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Abstract

Idiopathic pulmonary fibrosis (IPF) is a pathological condition of
unknown etiology that results from injury to the lung and an
ensuing fibrotic response that leads to the thickening of the
alveolar walls and obliteration of the alveolar space. The
pathogenesis is not clear, and there are currently no effective
therapies for IPF. Small airway disease and mucus accumulation
are prominent features in IPF lungs, similar to cystic fibrosis lung
disease. The ATP12A gene encodes the a-subunit of the nongastric
H1, K1-ATPase, which functions to acidify the airway surface
fluid and impairs mucociliary transport function in patients with
cystic fibrosis. It is hypothesized that the ATP12A protein may

play a role in the pathogenesis of IPF. The authors’ studies
demonstrate that ATP12A protein is overexpressed in distal small
airways from the lungs of patients with IPF compared with normal
human lungs. In addition, overexpression of the ATP12A protein
in mouse lungs worsened bleomycin induced experimental
pulmonary fibrosis. This was prevented by a potassium
competitive proton pump blocker, vonoprazan. These data support
the concept that the ATP12A protein plays an important role in
the pathogenesis of lung fibrosis. Inhibition of the ATP12A protein
has potential as a novel therapeutic strategy in IPF treatment.
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Approximately 50,000 new patients are
diagnosed with idiopathic pulmonary
fibrosis (IPF) annually, and �40,000
patients die every year from IPF in the
United States (1). IPF is a serious health
condition that impairs the ability of the

lung to exchange oxygen. The exact cause
of IPF is unknown, but an injury to the
lung can lead to the buildup of fibrotic
tissue within the air sacs; as the disease
progresses, structures that are crucial to
the absorption of oxygen are eventually

destroyed (2, 3). The Food and Drug
Administration–approved drugs
pirfenidone and nintedanib can slow the
decline in lung function but cannot
reverse the damage that has already been
done to the tissue; morbidity and
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mortality remain high (4, 5). Hence, novel
therapeutic targets are urgently needed.

The mechanisms underlying the
pathogenesis of IPF are unclear (6–8). The
main pathologic features include the collapse
and obliteration of distal small airways, the
proliferation and accumulation of fibroblast
and/or myofibroblast cells, and increased
collagen deposition in the alveolar spaces
(9, 10). Small airways are defined as having a
diameter of less than 2mm in adult human
lungs (11). Recent evidence suggests that
distal small airways are involved in the early
pathogenesis of IPF. Epithelial microfoci of
injury and a failure of reepithelization caused
by the interplay of genetic predisposition,
aging, and environmental factors contribute
to fibroblast activation and infiltration of the
alveolar spaces (9, 12–14). There is active
bronchiolar remodeling, including collagen
deposition, found in the small airways of
patients with IPF (15–17). Studies on lung
explants from patients with IPF compared
with controls demonstrate that�57% of
terminal bronchioles are lost in regions of
minimal fibrosis, which is associated with the
appearance of fibroblastic foci (18, 19). This
suggests that the loss of small airways may
precede fibrotic changes (18, 19). In addition,
Mucin 5B (MUC5B), the gene for major gel-
forming mucin, accumulates in distal small
airways in patients with IPF. Overexpression
of MUC5B leads to mucus accumulation in
small airways and enhances bleomycin
(BLEO)-induced lung fibrosis (20–22).
However, the mechanism behind mucus
accumulation in IPF distal lung airways
is unclear.

Mucus accumulation is also the main
manifestation of cystic fibrosis (CF) lung
disease caused by mutations in the CF
transmembrane conductance regulator gene.
There is a mucociliary transport (MCT)
defect in CF airways that is due to lower
airway surface liquid (ASL) pH (23). In the
present study, we first investigated ATP12A
protein expression levels in IPF, chronic
obstructive pulmonary disease (COPD), and
normal human airways. ATP12A genes
(previously termed ATP1AL1) encode the
catalytic a-subunits of the nongastric H1-
K1-ATPases (ngHKAs) (24). ngHKAs
represent a third group of potassium-
dependent ion-transporting P-type ATPases
that are equally distinct from closely related
Na, K-ATPases and gastric H, K-ATPases in
structure-functional properties (25–27).
ATP12A (the catalytic a-subunit) assembles
with the b-subunit (ATP1B1), forming an
active ion pump (ngHKAs) in the apical
membranes of epithelial cells of many
different tissues, including colon, kidney,
skin, penis, lung, pancreas, and so forth
(27–31). The ATP12A protein functions as
the a-subunit of a proton pump that acidifies
ASL (32). For this study, the use of the term
“ATP12A” refers to the a-subunit.

We hypothesize that ATP12A-mediated
acid secretion in IPF distal lung small
airwaysmay regulate ASL pH, leading to
lowerASL pH and impairedMCT and thus
contributing to IPF pathophysiology. To test
this hypothesis, we evaluatedATP12A gene
expression in IPF lungs and tested its function
in primary cell cultures and animalmodels.
Our findings in this study elucidated a
potentially important yet previously
underappreciated role of small airway epithelia
in the pathogenesis of IPF. Understanding the
contribution of small airways andASL pH to
IPF pathogenesismay lead to the discovery of
a new therapeutic strategy.

