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eXclusionarY: 10 years later, where
are the sex chromosomes in GWASs?
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Summary
10 years ago, a detailed analysis showed that only 33% of genome-wide association study (GWAS) results included the X chromosome.

Multiple recommendations weremade to combat such exclusion. Here, we re-surveyed the research landscape to determine whether these

earlier recommendations had been translated. Unfortunately, among the genome-wide summary statistics reported in 2021 in the NHGRI-

EBI GWAS Catalog, only 25% provided results for the X chromosome and 3% for the Y chromosome, suggesting that the exclusion

phenomenon not only persists but has also expanded into an exclusionary problem. Normalizing by physical length of the chromosome,

the average number of studies published through November 2022 with genome-wide-significant findings on the X chromosome is

�1 study/Mb. By contrast, it ranges from �6 to �16 studies/Mb for chromosomes 4 and 19, respectively. Compared with the autosomal

growth rate of �0.086 studies/Mb/year over the last decade, studies of the X chromosome grew at less than one-seventh that rate, only

�0.012 studies/Mb/year. Among the studies that reported significant associations on the X chromosome, we noted extreme heterogene-

ities in data analysis and reporting of results, suggesting the need for clear guidelines. Unsurprisingly, among the 430 scores sampled from

the PolyGenic Score Catalog, 0% contained weights for sex chromosomal SNPs. To overcome the dearth of sex chromosome analyses, we

provide five sets of recommendations and future directions. Finally, until the sex chromosomes are included in a whole-genome study,

instead of GWASs, we propose such studies would more properly be referred to as ‘‘AWASs,’’ meaning ‘‘autosome-wide scans.’’
Introduction

In the 10 years since Wise et al. (2013)1 brought the exclu-

sion of the X chromosome from genome-wide association

studies (GWASs) to the attention of the community, little

has improved regarding the analysis and reporting of the

sex chromosomal variants inGWASs.2–4 TheXchromosome

accounts for �5% of the haploid genome and carries �800

protein-coding genes. However, to date (November 2022),

even after the call for including the X chromosome in

GWASs by Wise et al.,1 approximately only 0.5% of associ-

ated SNPs in the NHGRI-EBI GWAS Catalog5,6 are on the X

chromosome, a 10-fold paucity compared to the autosomes.

The paucity of research on the sex chromosomes in-

cludes both the X and Y chromosomes. For the Y chromo-

some,7 as of November 29, 2022, only nine out of 447,939

associations reported in NHGRI-EBI GWAS Catalog5,6

belong to the Y chromosome. Coverage is scarce on

GWAS arrays for the male-only Y chromosome, in part

because of repetitive sequences that make variant calling

difficult. If Y chromosomal variants are available in the

non-pseudo-autosomal region (NPR), they can be analyzed

via existing methods. However, there appears to be ‘‘a lack

of will’’ to do so.8

The X chromosome presents multiple analytical

challenges,9–14 including (1) a male has one copy of the

X chromosome while a female has two, in contrast to the
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autosomes; (2) the X chromosome in male germ cells

only recombines with the Y chromosome in the pseudo-

autosomal regions (PARs) but not in the NPR; (3) in

contrast to males, the two copies in female germ cells re-

combine across the entire X chromosome; (4) the two fe-

male copies are also subject to X inactivation (i.e., X chro-

mosome dosage compensation); (5) the X-inactivation

status at the population level can be random, skewed, or

absent (i.e., X-inactivation escape); and (6) the true

X-inactivation status at the individual level cannot be

derived from GWAS data alone.

Thus, the existing bioinformatic, statistical, and ma-

chine learning methods developed specifically for the au-

tosomes are not suitable for the sex chromosomes.

