients and prescript individualized therapeutic strategies, including deciding which drug could be used and 
how these drugs can be used in combination. At the same time, our results could support further research on the mechanism and 
functions of PCD in ccRCC and the discovery of novel therapeutic targets. Still, there are limitations existing in the current study. Most 
of the analyses were based on public datasets, TCGA and E-MTAB-3267 because of their intact prognosis data. Although we have 
validated the gene classifier with transcriptomic data from clinical samples, a larger clinical cohort with survival and treatment in
formation would be beneficial to confirm the prognostic and therapeutic predictive ability of this classifier. Meanwhile, despite we 
have proposed some potential functional mechanisms of PCD and its relationship with the TME of ccRCC, profound cell and functional 
experiments are necessary to clarify these mechanisms and connections. Moreover, based on further validation and experiments, the 
current gene classifier can progress toward more concise and convenient clinical application. 

5. Conclusion 

In the current study, we comprehensively investigated the status of PCD in ccRCC and constructed a PCD-based classification with 
distinct clinical features and TME heterogenicity. It could facilitate the clinical diagnosis and individualized treatment of ccRCC, 
shedding light on further research on combination therapies. 
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ccRCC Clear cell renal cell carcinoma 
ICIs immune checkpoint inhibitors 
PCD programmed cell death 
TME tumor microenvironment 
TCGA The Cancer Genome Atlas 
CTA cancer testis antigens 
HRD homologous recombination repair deficiency 
ITH intratumoral heterogeneity 
SNV single-nucleotide variation 
TIDE tumor immune dysfunction and evasion 
TMB tumor mutation burden 
MDSC myeloid-derived suppressor cell 
Treg regulatory T cell 
WGCNA Weight gene correlation network analysis 
CNMF non-negative matrix factorization 
ESTIMATE Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data 
ssGSEA single-sample Gene Set Enrichment Analysis 
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