Some of the results of these studies have
been previously reported in the form of a
preprint (bioRxiv, 8 June 2022; www.biorxiv.
org/content/10.1101/2022.06.08.495330v1).

Methods

Human Lung Explant Samples
Lung explant samples were obtained from
13 patients with IPF undergoing lung
transplantation. Pathologic assessment
confirmed findings of advanced usual
interstitial pneumonia (UIP) in the subjects
with IPF. Control samples (n=4) were

obtained from donor lungs that were
not suitable for lung transplantation
(see Table E1 in the data supplement).

Viral Vectors Mediated ATP12A
Expression in Mouse Airways
We promoted ATP12A expression in the
airways of male C57BL/6J mice (aged
226 9 wk) through intratracheal instillation
of adenovirus subtype 5 encoding mouse
ATP12A (ADV-253250; Vector Biolabs)
(Ad-ATP12A) with a dose of 108 plaque-
forming units per mouse in 50 μl 2%
carboxymethylcellulose solution (catalog no.
419273, Sigma-Aldrich). Details for these
groups are provided in the data supplement.

Test Effects of Viral Vector-mediated
ATP12A Expression in Mouse Airways
with BLEO-induced Pulmonary Fibrosis
Both Ad5 encoding GFP (Ad-GFP) and
Ad-ATP12A were administered to mice at a
dose of 108 plaque-forming units per mouse
in 50 μl 2% carboxymethylcellulose solution
by intratracheal instillation. BLEO was
administered at a dose of 2 U/kg body weight
in 50 μl saline by intratracheal instillation.
Details for these groups are provided in the
data supplement.

Test Effects of Inhibition of ATP12A
by the Potassium-Competitive Proton
Pump Inhibitor (PPI) Vonoprazan
(VON) on BLEO-induced Pulmonary
Fibrosis in Mice Expressing ATP12A
Because of the sequence similarities,
inhibitors for H1, K1-ATPase and Na1,
K1-ATPase have some inhibitory effects on
ATP12A. PPIs such as SCH-28080 and
esomeprazole have been demonstrated to
block ATP12A function (33, 34). VON is a
K1-competitive PPI that binds to an
extracytosolic domain of gastric proton
pumps to block their function (35, 36). We
tested the effects of VON on BLEO-induced
pulmonary fibrosis. VON (100 μM in 50 μl
saline) was administered by intratracheal
instillation when BLEO or saline was
delivered. For the rest of the time course,
VONwas administered by pharyngeal
instillation daily for 13 days. Details for these
groups are provided in the data supplement.

Histochemistry and
Immunofluorescence
ATP12A, MUC5B, MUC5AC, and
Krt-5 proteins were detected by
immunohistochemistry and
immunofluorescence.

Clinical Relevance

This study is conceptually innovative
as it provides mechanistic insights into
the role of small airways in the
pathogenesis of idiopathic pulmonary
fibrosis (IPF), which has been rarely
investigated and poorly understood
despite clinical data suggestive of its
importance in IPF pathogenesis. The
findings of this study demonstrate the
important role of ATP12A in small
airways and airway surface liquid pH
in the development of IPF and
provide a novel therapeutic avenue to
target the progressive fibroproliferation
of this disease.
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In Situ Cell Death Detection
The TUNEL kit was used to detect apoptotic
cells in mouse lungs. Details are provided in
the data supplement.

In Situ Hybridization
RNAScope (Advanced Cell Diagnostics)
was used to detect human and mouse
ATP12A mRNA, and in situ hybridization
was performed according to the
manufacturer’s protocol (Advanced Cell
Diagnostics). Details are provided in the
data supplement.

Study Approval
All protocols were performed in compliance
with all ethical regulations approved by local
institutional review boards; written informed
consent was obtained from all patients who
participated in the present study (Spectrum
Health IRB no.: 2017-198). Studies using
animals complied with all relevant ethical
regulations. All animal studies were reviewed
and approved by theMichigan State
University Animal Care and Use Committee
(Animal protocol approval no.
PROTO201900242).

Statistical Analysis
Immunofluorescence, in situ cell death
detection, andMasson trichrome data were
analyzed by one-way ANOVA followed by
Tukey’s multiple comparison post hoc test.
RT-PCR and the data regarding the number
of honeycomb cysts (HCs) were analyzed by
paired Student’s t test using GraphPad
Prism, version 9.3.1.

Data Availability Statement
The data presented in this study are available
on request from the corresponding author.
Bulk RNA-sequencing (RNA-seq) data are
available in the Gene Expression Omnibus
database (accession no. GSE205849).

Additional methods can be found in the
data supplement.

