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Abstract

Rationale: Optimal infusion rate for fluid challenges in critically
ill patients is unknown. A large clinical trial comparing two
different infusion rates yielded neutral results. Conditional average
treatment effect (CATE) assessment may aid in tailoring therapy.

Objectives: To estimate CATE in patients enrolled in the
BaSICS trial and to assess the effects of receiving CATE
model–recommended treatment in terms of hospital mortality.

Methods: Post hoc analysis of the BaSICS trial assessing the
effect of two infusion rates for the fluid challenge (fast, 999 ml/h,
control group; vs. slow, 333 ml/h, intervention group) on hospital
mortality. CATE was estimated as the difference in outcome for
treatment arms in counterfactuals obtained from a Bayesian
model trained in the first half of the trial adjusted for predictors
hypothesized to interact with the intervention. The model
recommended slow or fast infusion or made no recommendation
in the second half. A threshold greater than 0.90 probability of
benefit was considered.

Results: A total of 10,465 patients were analyzed. The model
was trained in 5,230 patients and tested in 5,235 patients.

A recommendation could be made in the test set in 19% of
patients (14% were recommended the control group and 5%
the treatment group); for 81% of patients, no recommendation
could be made. Slow infusion was more frequently recommended
in cases of planned admissions in younger patients; fast infusion
was recommended for older patients with sepsis. Slow infusion
rate in the subgroup of patients in the test set in which slow
infusion was recommended by the model was associated with an
odds ratio of 0.58 (95% credible interval of 0.32–0.90;
0.99 posterior probability of benefit) for hospital mortality. Fast
infusion in the subgroup in which the model recommended fast
infusion was associated with an odds ratio of 0.72 (credible
intervals from 0.54 to 0.91; probability of benefit .0.99).

Conclusions: Estimation of CATEs from counterfactual
probabilities in data from BaSICS provided additional
information on trial data. Agreement between treatment
recommendation and actual treatment was associated with lower
hospital mortality.

Clinical trial registered with clinicaltrials.gov (NCT 02875873).
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Despite the frequency of fluid challenges
performed in critically ill patients, there are
few data on the appropriate infusion rate to be
used (1). Although faster infusion rates may
result in earlier restoration of hemodynamics,
including cardiac output, slower infusion rates
may be associated with less tissue edema,
which could theoretically limit organ
dysfunction and improve outcomes (2, 3).
This concept was tested in the BaSICS by
comparing two different infusion rates for
fluid challenges in critically ill patients: 999
ml/h, the “fast rate,” the control group in the
trial; and 333mL/h, the “slow rate,” the
intervention group in the trial (1).

The trial yielded neutral results overall
for the primary endpoint of 90-day mortality.
As with any clinical trial, BaSICS provided an
average estimate of the treatment effect for
the included patient population. It has been
suggested that heterogeneity in treatment
effect may play an important role in clinical
trials (4). Analysis of heterogeneity in
treatment effect is complex and can be
performed using several methods,
including unsupervised methods to find
cluster/phenotypes (5–7) or estimates of
conditional average (“individualized”)
treatment effects (CATEs) (8, 9). Estimates
of CATEs may allow amore precise
categorization of patients according to the
expected response to treatment and aid in
personalizing therapy.

In this secondary post hoc analysis of the
infusion-rate arms of the BaSICS trial, we
investigated whether estimates of CATEs
obtained from clinical data could provide
additional interpretations of trial data
regarding the effects of two infusion rates
and therefore foster improved interpretation
of the trial’s results.

Methods

Design
A secondary, post hoc analysis of the BaSICS
trial was performed in which all patients with

complete primary endpoint information
were included in the analysis.