For example, most bioinformatic tools are autosome-

centric, meaning that even if the sex chromosomes were

included in the pipelines, tool developments were not

tailored for the sex chromosomes.11 These include variant

calling,15,16 data quality control (QC) prior to imputa-

tion17,18 (e.g., cryptic relatedness,19,20 Hardy-Weinberg

equilibrium [HWE]21,22), and imputation.15,23–30 Similarly,

most association methods are not tailored for the sex chro-

mosomes, including population stratification via prin-

cipal-component analysis (PCA),31 and the association

methodology itself.32–36 Finally, the recent polygenic risk

score (PRS)-based disease risk prediction methods37–40

rarely include the sex chromosomes.
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Figure 1. Total number of studies and
average number of studies per Mb report-
ing at least one genome-wide significant
finding (p value < 5 3 10�8) stratified by
chromosome, from the NHGRI-EBI GWAS
Catalog
(A and B) Total number of studies (A) and
average number of studies (B). Genetic as-
sociations were indexed by unique
PubMed IDs up to November 29, 2022.
Studies reporting associations with multi-
ple traits were only counted once.
Back in2013, after examining743GWASpaperspublished

between January 2010 and December 2011 and in the

NHGRI GWAS Catalog,41 Wise and colleagues noted that

only �33% GWASs included the X chromosome1; the Y

chromosome was not explicitly examined, though it is

implicitly involved in the X chromosome through the

PARs. Additionally, the authors commented on QC and po-

wer concerns, including poorer coverage of the X chromo-

some in earlyGWAS arrays and lower genotyping and impu-

tation accuracy as compared to autosomes, as well as

X-inactivation-related analytical complexities that may

reduce power of an association study. Finally, the authors

concluded that ‘‘many interesting biological insights could

be revealed if we end the exclusion of the X chromosome

in future GWAS.’’

Thus, 10 years later, we first re-surveyed the research land-

scape to determine whether the earlier recommendations of

including the X (and Y) chromosome(s) in GWASs had been

translated into changes in practice. Second, as genotyping

and sequencing technologies have also evolved, including

imputation panels based on next-generation sequencing

data,15,42 we then scanned the literature for emerging issues

and insights. Finally, we make new recommendations.
Sex chromosome results in the NHGRI-EBI GWAS

and PolyGenic Score (PGS) Catalogs

Lack of X and Y SNP-trait associations in the NHGRI-EBI

GWAS Catalog

As of Nov 29, 2022, the NHGRI-EBI GWAS Catalog5,6

contained 6,130 published studies, of which 4,208 re-
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ported at least one genome-wide-sig-

nificant association (p value < 5 3

10�8).43 However, only 186 studies

(4.4%) had signals on the X chro-

mosome (Figure 1A). In contrast,

chromosome 21 had twice the num-

ber of signals (418 studies; 9.9%),

despite being less than one-third

the length (Figure 1A).

Before investigatinghowoften theX

chromosome was analyzed to begin

with (in the next section), we first

normalized each chromosome by its
physical length (Figure 1B). It is clear that signal densities

vary across the autosomes. However, the most striking

feature is the continued paucity of signals on the X chromo-

some since 2010–2011.1

To investigate whether the 2013 recommendation to

include the X chromosome in GWASs had an impact on

the practice of our field, we examined temporal changes.

Figure 2 shows the average number of studies per Mb

with at least one genome-wide-significant finding, sepa-

rately for the autosomes and the X chromosome, from

prior to 2008 to November 29, 2022. Unfortunately, the

gap between the autosomes and the X chromosome ap-

pears to be widening in recent years. Between 2009 and

2021, the average number of studies with genome-wide-

significant findings on the X chromosome grew at approx-

imately 0.012 studies/Mb/year, remaining below 0.3/Mb

every year (Figures 2 and S2). In contrast, the numbers

increased consistently for the autosomes by approximately

0.086 studies/Mb/year. For comparison, Figure S1 shows

the total number of studies reporting one or more signals

per chromosome over time.