Results

Increased ATP12A Expression in the
Small Airways of IPF Lungs
ATP12A is demonstrated to acidify the
airway lining fluid and impair MCT function
in patients with CF, and it is upregulated in
CF large airways (37). We previously
reported that ATP12A is not expressed in
small airways from normal human distal
lungs (38). To test whether ATP12A is

expressed in IPF distal lungs, we investigated
the expression of ATP12A in lung explant
samples collected from patients with
advanced IPF (n=13) undergoing lung

transplantations. Before enrollment into this
study, pathological analysis was performed to
confirm a diagnosis of UIP in the IPF
samples. Normal lung control samples

Figure 1. ATP12A (adenovirus-expressing mouse ATP12A [Ad-ATP12A]) and MUC5B (Mucin
5B) protein expression in human lung explants. (A) Representative confocal microscope
images showing immunodetection of ATP12A (red) by immunofluorescence. Nuclei were
counterstained by DAPI (blue). Scale bars, 25 mm. Images show the large airways (Lg), SMG,
and small airways (Sm) of normal human lungs (upper panel) and human lungs with idiopathic
pulmonary fibrosis (IPF) (lower panel). Sm are defined as airways having a diameter that is
less than 2 mm. ATP12A overexpression was found in large and Sm as well as in the
submucosal glands of IPF. (B) ATP12A immunofluorescence staining intensity quantification
charts. Data are expressed as mean6SD of 4 normal and 13 IPF lung samples. At least six
lung sections were examined per donor, and ATP12A expression intensity was quantified in
more than six Sm per donor. **P, 0.01 and ***P,0.001, compared with control, respectively.
(C) Representative confocal microscope images showing immunodetection of ATP12A (red)
and MUC5B (green) in Lg and Sm of normal and IPF human lungs. Nuclei were counterstained
by DAPI (blue). Scale bars, 25 mm. ATP12A and MUC5B were overexpressed in both Lg and
Sm of IPF lungs. The dotted line squares indicate the area in the section that have been
magnified to show the co-expression of MUC5B and ATP12A. SMG=submucosal glands.
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Figure 2. Viral vector–mediated ATP12A expression in mouse lungs worsened bleomycin
(BLEO)-induced pulmonary fibrosis. (A) Brightfield microscope images of Ad-GFP– and
Ad-ATP12A–treated mouse lungs show expression of ATP12A in mouse airways (red arrows) (scale
bars, 25 mm). (B) Brightfield microscope images show ATP12A mRNA detection (red arrows) by
in situ hybridization. Nuclei were counterstained by hematoxylin (light blue). Scale bars, 25 mm.
(C) qRT-PCR analysis of ATP12A gene expression level in mouse lungs. Data are expressed as
mean6SD. ***P,0.001, compared with CTL. (D) Bright-field microscope images of mouse lung
tissue stained with Masson’s trichrome show collagen deposition (blue) in the lung, with the left
panel showing collagen deposition throughout the lung (scale bars, 100 mm) and the right panel
showing collagen deposition in the peribronchial region (scale bars, 10 mm). (E) The chart shows
the fibrosis index in the experimental mouse lungs. Data are expressed as mean6SD. n>5
animals per group. (F) The chart shows parabronchial collagen thickness (in micrometers) in mouse
lungs. Data are expressed as mean6SD. n>5 animals per group. B1ATP12A=BLEO and
Ad-ATP12A–treated group; B1GFP=BLEO and Ad-GFP–treated group; CTL=untreated control
group; GFP=adenovirus-expressing GFP (Ad-GFP)–treated group. *P,0.05 and ***P, 0.001,
compared with CTL, respectively. #P, 0.05 and ###P,0.001, compared with BLEO-treated group.

(n=4) were collected from donor lungs that
did not meet the criteria for transplantation.
After dissection of the lungs, samples were
fixed and processed for detection of
ATP12A, MUC5B, andMucin 5AC
(MUC5AC) by immunofluorescence,
immunohistochemistry, and in situ
hybridization. ATP12A overexpression was
detected in both the large airways and
submucosal glands (SMGs) and the small
airways of IPF lungs. Normal lung large
airways, SMGs, and small airways showed a
low level of ATP12A expression (Figures 1A
and 1B; Figures E1A and E1B). The mean
relative staining intensity of ATP12A was
15.66 3.6 in the normal large airway and
78.46 6.4 in IPF large airways. The mean
relative staining intensity of ATP12A was
12.96 4.1 in normal lung SMGs and
59.56 6.8 in IPF lung SMGs. The mean
relative staining intensity of ATP12A was
5.26 3.0 in the normal small airway and
66.86 6.4 in IPF small airways. Also, IPF
large airways, SMGs, and small airways
showed an increased expression of MUC5B
andMUC5AC compared with those of the
normal lungs (Figure 1C; Figure E1C). The
surface epithelium of the IPF lungs’ small
airways showed overexpression of ATP12A
associated with MUC5B accumulation
(Figure 1C). Those data demonstrated that
ATP12A is overexpressed and colocalized
with Muc5B accumulation in IPF distal
lungs. Those data are consistent with
published single-cell RNA-seq data, which
demonstrated that ATP12A is mainly
upregulated inMuc5B1 goblet cells in IPF
distal lungs (Figure E2) but not in normal
and COPD distal lungs (39).