Procedures
Details on the BaSICS trial can be found in
the main publication and protocol (1, 10).
Patients requiring at least one fluid challenge
without a discharge plan in the next 24 hours
and with one indicator of increased risk of
death or receipt of kidney replacement
therapy were eligible for the trial. Risk factors
for death/kidney replacement therapy
included age greater than 65 years,
hypotension, sepsis, receipt of invasive or
noninvasive respiratory support, acute kidney
injury, and cirrhosis or acute liver failure. The
study assessed the effects of two different fluid
types (Plasma-Lyte 148 [Baxter Hospitalar] or
0.9% saline solution; not discussed in the
present analysis) and two different infusion
rates for each fluid challenge given: the
control group received 999ml/h, the fast rate,
and the intervention group received 333ml/h,
the slow rate. Sites were instructed to administer
fluid challenges in aliquots of 500ml at the
allocated infusion rate using infusion pumps.
All other aspects of care, including the
decision to perform fluid challenges, were left
to the discretion of the attending physician.

Endpoints
The primary endpoint was hospital
mortality.

Main Statistical Analysis
CATE is frequently defined as the
counterfactual difference in predicted
probability of the primary outcome under a
model for a patient with given covariates (8).
Estimating CATEmay be performed in
several ways (9); in this analysis, we applied
the principles of an S-learner (i.e., a single
model learner) in the BaSICS population (9).
Assuming Y is our primary endpoint, X is
the covariates set for model adjustment, and
P is the probability of the outcome, the
conditional treatment effect may be given as

P(Y=death|treatment,X)–P(Y=death|cont-
rol,X), read as “estimated probability of death
given patient received treatment and
covariates minus the estimated probability of
death given patient received control and
covariates.” CATE is an estimate of
treatment effect for small subset of patients
who share a series of characteristics from
which their expected response to treatment is
estimated (8); it is therefore not “individual,”
but individualized, or conditional. Figure 1A
provides a visual explanation of the methods
for the primary analysis. Code snippets and
details are shown in the data supplement.

We applied the following steps to obtain
the appropriate recommendation model for
counterfactual exploration and estimation of
CATE.

First, the dataset was divided in train
and test subgroups. The train subset included
the first half of enrolled patients, and the test
subset the second half.

Second, we definedX (the covariates
for adjustment) as the following variables
measured at enrollment: age, admission
type (planned, unplanned not for sepsis,
unplanned for sepsis), vasopressor use,
noninvasive ventilation use, andmechanical
ventilation use. Planned admissions were
defined as elective surgical admissions for
which intensive care unit use was anticipated
before the beginning of the surgical procedure.

Third, we performed a Bayesian logistic
regression model with X covariates and their
interaction with the treatment arm. The
model used a neutral prior (neutral prior for
the log odds ratio [OR] of all predictions set
as a normal distribution with mean 0 and
standard deviation of 0.35 [11]; this prior
yields 95% probability for an OR between
0.5 and 2.0).

Finally, the model was used in the test
subset to obtain predictions for patients
in the second half (test set); 4,000 predictions
for each patient were generated, as were an
equal number of counterfactual probabilities.
Therefore, each patient had two sets of
4,000 posterior draws, one set of 4,000 draws
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for the expected posterior predicted
probability of death given it was allocated in
the slow rate group, and another 4,000 draws
conditional to allocation to the fast-rate
control group (both also conditional to the
covariates of the patient). The difference
between expected predicted probabilities of
death with slow versus fast infusion for each
patient was the expected posterior distribution
of the CATE (CATEed), conditional on the
model and priors, given the data. Each patient
had his or her own CATEed. An example is
shown in Figure 1B.

Note that CATEed is the difference of
two expected probability distributions
[P(Y=death|intervention,X)2 P(Y=death|
control,X)] and is, therefore, a distribution of
absolute risk reduction, with negative values
suggesting lower mortality for intervention
(slow infusion). We then used CATEed to
divide patients according to the
recommended treatment based on the
model. The primary analysis was made
arbitrarily using a cutoff of 0.90 probability

that CATEed favored intervention or control
arms; different cutoffs (0.80 and 0.85) were
also explored (see data supplement).