Examining GWAS array and sequencing studies (GWAS-

by-WES [whole-exome sequencing], GWAS-by-WGS

[whole-genome sequencing]) separately, using the ‘‘geno-

typing technology’’ variable, revealed that 4.6% of GWAS

loci came from studies that included sequencing and

only 0.76% of those loci (12 out of 1,576) were on the X

chromosome; six of those 12 loci came from a single

study.44 Additionally, many of the studies that employed

sequencing also used data from genotyping arrays.

Ironically, one of the most comprehensive X chromo-

some-wide studies (XWASs45) is not included in the



Figure 2. Average number of studies per Mb reporting at least
one genome-wide significant finding (p value < 5 3 10�8) over
time, separately for the autosomes and X chromosome, from
the NHGRI-EBI GWAS Catalog
Genetic associations were indexed by unique PubMed IDs up to
November 29, 2022. Studies reporting associations with multiple
traits were only counted once.
NHGRI-EBI GWAS Catalog, presumably because it only re-

ported the X chromosome association results, which does

not meet the catalog inclusion criteria requiring genome-

wide results. Although they showed that the contribution

of X chromosome loci to trait variability may be smaller

than similar-sized autosomes, for height in males, the X

chromosome h2 estimate is similar to that for many

shorter autosomes, including chromosomes 13 and 18.45

These authors also observed interesting sex differences

in X chromosome heritability across 20 quantitative traits

in the UK Biobank on the basis of the central imputation

from the Affymetrix arrays. Specifically, NPR X chromo-

some h2 estimates were on average twice as high for males

as for females (0.63% vs. 0.30%), with the noticeable

exception of educational attainment. When the XWASs

were performed, hundreds of X chromosomal loci were

identified across these 20 quantitative traits, with twice

as many signals detected in males than females, and

some loci had remarkable male-specific effects across

numerous traits.

Genetic associations on the Y chromosome were even

more rarely documented. Out of all 447,939 associations

(p value < 1 3 10�5), only nine, arising from two studies,

were on the Y chromosome; among the 293,170

genome-wide-significant findings, only one was from the

Y chromosome.
Lack of X and Y chromosome results in genome-wide

summary statistics in the NHGRI-EBI GWAS Catalog

To address whether lack of sex chromosomal GWAS results

were due to lack of appropriate (or any) analysis of the sex
The Ame
chromosomes, we calculated the proportion of genome-

wide summary statistics that included sex chromosome re-

sults, regardless of if there were significant findings.

There were 19,935 genome-wide summary statistics pub-

lished in 2021 and posted at the NHGRI-EBI GWAS Cata-

log5,6 (web resources). These GWAS submissions came

from 136 publications, of which most provided one to

two sets of summary statistics, but four provided >1,000

sets (Data S1). To avoid analyzing multiple submissions

from the same publication, we randomly selected one sub-

mission from each of the 136 publications (Data S1).

Out the 136 GWAS summary statistics, only 34 (25%)

contained X chromosome results (of the 34, only four

also included Y chromosome results), which is less than

the 33% based on the survey of GWASs conducted in

2010 and 2011.1 Thus, exclusion has become more rather

than less prevalent, contrary to the intent of the initial

commentary! Further, exclusion appears to be an exclu-

sionary problem, where both sex chromosomes have

been routinely neglected in whole-genome studies.

If we assume that the 136 studies with summary statis-

tics in the NHGRI-EBI GWAS Catalog are a random sample

of all GWASs in 2021 and recall from the previous section

that there is a 6-fold difference in the average findings be-

tween chromosome 1 and the X chromosome (Figure 1B),

it is then reasonable to hypothesize that much of the

paucity would be resolved if the X chromosome were actu-

ally analyzed across all GWASs.