Adenovirus-mediated Expression of
ATP12A in Mouse Airways Worsened
BLEO-induced Pulmonary Fibrosis
Murine airways lack ATP12A expression
(32). To mimic the ATP12A expression
found in humans, we used intratracheal
instillation of adenovirus subtype 5 encoding
mouse ATP12A (Ad-ATP12A) to promote
the expression of ATP12A inmouse airways.
Adenovirus subtype 5 encoding GFP
(Ad-GFP) was administered intratracheally
in control mice. Fifteen days after instillation,
ATP12A expression in mouse airways was
confirmed by RT-PCR (Figure 2C) and in
situ hybridization (Figure 2B). ATP12A
protein expression was detected on the apical
surface of the mouse airway epithelium as
well as in the lung parenchyma (Figure 2A).
Additionally, ATP12AmRNAwas found in
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the airway epithelium (Figure 2B). In
contrast, no ATP12A was detected in
Ad-GFP–infected mouse lungs, but GFP was
expressed in mouse airways (Figure E3).

To determine whether ATP12A plays a
role in pulmonary fibrosis, we injured mice
with BLEO and assessed the intensity of
pulmonary fibrosis indicators. Mice
expressing ATP12A showed a significant
increase in collagen deposition in the lung
(Figures 2D and 2E), apoptosis in the
alveolar epithelium (Figures 3A and 3B;
Figures E3E and E3F), and accumulation of
mucus in airways (Figures 3C and 3D)

compared with mice exposed only to BLEO.
Mice expressing ATP12A in the lung showed
extensive collagen deposition in the lung
parenchyma, especially in areas adjacent to
the bronchi, with a significant increase in
collagen deposition in the peribronchial area
(Figures 2D and 2F). Mucus accumulation
and airway blockage were also observed in
mice expressing ATP12A and challenged
with BLEO, which mimicked the mucus
accumulation observed in human IPF lung
airways (Figures E3G and E3H). ATP12A
expression in the apical surface of mouse
airway epithelium was associated with airway

mucus accumulation (Figure E3G),
suggesting that ATP12A has a role in this
process.

Viral Vector-mediated Exogenous
ATP12A Expression in Mouse Lungs
Enhanced the Fibrotic Pathway and
Transforming Growth Factor b1
(TGF-b1) Signaling Pathway in
BLEO-induced Pulmonary Fibrosis
To investigate the mechanism of how
ATP12A enhances pulmonary fibrosis, bulk
RNA-seq was performed to evaluate the
mRNA expression in BLEO-induced lung
fibrosis in mouse lungs treated with
Ad-ATP12A or Ad-GFP (Gene Expression
Omnibus accession no. GSE205849). The
bulk RNA-seq data for the mouse lung tissue
samples were divided into two groups to
reduce the batch effect (Figure 4A). Each
group consisted of eight mice, with twomice
per treatment group. Differential expression
analysis of batch 1 revealed 193 differentially
expressed genes with a P value<0.01; batch
2 had 164 differentially expressed genes with
the same P value threshold. The gene list for
the individual batches was submitted to
Ingenuity Pathway Analysis (IPA; QIAGEN)
to identify common canonical pathways and
common upstream regulators. Batch 1
returned a total of 356 canonical pathways,
and the data from batch 2 represented
263 pathways; there were 223 canonical
pathways shared between the batches. The
same comparison was performed for the
upstream regulators, with 294 common
regulators identified.

Mouse lungs that had the adenovirus-
mediated expression of ATP12A and were
challenged with BLEO demonstrated an
increase in pathways that are known to play
a role in the development of fibrosis.
According to the IPA canonical pathway
analysis, at least 10 genes are shared between
the hepatic fibrosis or hepatic stellate cell
activation pathway and the pulmonary
fibrosis pathway (Figures 4B and 4E). The
shared genes include ACTA2, a key regulator
of myofibroblast development; COL1A1; and
the transcription factor JUN. These genes are
all found to have elevated expression levels in
pulmonary fibrosis. Also related to the
fibrosis pathway is the actin cytoskeleton
signaling pathway, which plays an important
role in myofibroblast differentiation.