After treatment recommendations were
obtained for the test subset, we summarized
patients in the test set according to the
recommendation made by the
recommendation model (recommended
slow rate, recommended fast rate, and no
recommendation). We calculated estimates
of the expected effects of the fast and slow
rate arms according to the model
recommendation group using Bayesian
logistic regression model with
recommendation, treatment, and their
interaction as predictors; this model was used
to render the primary results. A neutral prior
on log OR was applied (see data supplement
for details). We defined that the interactions
would be deemed important if there was a
high (.0.95) probability of direction for the
interaction in the model; a frequentist
analysis based on the P value of the
interaction (estimated using analysis of

variance) was also provided to corroborate
the findings (P, 0.05 for interaction was
considered, for illustrative purposes, as
significant).

Results are presented as ORs and
absolute risk reduction, with their 95%
credible intervals (CrIs), probability of
direction for the conditional effects of slow
(the original intervention in the trial) versus
fast infusion according to subgroups defined
by the recommendation model in the test
population (a posterior probability of
direction.0.975 was considered as relevant,
which tends to approximate a P value of
0.05 under a two-tailed assessment [12]), and
the area of the posterior probability of
absolute risk difference posterior inside a
margin of practical equivalence. The region
of practical equivalence (ROPE) was defined
by differences in hospital mortality,1%; less
than 0.05 of the posterior area inside the
ROPE was considered relevant.

Because interpreting a model with
interactions is not straightforward for

Figure 1. Methods flowchart. (A) Flowchart of the steps provided in the text. (B) Estimation of distribution of expected distribution of conditional
treatment effect (CATEed) using one patient as an example. The first panel shows the expected posterior distribution according to infusion
rate given the recommendation model. The middle panel shows the density plot for the difference of the expected predicted mortalities
(i.e., CATEed). For this patient, because there is more than 0.90 probability that mortality rate is lower with the slow rate, the recommendation
model will recommend the slow rate. CATE=conditional average treatment effect.
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clinicians, we also provide a recursive
partitioning analysis for the mean CATE
prediction for patients in the test set (13).
The goal of recursive partitioning was to
provide an easier way to determine
suggestions at the bedside.

Sensitivity Analyses
We assessed whether different cutoffs for
deciding recommendation in the second half
would be associated with different results
(see data supplement for details); cutoff
values of 0.90, 0.85, and 0.80 were tested.

All analyses were done using R 4.2.2
(R Core Team, 2022) using packages
brms (14) and tidybayes (15).

Results

A total of 10,465 patients had complete data
and were available for analysis; 5,247 patients
were assigned to treatment (333-ml/h
infusion rate) and 5,218 were assigned to the
control group (999-ml/h rate). The main
model was built in 5,230 patients (2,607 for
control [fast rate] and 2,628 for intervention
[slow rate]). Model diagnostics were
appropriate (see data supplement for details).
In the test set, the probability of benefit
exceeded the 0.90 threshold, and a
recommendation could be made by the
recommendation model in 1,012 patients
(19%). The probability of benefit did

not exceed the 0.90 threshold and no
recommendation could be made in
4,223 patients (81%). The model
recommended the fast rate to 735 patients
(14%) and the slow rate to 277 patients (5%).
Patient features and outcomes according to
the recommendation are shown in Table 1.

Distribution of mean CATEed for each
patient according to recommendation is
shown in Figure 2A. Figure 2B shows mean
CATEed (lower values favoring slow
infusion) according to respiratory support,
admission type, and use of vasopressors at
enrollment. Figure 2C shows a smoothed
plot of mean CATEed according to age and
admission type. Mean CATEed was lower
(favoring a reduction in mortality for slow
rate group) in patients with planned
admission, in those already using
vasopressors, and in those using noninvasive
ventilation (Figure 2B). Mean CATEed also
favored intervention for younger patients
compared with older patients (Figure 2C).