Somewell-known contributing factors include the smaller

effective population size (Ne) and X chromosome inactiva-

tion in females, which reduce power to detect associations

compared to autosomes.45,46 Variation in single-nucleotide

diversity47,48 can be another contributing factor. For

example, chromosome 19 has the highest density of single-

nucleotide variations of 43.21/kb (based on the 1000 Ge-

nomesProject) amongall chromosomes,while chromosome

1 has the lowest of all autosomes at 36.46/kb. However,

cumulatively as of December 2022, there is no statistically

significant linear relationship (slope ¼ 0.54; p value ¼ 0.13;

Figure 3) betweennucleotide diversity and the average num-

ber of genome-wide-significant findings among the auto-

somes. Even if we were willing to extrapolate the linearly

fitted line to30.16/kb, thenucleotidediversity of theX chro-

mosome, the expected research yield on the X chromosome

is 3.47/Mb, almost thrice the actual output of 1.21/Mb.

Based on high-coverage whole-genome sequencing of

TOPMed15 cohorts, the X chromosome has lower density

of variants in coding sequences compared to the auto-

somes.49 This can be an additional contributing factor to

the paucity of signals on the X chromosome.

Lack of X and Y chromosome results in the PolyGenic

Score (PGS) Catalog

Based on the above results from the GWAS Catalog, there

is also a lack of sex chromosome results in the PGS Catalog,

as expected. We downloaded PGS scoring files from the

PGS Catalog50 (web resources), focusing on the 430
rican Journal of Human Genetics 110, 903–912, June 1, 2023 905



Figure 3. Average number of studies per Mb reporting at least
one genome-wide significant finding (p value < 5 3 10�8) per
chromosome, from the NHGRI-EBI GWAS Catalog cumulatively,
compared to chromosome-specific nucleotide diversity48

Genetic associations were indexed by unique PubMed IDs up to
November 29, 2022. Studies reporting associations with multiple
traits were only counted once. The solid slope was fitted using
the autosomal data only, and the dashed curves are the 95% con-
fidence bands.
files (PGS001802 to PGS002231) all uploaded on January

10, 2022. Unsurprisingly, none of the 430 files contained

any results from the sex chromosomes, confirming the cur-

rent exclusionary practice in PGS research as well.
Other emerging exclusionary issues: Quality

control, association analysis and reporting, results

interpretation, the Y chromosome, and clinical

implications

Quality control

In addition to the QC discussed by Wise et al.,1 many data

quality pipelines and imputation tools15–18,23–30 have been

developed for GWASs. However, most are autosome-

centric, ignoring the sex chromosomes either explicitly

or implicitly. In 2014, König et al.11 highlighted ‘‘the steps

in which the X chromosome requires specific attention,

and [gave] tentative advice for each of these,’’ including

sex-stratified minor allele frequencies (MAFs) and missing

rates, as well as testing for differential missingness. Howev-

er, these recommendations have not been followed in

practice. For example, sex-specific variant call rates are

rarely reported.

There has been little work on chromosome-specific

imputation quality. However, a recent study that

compared the X chromosome with the autosomes51 exam-

ined imputation from the Affymetrix 500k array in an ad-

mixed population with the Illumina MEGA array as the

gold standard. They showed that, using the Michigan

Imputation Server with the 1000 Genomes Project phase

3 data, the X chromosome had 70% imputation accuracy

compared to 84% on the autosomes. Further, they showed
906 The American Journal of Human Genetics 110, 903–912, June 1,
that imputation quality scores were also lower on the X

chromosome across all imputation approaches. It would

be interesting to study sex-specific imputation quality on

the X chromosome.

Sex difference in minor allele frequency as QC revisited

Checking for sex difference in minor allele frequency

(sdMAF) is rarely formed as part of GWAS QC. However,

it was already noted a decade ago that ‘‘MAF checks might

need to be conducted separately for the X chromosome

because the expected frequencies are sex dependent,’’

based on an informal poll of leading statistical geneticists

working in GWASs in 2013.1 Others also suggested to

include an sdMAF test as part of the QC for the X chromo-

some.11 However, a recent work has shown that there are

possible causes of sdMAF: genotyping errors and biology.52

Delineating the two causes for each X chromosomal SNP is

not straightforward, creating challenges in QC pipelines.