One of the most noteworthy upstream
regulators shared by the two batches of
samples is TGF-b1. This protein plays a role
in the production of the extracellular matrix,

Figure 3. Viral vector–mediated ATP12A expression in mouse airways worsens BLEO-induced
alveolar epithelium apoptosis and airway mucus accumulation. (A) Confocal microscope images
show cellular apoptosis of lung epithelial cells by TUNEL staining. Apoptotic cell nuclei are stained
green. Scale bars, 25 mm. (B) The chart shows the percentage of apoptotic cells in mouse lungs.
Data are expressed as mean6SD, with n> 5 animals per group. (C) Confocal microscope
images show immunodetection of MUC5B (red) by immunofluorescence. Nuclei were
counterstained by DAPI (blue). Scale bars, 25 mm. (D) The chart shows airway mucus thickness in
mouse lungs. Data are expressed as mean6SD. n>5 animals per group. ***P,0.001,
compared with CTL, respectively. ###P, 0.001, compared with BLEO-treated group.
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Figure 4. Viral vector–mediated ATP12A expression in mouse lungs enhanced fibrotic pathway and transforming growth factor b1 (TGF-b1)
signaling pathway in BLEO-induced pulmonary fibrosis. (A) Diagram showing the data analysis workflow. Data was collected from the bulk RNA
sequencing of mouse lung tissue after treatment with BLEO and the adenovirus-mediated expression of GFP or ATP12A. Sequencing and
differential expression analysis were performed on two batches of samples (P=0.01). The lists of differentially expressed genes were submitted
to QIAGEN Ingenuity Pathway Analysis (IPA) to identify canonical pathways and upstream regulators. (B) The common canonical pathways from
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and increased levels of TGF-b1 expression
have been reported in pulmonary fibrosis
(Figures 4C and 4D). IL-4 was also identified
as a common upstream regulator, as well as
STAT3. Like TGF-b1, expression levels of
IL-4 and STAT3 are increased in patients
with pulmonary fibrosis (40, 41). In addition,
analysis of the gene expression data for
Ad-ATP12A–treated samples revealed the
activation of the TGF-b1 signaling pathway.
The IPA analysis tool uses its extensive
literature-curated database to determine key
regulator molecules in a signaling pathway.
The TGF-b1 signaling pathway was overlaid
with the gene expression data from the two
sample batches to predict the activation
states of the proteins involved in the pathway
(Figure 4D). The IL-12 complex and BCL6
are the only proteins predicted to be
inhibited in the BLEO and ATP12A versus
BLEO and GFP dataset. TGF-b1, IL-6, TNF,
and several members of the STAT family are
predicted to be activated. There was not
enough power for the analysis tool to predict
the state of JUND; however, JUNB, a known
inhibitor of JUND, is predicted to be
activated. Overall, the treatment of samples
with Ad-ATP12A is predicted to activate the
TGF-b1 signaling pathway and subsequent
downstreammolecules.

Moreover, we used the IPA literature
database to generate a heatmap of genes
associated with the IPF signaling pathway
(Figure 4E). A subset of this database was
compared with the transcripts per million
data from the RNA-seq results for each of the
mouse lung samples. We included ATP12A
andMUC5AC in the list because of their
relevance to this study. ATP12A expression
was only present in lung samples of
Ad-ATP12A–expressing mice. This is
consistent with the literature-supported
observation that murine airway cells do not
naturally express ATP12A. Lungs treated
with BLEO showed increased levels of
COL1A1 and COL3A1; a similar trend is
observed for the matrix metalloproteins
MMP2 andMMP7, with both being
more prevalent in samples with viral
vector–mediated ATP12A expression
(Figure 4E).

Figure 4. (Continued ). the BLEO and ATP12A versus BLEO and GFP comparison in each batch were compiled and arranged according to the
average 2log(value), as calculated by IPA. The hepatic fibrosis and hepatic stellate cell activation pathway is highlighted in red. (C) Common
upstream regulators were identified between the BLEO and ATP12A versus BLEO and GFP comparison in the two batches and arranged on the
basis of the average 2log(pValue) calculated by IPA. The TGF-b1 upstream regulator is highlighted in red. (D) Pathway diagram displaying the
predicted activation states of molecules in the TGF-b1 signaling pathway based on differential gene expression data submitted to IPA.
(E) Heatmap displaying the expression levels of selected genes from the IPF pathway, as listed by IPA, as well as genes of interest included by
the authors (Atp12A and Muc5ac).

Figure 5. ATP12A expression was increased in IPF small airways in vitro. (A and B) Human
large (A) and small (B) airway epithelial cultures. Scale bars, 25 mm. Red indicates small
airway epithelial cell marker SCGB3A2, green indicates acetylated a-tubulin, and blue
indicates F-actin. (C) ATP12 expression was detected by immunoblotting in culture large and
small airway cells from normal (NL) and IPF lungs. (D) Semiquantification of band intensity
showed that ATP12A expression in IPF small airway culture was increased �100-fold,
compared with NL. n=8. *P, 0.05. (E) Airway surface liquid (ASL) pH is lower in IPF small
airways, compared with normal lung small airways. n=9. *P , 0.05. (F) Ouabain increased
ASL pH in IPF small airways. n=4. **P, 0.05 versus CTL. (G) Vonoprazan (VON) increased
ASL pH in IPF small airways. n=7. *P, 0.05 versus CTL. (H) IPF small airway apical surface
activated more latent TGF-b1. n=3. *P,0.05. (I) VON decreased 30% of TGF-b1 activation in
IPF small airways. n=6. **P, 0.01.
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Potassium-Competitive Proton Pump
Blocker VON Decreased ASL pH and
TGF-b1 Activation in IPF Small Airway
Epithelial Cells
To investigate the potential roles of ATP12A
in IPF small airways, we developed methods