Crude unadjusted mortality according
to treatment recommendation and actual
treatment received and adjusted effect sizes
are shown in Figure 3A. Patients to whom
the recommendation model recommended
the fast rate and who received the fast rate
had a 7.9% crude lower mortality rate versus
those who received the slow rate, whereas
patients in whom the model recommended
the slow rate and who received the slow
rate had a 6.7% crude lower mortality rate

versus those who received the fast rate.
Adjusted effect sizes and absolute risk
reductions are also shown in Figure 3B. The
interaction between model recommendation
and treatment was highly probable
(0.96 posterior probability of direction for
the interaction between recommended and
received slow infusion and.0.99 posterior
probability of direction for the interaction
between recommended and received fast
infusion; the P value under a frequentist
framework for the interaction was 0.004).
Diagnostic plots for the model are shown in
Figure E1 in the data supplement.

Slow infusion rate in the subgroup
of patients in the test set in whom slow
infusion was recommended was associated
with an OR of 0.58 (95% CrIs of 0.32–0.90;
0.99 posterior probability of benefit),
corresponding to an absolute risk reduction
of25% (95% CrIs,29% to21%; 0.013 of
the posterior inside the ROPE). In
agreement, slow infusion rate in the
subgroup of patients in the test set in whom
fast infusion was recommended was
associated with an OR of 1.40 (95% CrI of
1.08–1.82;.0.99 posterior probability of
harm), corresponding to an absolute risk
increase of 8% (95% CrIs of 2–15%;
,0.01 inside the ROPE). The effect size can
be inverted to estimate the effect of receiving
fast infusion in the subgroup in whom the
model recommended fast infusion (OR of
0.72; CrIs of 0.54–0.91; probability of benefit

Table 1. Overall patient features according to model suggestion in the test set

Characteristic No Suggestion (n=4,223) Fast Infusion (n=735) Slow Infusion (n=277)

Age 62 (50–72) 79 (69–86) 36 (28–43)
Female sex 1,771 (42%) 355 (48%) 136 (49%)
APACHE II score 11 (8–15) 17 (13–23) 7 (5–10)
SOFA score 4.0 (2.0–6.0) 5.0 (3.0–8.0) 4.0 (2.0–6.0)
Mean arterial pressure, mm Hg 74 (63–87) 70 (60–84) 73 (64–84)
Heart rate, beats per min 92 (77–109) 96 (81–112) 97 (81–111)
Vasopressor use 1,627 (39%) 190 (26%) 164 (59%)
Acute kidney injury at enrollment 1,222 (29%) 398 (54%) 57 (21%)
Creatinine, mg/dl 0.95 (0.71–1.28) 1.24 (0.90–1.94) 0.80 (0.60–1.07)
Admission type
Unplanned, not sepsis 1,249 (30%) 264 (36%) 52 (19%)
Planned 2,480 (59%) 23 (3.1%) 225 (81%)
Unplanned, sepsis 494 (12%) 448 (61%) 0

Mechanical ventilation 2,276 (54%) 435 (59%) 48 (17%)
Noninvasive ventilation 31 (0.7%) 0 9 (3.2%)
Intensive care unit length of stay 3 (2–6) 5 (2–11) 3 (2–4)
Hospital length of stay 8 (5–16) 10 (5–21) 8 (6–15)
Need for kidney replacement therapy 283 (6.7%) 86 (12%) 10 (3.6%)
Hospital mortality 771 (18%) 339 (46%) 22 (7.9%)
90-d mortality 897 (21%) 388 (53%) 32 (12%)

Definition of abbreviations: APACHE=Acute Physiology and Chronic Health Evaluation; SOFA=Sequential Organ Failure Assessment.
Values presented as median (interquartile range) where applicable.
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.0.99 and close 0.01 in the ROPE). For
the group in whom no recommendation
was made by the model, the odds for
mortality for slow versus fast infusion
rate was 0.88 (95% CrI of 0.75–1.02;

0.95 probability of benefit), and the
absolute risk difference was 4% (95% CrI of
24 to 0%; 0.20 inside the ROPE). Numeric
summaries are shown in Table E1 in the
data supplement.