The recent study analyzed the high-coverage whole-

genome sequencing data of the 1000 Genomes Project48

and gnomAD v3.1.253 and identified many SNPs with

genome-wide-significant sdMAF across the X chromo-

some, particularly at the boundaries between PAR and

NPR.52 Further, the study concluded that region-specific

sdMAF at the PAR-NPR boundaries is most likely a bio-

logical phenomenon, possibly due to sex-specific link-

age.54–56 This illustrates the challenges of including sdMAF

as a QC measure.

As sdMAF is statistically equivalent to GWAS of sex, both

evaluating whether there is allele frequency difference be-

tween sexes, there is also a connection between the sdMAF

study52 and a recent GWAS of sex.57 This GWAS of sex used

data from 2.46 million customers of 23andMe but did not

examine the X chromosome.57 Although their main

conclusion was that sdMAF is a result of participation

bias, they also noted that 55% of their significant findings

on the autosomes are most likely results of genotyping er-

rors, further illustrating the importance and challenges of

separating genotyping errors from biology (and other

causes) that could lead to sdMAF.

Hardy-Weinberg equilibrium (HWE) test as QC revisited

Departure from HWE is routinely used as part of GWAS QC

for autosomes,17 as SNPs with severe Hardy-Weinberg

disequilibrium (HWD) are typically believed to have geno-

typing errors.58 However, how to evaluate HWE for the X

chromosome is unclear and it remains debatable whether

testing for HWD should be used at all as part of data QC,

both of which we discuss next.

The standard HWE test is Pearson’s c2
1 test, testing for the

difference between the observed and expected genotype

counts based on HWE.59,60 This test is typically applied

to sex-combined genotype counts, which is reasonable

for an autosomal SNP. But applying such an HWE test to

an X chromosomal PAR or NPR SNP requires additional

considerations.61 For example, König et al.11 recommen-

ded performing the HWE test with only females.
2023



Alternatively, Graffelman and Weir21,62 suggested using

both females and males, and they proposed a new HWE

test for an NPR SNP that includes the deviation of male ge-

notype counts from the expected, based on sex-pooled

allele frequency estimate. However, this alternative test

has been shown to be simultaneously testing for HWD in

females and sdMAF between males and females.61 There-

fore, if sdMAF were present, this sex-combined HWE test

can be misleading. Instead of the Pearson’s c2
1 test, testing

for model fit has also been proposed.63

Regardless of the specific HWE test used, screening out

variants with HWD is questionable for the X chromosome

for two other reasons. First, it has been long (but not well)

known that it takes several generations to achieve HWE on

the X chromosome in contrast to a single generation for

the autosomes under the same set of assumptions such as

random mating.22 Second, for the autosomes, recent

works64–66 have shown that association power can be

improved by leveraging the difference in HWD between

cases and controls while remaining robust to HWD caused

by genotyping errors, but this has yet to be explored for the

X chromosome.

X-inactivation uncertainty and association results

interpretation

Until very recently, the statistical genetics community

believed that X inactivation was the main analytical chal-

lenge to achieving X chromosome-inclusive GWASs.1,11

Therefore, most of the association methods developed so

far have focused on X inactivation.67–72 As the true model

can be escaping, random, or skewed X inactivation, exist-

ing analytic methods include using minimum p value,67

model selection,69 or Bayesian model averaging.72

We note, however, that these statistical approaches

rarely address the practical limitation that X inactivation

can vary by cell and tissue, and until an association is

identified, the relevant cells and tissues cannot even

be guessed. Additionally, skewed X inactivation is

confounded with non-additive genetic effect, statistically,

based on GWAS data alone.9 While these observations

helped to develop a new association test that is robust to

X-inactivation uncertainty,9 both SNP and sex-effect esti-

mates are biased if the model assumptions were incor-

rect.73 As SNP-effect estimates are the bases for construct-

ing PGS or PRSs, future research should consider how to

correct for the biases when X chromosomal variants are

included in PRS.