to culture human large and small airway
epithelia at the air–liquid interface by
adapting a previously published method for
culturing pig small airway cells (42). We
examined whether human small airway cells
can form a well-differentiated epithelium and

express small airway–specific genes such as
SCGB3A2, a highly expressed secretory
protein in human small airways and a
marker for small airway epithelial cells (43).
In contrast to the minimal expression of
SCGB3A2 in the large airway, there is an
increased level of SCGB3A2 expression in
the human small airway (Figure 5B). Both
large and small airway epithelia have
abundant acetylated a-tubulin–positive
ciliated cells (Figures 5A and 5B), indicating
well-differentiated cells. Thus, we validated a
human large airway and small airway culture
model that preserves the native tissue
properties. To test whether small airways
from patients with IPF maintain ATP12A
expression in primary culture, we examined
ATP12A expression by immunoblotting. As
expected, robust ATP12A expression was
detected in large airway epithelia but was not
detected in normal small airway culture.
Consistent with immunostaining of ATP12A
in IPF lung tissue (Figure 1), there is
increased ATP12A expression in IPF small
airway culture (Figures 5C and 5D). As
ATP12A is upregulated in IPF small airways,
we explored the pharmacological methods to
inhibit the functions of ATP12A-containing
nongastric proton pumps. Because of the
sequence similarities, inhibitors for H1, K1-
ATPase, and Na1, K1-ATPase have some
inhibitory effects on ATP12A with much
higher Ki; for example, ouabain is a potent
Na1, K1-ATPase inhibitor with Ki
(inhibitor constant) of 100 nM but a Ki
around 10 μM for ATP12A (44). PPIs of H1,
K1-ATPase, such as SCH-28080 and
esomeprazole, have been demonstrated to
block ATP12 function (33, 34). VON is a
K1-competitive PPI that binds to an
extracytosolic domain of gastric proton
pumps to block their function (35, 36). To
test whether ATP12A regulates ASL pH, we
tested the effects of both ouabain and VON
on ASL pH in IPF small airways. IPF small
airways have a lower ASL pH, compared
with small airways from normal lungs
(Figure 5E). Both ouabain and VON
increased ASL pH in IPF small airways
(Figures 5F and 4G; Figure E4B). We
recently reported that V-type ATPase
containing ATP6V0D2 also can contribute
to the control of ASL pH in pig small airways
(38). However, the V-type ATPase inhibitor
bafilomycin does not affect ASL pH in
human IPF small airways (Figure E4A).
Thus, the data support that ATP12A
regulates ASL pH in human small airways
from IPF lungs.

Figure 6. Inhibition of ATP12A by potassium-competitive proton pump blocker VON reduced
BLEO-induced pulmonary fibrosis in mice expressing ATP12A. (A) Bright-field microscope
images of mouse lung tissue stained with Masson’s trichrome show collagen deposition (blue) in
the lung; the left panel shows collagen deposition throughout the lung (scale bars, 100 mm), and
the right panel shows collagen deposition in the peribronchial area (scale bars, 10 mm). (B) The
chart shows the fibrosis index in mouse lungs. Data are expressed as mean6SD, with n>5
animals per group. (C) The chart shows parabronchial collagen thickness (in micrometers) in
mouse lungs. Data are expressed as mean6SD. n>5 animals per group. ***P,0.001
compared to CTL; ###P, 0.001 compared to B1ATP12A1VON.
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Because data in Figure 4 demonstrated
that viral-mediated expression of ATP12A
enhanced BLEO-induced lung fibrosis and
activation of the TGF-b1 signaling pathway
(Figure 4), we hypothesized that ATP12A

may play a role in latent TGF-b1 activation.
To investigate the potential role of ATP12A
in IPF small airways, we developed an assay
to compare the activation of latent TGF-b1
in small airway epithelia from IPF and

normal lungs. Latent TGF-b1 (catalog no.
299-LT-005/CF; R&D Systems) was applied
to the apical surface for 24hours; the
activated TGF-b1 was quantified by a TGF-
b1 ELISA kit. Small airway epithelial cells