Results of the recursive partitioning are
shown in Figure 4. The recursive partitioning
was able to capture many of the features
described below. Detailed information is
discussed in the legend in Figure 4.

Figure 3. (A) Crude mortality in the test set according to model suggestion; note how agreement between recommendation and intervention
received was associated with lower unadjusted mortality rate. (B) Forest plot for the effect of receiving slow infusion in the test set according to
subgroups defined by the recommendation model. The interaction between suggestion and treatment was significant (probability of direction
.0.95 for all comparisons and P=0.004 in frequentist analysis). CrI = credible interval.

Figure 2. (A) Mean individualized treatment effect for the test set (second half of BaSICS participants) according to model recommendation;
note that the x-axis represents the mean of expected distribution of conditional treatment effect (CATEed); therefore, it is possible to have mean
values below or above zero and receive no recommendation because the 0.90 probability threshold was not met. (B) Box plot of mean CATEed

according to respiratory support at enrollment, admission type, and use of vasopressors at enrollment. (C) Smoothed plot of mean CATEed

according to age and admission type. CATE=conditional average treatment effect; ITE= individualized treatment effect; MV=mechanical
ventilation; NIV=noninvasive ventilation.
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Results of the alternative analysis using
different cutoffs for recommendation are
discussed in the data supplement; in brief,
the 0.90 cutoff was the only one capable of
detecting relevant/significant interactions for
fluid infusion rate and outcomes in the test
set (Figure E2).

Discussion

In this secondary post hoc analysis of the
infusion-rate arm of the BaSICS trial, we
applied a probabilistic way to estimate
conditional treatment effects and generate
treatment recommendations. This approach
was able to provide a decision-support
treatment recommendation in as many as
19% of patients included in the second half
of the trial. Patients had overall lower
hospital mortality when they received the
recommended treatment. A slower infusion
rate appeared to be associated with lower
hospital mortality rates in less severely ill
patients, especially younger patients and
those admitted after elective surgery, whereas
a more rapid infusion rate was more

frequently recommended to older patients
with sepsis. Taken together, these findings
suggest that different infusion rates may be
appropriate for different profiles of critically
ill patients.

From a clinical perspective, our results
suggest that faster infusion rates may
potentially be better than slower infusion
rates for patients with sepsis. This is aligned
with the concept that early, fast restoration of
hemodynamics through fluid challenges may
benefit patients with intravascular volume
depletion or relative hypovolemia due to
sepsis (16). It is conceivable, for example,
that slower infusion rates failed to increase
cardiac output in these patients, which could
contribute to the development of organ
failure and increased mortality (17). In the
original publication of BaSICS, the average
treatment effect for the whole trial
population showed a point estimate toward
higher mortality with slow infusion rates,
although the confidence intervals were wide
and included no difference (hazard ratio of
1.07, 95% confidence intervals of 0.94–1.22
for 90-day mortality) (1). The traditional
univariate subgroup analysis of patients with

sepsis in the BaSICS trial did not detect the
potential benefit of faster infusion in patients
with sepsis observed in this secondary
analysis when multiple patient characteristics
were allowed to interact simultaneously to
modify the effect of treatment on outcome.
For younger patients, especially those
admitted after elective surgery, slower
infusions appeared preferable. Although one
can only speculate on reasons for this, slower
infusion rates in a population of patients who
have already been resuscitated during
surgery may be safe and result in less tissue
edema (18) and perhaps less bleeding (19).
The recursive partitioning results (Figure 4)
may be used to better grasp the results of our
findings and model results, representing an
interesting alternative to the present results
of complex models for clinicians.