Heterogeneous reporting of summary statistics and the

X chromosome results

A workshop has resulted in recommendations for

improving the standardization of genome-wide summary

statistics,74,75 having acknowledged that there has been

large variation in reporting practices.76 In one specific

analysis, 127 unique formats were present among 327

summary statistics files analyzed. The authors then devel-

oped MungeSumstats, a Bioconductor package to stan-
The Ame
dardize and perform QC of GWAS summary statistics.

Interestingly, #27 among the total of 31 checks ‘‘for SNPs

on chromosome X, Y and mitochondrial SNPs, [and] if

any are found these are removed,’’ even though an option

of retaining them was provided.

We further examined the reporting standard in the orig-

inal publications of the X chromosomal signals docu-

mented in the NHGRI-EBI GWAS Catalog5,6 (downloaded

on 2020-03-08) with the genome-wide significance level

of p value < 5 3 10�8. Out of the 3,869 studies available

at that time (male-only studies excluded), 195 reported a

total of 253 genome-wide-significant loci on the X chro-

mosome. To streamline the analysis, we selected only

one SNP from each associated region by retaining the

SNP with the smallest association p value (Data S2).

We then extracted information on the analyses per-

formed from the original publications; in total, there

are 36 columns in Data S2. These details are crucial to

the analysis and reporting of the X chromosome but

are largely irrelevant to the autosomes. They include,

for example, whether (1) the analysis was sex stratified

(70% did sex-combined analysis); (2) for sex-combined

analysis, sex was included as a covariate (57% did not);

and (3) the genotype coding was documented (75% did

not, presumably used the default X-inactivation assump-

tion), because if X inactivation was assumed, males

are typically coded 0 and 2 for the two hemizygous geno-

types. These considerations were not included in the

guidelines recommended by Little et al.77 Not surpris-

ingly, there was much heterogeneity in both the analysis

and reporting among the 195 studies we examined. Such

heterogeneity creates challenges for meta-analyses since

the lack of necessary details may impact power if as-

sumptions about how the analysis was performed are

incorrect. We suggest sex-chromosome-aware research

guidelines to be developed by the community.

The Y chromosome

Non-recombining Y chromosome haplotypes (hap-

logroups) have a long history in population genetics and

genealogy,78 since these haplotypes can be determined

without ambiguity, making them the patrilineal equiva-

lent to mitochondrial haplogroups.79,80 However, the Y

chromosome has long been a thorn in the side of human

geneticists81: more than half of the Y chromosome is ab-

sent from GRCh38.82 Two recent papers used combina-

tions of multiple long-read next-generation-sequencing

technologies to generate much more complete sequence

of the Y chromosome, and they also described a high de-

gree of heterogeneity in chromosome length and content

between individuals.82,83

The Telomere-to-Telomere Consortium has reported the

sequence of an approximately 62 Mb long human Y chro-

mosome,82 which includes>30Mb that weremissing from

the reference sequence. Human geneticists can often be

criticized for exaggeration, claiming that their phenotype

or gene of interest has extensive complexity, but the recent
rican Journal of Human Genetics 110, 903–912, June 1, 2023 907



analysis of 43 diverse Y chromosomes takes the crown.83

For example, some Y chromosomes are only 45 Mb, while

others are as long as 85 Mb, in part as a result of large du-

plications and inversions.

It has been shown that standard sequencing alignment

methodsmay be problematic for females, without masking

the Y chromosome from the reference genome.84 For

example, more variants were called after masking the Y

chromosome in females, particularly in PARs. Similarly,

for variant calling in PARs in males, it was recommended

to provide only one PAR reference sequence from the two

sex chromosomes (i.e., either theXorY chromosome). Prior

to variant calling, the authors recommended using read

depths for the X and Y chromosomes, relative to the auto-

somes, to determine the sex chromosome composition of

a sample, similar to that proposed for GWAS arrays.16

Additionally, in the past few years, age-dependent clonal

loss of the Y chromosome has been reported in leuko-

cytes.85,86 This phenomenon may further affect data qual-

ity and analysis of PAR and Y chromosomal variants.