Figure 7. Inhibition of ATP12A by potassium-competitive proton pump blocker VON reduced BLEO-induced alveolar epithelium apoptosis,
airway mucus accumulation, and honeycomb cyst formation in mice expressing ATP12A. (A) Confocal microscope images show cellular
apoptosis of lung epithelial cells by TUNEL staining. Apoptotic cell nuclei are stained green. Scale bars, 25 mm. (B) The chart shows the
percentage of apoptotic cells in mouse lungs. Data are expressed as mean6SD. n> 5 animals per group. (C) Confocal microscope images
show the immunodetection of MUC5B (red) and MUC5AC (green) by immunofluorescence. Nuclei were counterstained by DAPI (blue). Scale
bars, 25 mm. (D) The chart shows airway mucus thickness in mouse lungs. Data are expressed as mean6SD. n>5 animals per group. (E)
Confocal microscope images show immunodetection of keratin 5 (Krt5, basal cell marker in green) by immunofluorescence. The inset shows a
honeycomb cyst (white asterisk) with Krt51cell lining (green). Nuclei were counterstained by DAPI (blue). Scale bars, 25 mm. (F) The chart
shows the number of honeycomb cysts per right middle lung lobe (column chart) and the average diameter of honeycomb cysts (linear plot).
Data are expressed as mean6SD. n> 3 animals per group. ***P, 0.001 compared to CTL; ###P,0.001 compared to B1ATP12A1VON.
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from IPF lungs activated almost threefold
more latent TGF-b1 compared with small
airways from normal lungs (Figure 5H). In
addition, the pharmacological inhibitor
VON reduced the rate of TGF-b1 activation
by 25% in IPF small airways (Figure 5I).
However, VON does not affect TGF-b1
activation in small airways from normal
lungs (Figure E4C). Together, these data
suggest that VONmay have antifibrotic roles
in vivo.

Inhibition of ATP12A by Potassium-
Competitive Proton Pump Blocker
Vonoprazan Reduced BLEO-induced
Pulmonary Fibrosis in Mice
Expressing ATP12A
To confirm whether ATP12A expression has
a role in the enhancement of BLEO-induced
pulmonary fibrosis in mice, we inhibited the
function of ATP12A by using VON as a
nongastric proton pump inhibitor. It has
been reported that VON has a more potent
and longer lasting inhibitory effect on gastric
acid secretion in animal models (45),
compared with other traditional PPIs, such
as esomeprazole. The efficacy of VON is not
dependent on low pH in the stomach, so it
would be advantageous to test intratracheal
administration to avoid systemic side effects.
Mice were administered VON daily by
means of the oropharyngeal aspiration route
for the duration of the experiment. In
oropharyngeal aspiration, the drug is put
into a suspension, and the treatment is
administered to mice through reflexive
aspiration. Our data shows that VON
significantly inhibited the effects of ATP12A
expression on BLEO-induced pulmonary
fibrosis. The lungs of these VON-treated
mice showed significant reductions in
pulmonary collagen deposition (Figures
6A–6C; Figures E5A and E5B), apoptosis in
the alveolar epithelium (Figures 7A and 7B;
Figure E5C), airway mucous thickness
(Figures 7C and 7D; Figure E5D), and HC
formation (Figures 7E and 7F; Figure E5E)
compared with the saline-treated group.

Discussion

In the present study, we first investigated
ATP12A expression levels in IPF and normal
human airways. It is interesting that we
found clear evidence of ATP12A
overexpression in IPF small airway surface
epithelium and HCs lining the epithelium.
Moreover, MUC5B overexpression was

observed in IPF small airways in association
with ATP12A upregulation. Overexpression of
ATP12A inmouse lungs aggravated
pulmonary fibrosis (PF) in a BLEO-induced
experimental model of PF, which was blocked
by the potassium-competitive PPI VON. These
data support the hypothesis that ATP12A plays
an important role in the pathogenesis of lung
fibrosis. Our overall conclusion is that
ATP12A-mediated acid secretion in IPF small
airways and distal lungs decreases ASL pH,
impairsMCT, increases pH-dependent
TGF-b1 activation, and enhances mucus
accumulation and lung fibrosis; these effects
can be blocked by the potassium-competitive
proton pump blocker VON.

Role of ATP12A in Lung Diseases
ATP12A serves as the main proton pump by
moving protons out of epithelial cells in
exchange for K1 to acidify ASL in large
airway epithelia (23, 32, 46–48). ATP12A is
required for CF lung disease development, as
it is responsible for proton secretions and the
subsequent ASL acidification in the airways
of patients with CF (32, 49). Mouse lungs
lack ATP12A expression; therefore, CF mice
do not demonstrate all the characteristics of
CF lung disease. The expression of ATP12A
is upregulated in large airways of patients
with CF (37). Overexpression of ATP12A in
CFmouse lungs decreases ASL pH and
impairs bacterial eradication abilities (32).
Additionally, ATP12A was shown to be a
regulator of ASL viscosity, and ATP12A
upregulation was associated with an
increased ASL viscosity in CF large airways
which was restored through the inhibition of
ATP12A by ouabain (50). Similarly,
upregulation of ATP12A expression in IPF
small airways may increase mucus viscosity
by impacting mucin biochemistry and
structure through alterations in the luminal
composition or the pH of secretory vesicles
(51, 52). Airway epithelial secretions,
including airway mucus, are prominent
H1/HCO3