From amethodological perspective, the
present work suggests that assessing CATE
under a probabilistic framework may aid in
trial interpretation. CATE is not truly an
individual treatment effect, but rather related
to subgroups of patients who share covariate
patterns (hence the preference for the terms
“individualized” or “conditional”), allowing

Figure 4. Recursive partitioning plot for patient features and suggestion in the test set stratified according to model suggestion (no suggestion,
fast, and slow). The aim of this plot is to facilitate clinician interpretation. Each node displays the most common predictions at their level; the
question posed behind each label provides guidance on where to follow the tree (if yes, the reader should move to the left; if no, to the right).
For example, we start with “no suggestion” and the first question is whether age is greater than 82 years; if yes, we move to the left to the next
question (if admission is unplanned, with or without sepsis); again, if yes, the reader is directed to the left and to the bottom, which suggests
fast infusion. Slow infusion is suggested for the right branches (younger patients without sepsis). The percentages here are slightly different
from the model because of approximation.
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potentially finer subgroup categories for the
assessment of treatment heterogeneity than is
allowed through traditional subgroup
analysis. For example, the main report was
unable to findmeaningful differences among
traditional subgroups, probably because of
power andmultiple interaction issues. Unlike
other approaches to assess heterogeneity in
treatment effect (20, 21), including
identifying phenotypes using unsupervised
cluster analysis, this type of analysis allows
the classification of patients according to
their expected probability of having benefit
in a continuous fashion. In this analysis, we
used a 0.90 threshold to define the
probability of benefit of treatment and
control, resulting in three possible groups of
recommendations (slow rate, fast rate, or no
recommendation) based on probabilities.
The model was applied to the second half of
the trial. Therefore, the recommendation
model created subgroups in the second half
to allow explorations under a probabilistic
framework. This approach might also
suggest that early assessment of CATE in the
context of a large clinical trial could help in
adapting the eligibility criteria. Could the
early adaptation of inclusion and exclusion
criteria halfway through the trial allow for
more precise results? For example, if patients
who received a clear suggestion based on the
model were prevented from being enrolled,
the second half of the trial could perhaps
focus on patients in whom reasonable doubt
persisted (i.e., the 81% of patients in whom

no recommendation could have been made).
This would indeed increase the number of
patients in the uncertain subgroup, which
could theoretically increase study power in
this population. There was a still important
probability that slow infusion rates could be
beneficial for patients in whom no
recommendation was made (0.95), although
an important part of it still lies in a region
that may be considered of practical
equivalence (.0.20). Pursuing enrollment
only on this population up to a targeted
sample size could have provided more
precise results. This also likely means that
patients whomay benefit from slow infusion
rates were missed by the model and were
assigned to the no-recommendation
subgroup.

Our results do not suggest that this
approach will foster interpretation for most
trials. A large sample size is still required to
perform such analyses, especially if the
expected overall effects of the intervention
are deemed to be small; there were more
than 5,000 patients in the training set, which
is more than the whole sample size of major
trials. This highlights that finding
personalized treatments may be hard. In fact,
proper assessment of CATE can be, by itself,
a reason to continue performing large
clinical trials. The several complex
relationships encountered in this analysis can
be unraveled with precision only if the
sample size is large enough. Further
simulation studies and analyses from other

clinical trials are necessary to address optimal
timing, sample size, and consequences of the
application of the described approach.

This manuscript has several limitations.
It is an exploratory post hoc analysis of a
clinical trial. There are many approaches for
predicting CATE, including machine-
learning approaches like causal forests, which
may also work as well or better than the
presented approach (22, 23). However, we
chose this methodology because of the robust
statistical framework of Bayesian statistical
models and the possibility of making
probabilistic statements for model
recommendations. Overfitting is a pressing
concern when dealing with model building
and validation and is a tender point for
CATE investigations. We did our best to
mitigate concerns of overfitting by using the
split-test approach.

Conclusions
Estimation of CATE improved the
interpretation of the BaSICS trial. Treatment
recommendations could be performed in as
many as 19% of all patients in the second half
of the trial based on a prediction model
trained in the first half, with faster infusion
generally recommended for older patients
with sepsis and slower infusion
recommended for planned admissions.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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