Clinical implications

The exclusion of sex chromosomes from analysis and re-

porting also has significant clinical implications. Chief

among these is failure to identify disease-associated SNPs

or regions important in pathophysiology, prevention,

diagnosis, or treatment. While common GWAS-identified

SNPs tend to have small estimated effect sizes, this is not

necessarily true for SNPs affecting drug responses, which

have not generally been subjected to strong selective

pressures.

Current pharmacogenetic guidelines such as those of the

Clinical Pharmacogenetics Implementation Consortium87

do not include genes on the sex chromosomes (quite

possibly because of exclusion of these genes from ana-

lyses); were such variants to be identified, guidelines for

screening or drug dosing might need to be modified on

the basis of a patient’s biologic sex. Similarly, adequate

identification and inclusion of sex chromosome variants

in PRSs might mandate stratification of these predictions

by sex. It will be difficult, if not impossible, to assess these

sex-stratified risks accurately until the dearth of analyses of

sex chromosomes in clinically important traits is rectified.

Recommendations and future directions

After 15 years, several authors have observed that GWASs

are ‘‘realizing the promise’’88 with ‘‘no signs of slowing

down.’’89 Interestingly, sex chromosomes were not dis-

cussed in the 5-year,90 10-year,4 and 15-year88,89 reviews

of GWASs. Here, we revealed that, for example, sex chro-

mosomes are omitted from �75% of the GWASs in 2021,

which is likely the major cause of the paucity of signals

on the sex chromosomes. Given these observations, to

achieve sex-chromosome-inclusive research, we make

several recommendations and discuss related future

research directions.
908 The American Journal of Human Genetics 110, 903–912, June 1,
First, the existing bioinformatic and sequencing pipe-

lines need to be revised for the sex chromosomes, from

variant calling84 to imputation, so that the downstream

analyses improve the integrity and robustness of sex chro-

mosome analyses and provide greater confidence in con-

clusions drawn from them.

Second, QC procedures need to follow previously recom-

mended sex-stratified approaches.1,11 Additionally, sex dif-

ference in MAF52,91,92 needs to be examined, but whether

attributing significant sdMAF solely to genotyping errors

(then screening out such variants) is appropriate warrants

future research. This is because sdMAF could also be a result

of sex-specific linkage, particularly at the PAR-NPR

boundaries.55

Third, the distinction between association testing and

effect size estimation is particularly important for the X

chromosome9,73 Because of X-inactivation uncertainty, ge-

netic effects may be more reliably estimated in a sex-strat-

ified fashion to construct sex-specific PRSs,93 conceptually

analogous to population-specific PRSs.94

Fourth, obtaining and then incorporating SNP/gene/tis-

sue/individual-specific X inactivation could improve asso-

ciation methods. To this end, recent advances in long-read

next-generation-sequencing technology, enabling phased

allele-specific methylation, could be useful.95 Additionally,

gene expression data such as the GTEx resource can be

utilized.10,96

Fifth, many other existing statistical genetics analyses

require sex-chromosome-aware development and imple-

mentation. These include, for example, rare variants,97,98

meta-analysis,99 LD score regression,100 pleiotropy,101

and causal inference via Mendelian randomization.102

More work is also need to better understand trait heritabil-

ity103 attributed to the sex chromosomes,45,46 including

the effect of imputation quality.

In summary, 10 years after the seminal work by Wise

et al.,1 the exclusion of the X and Y chromosomes from

whole-genome analysis persists. Until the sex chromo-

somes are indeed included in a whole-genome study,

instead of GWASs, we propose they be more properly

referred to as ‘‘AWASs’’ for ‘‘autosome-wide scans.’’
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