2 buffers; therefore, ATP12A
overexpression-driven proton secretion into
the airways may increase airway mucus
oxidation (53). This, in turn, increases mucin
polymer disulfide cross-links that increase
the viscosity and stiffen airway mucus
(32, 49, 50, 54). It is reported that ASL pH is
decreased in CF small airways (38), and we
demonstrated that ATP12A is upregulated
and that ASL pH is lower in IPF small
airways in this study. Muc5B overexpression
is the most relevant feature shared between
CF and IPF (55), thus lower ASL pHmight

be one of the shared underlying mechanisms.
It is known that distal small airway epithelial
cells in both IPF and COPD lungs lose
normal proximal to distal differentiation
patterns (56, 57), but ATP12A is not
upregulated in COPD distal lungs
(Figure E2). This suggests that upregulation
of ATP12A in IPF small airways is not a
“bystander” effect of the bronchiolization
that occurs in IPF; otherwise, ATP12A would
be upregulated in COPD distal lungs. The
detailed mechanism of upregulation of
ATP12A in IPF distal small airways will need
further studies.

Similar to CF lung disease, the
hypersecretion and accumulation of mucus
andmucociliary clearance impairment are
common characteristics found in human
patients with IPF (21, 58). The major
potential consequence of mucus
accumulation and ciliary impairment,
(resulting from the increased mucus
viscosity) is the retention of inhaled foreign
substances (air pollutants, microorganisms,
etc.), which initiates chronic inflammation in
alveolar regions and reduces lung functions
(59). Also, mucus accumulation may
promote mucus aspiration into distal
airways, impairing the gas exchange process
(60). Aspirated mucus may cause alveolar
injury either by disrupting the surfactant
surface tension properties or through
interference with the interaction between
alveolar type II cells and the underlying
matrix (61). These alveolar injuries, over
time, could lead to progressive
fibroproliferation; microscopic scarring;
and, eventually, IPF development (62, 63).
Our findings demonstrate that ATP12A-
expressing mice showed significant
accumulation of mucin and airway mucus
plugging after BLEO exposure, which was
prevented by inhibition of ATP12A activity
by VON. Additionally, the coexpression of
both ATP12A andMUC5B in the distal
airways and the observed airway mucus
buildup and plugging in mice expressing
ATP12A after being injured with BLEO
support the critical role of ATP12A in the
pathogenesis of pulmonary fibrosis.

HCs are clusters of fibrotic airspaces
characteristic of the UIP observed in IPF.
They are lined with pseudostratified
columnar ciliated epithelium over
cytokeratin 5–expressing basal cells and filled
with mucus. It is interesting that we observed
a significant number of HCs in mice
expressing ATP12A 14days after exposure to
a single dose of BLEO by intratracheal
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instillation, which is not observed in the
conventional BLEOmodel. HCs were
induced in the chronic phase after a single
dose of BLEO exposure (58, 64). Further,
it has been reported that MUC5B
overexpression can elicit HC formation in
the BLEOmodel and that the severity of
pulmonary fibrosis and HC formation was
correlated with the degree of MUC5B
expression (58). In the present study, when
ATP12A-overexpressing mouse lungs were
challenged with BLEO, it resulted inMUC5B
overexpression in airways, which induced
early HC development.

To further confirm whether the
enhancement of pulmonary fibrosis observed
in mice expressing ATP12A after BLEO
exposure was ATP12A related, we
inhibited the action of ATP12A through
oropharyngeal administration of VON. VON
is a novel oral potassium-competitive acid
blocker that competitively blocks the
potassium binding site of H1-K1 ATPases
(65, 66). Because of its higher pKa (acid-base
dissociation constant) value, VON has a
more stable inhibitory effect on gastric acid
secretions than conventional PPIs and is
commonly used in the treatment of peptic
ulcers, gastroesophageal reflux, and
Helicobacter pylori eradication (65, 67–71).
PPIs have been commonly used in IPF
clinical treatment guidelines in many
countries (72). In this study, VON
administration significantly inhibited the
synergistic effect of ATP12A expression on
BLEO-induced pulmonary fibrosis in mice.
Although other traditional PPIs such as
esomeprazole have been used to attenuate
BLEO-induced PF through other
mechanisms (73), systemic delivery by oral
administration may have some side effects, as
PPIs will inhibit gastric acid secretion. The
efficacy of VON is not dependent on low pH
in the stomach, so it will be advantageous to
test intratracheal administration. As shown
in Figure 5, VON only had an antifibrotic
effect in the group of BLEO1Ad-ATP12A.

This suggests that VON, when administered
intratracheally, has different mechanisms
than systemically orally administered
esomeprazole. VONwas recently approved
by the Food and Drug Administration under
the brand name VOQUEZNA, with one
or two antibiotic combinations for the
treatment ofH. pylori infection in adults (74).
Our findings support the important role of
ATP12A in the development of pulmonary
fibrosis, and VON could be repurposed or
reformulated for IPF clinical trials.

TGF-b1 Activation and Its Role in
Lung Fibrosis
TGF-b1 is the essential profibrotic cytokine,
and its overactivation mediates the
development of PF (75–77). Latent TGF-b1
is synthesized by various cell types in fibrotic
lungs, including epithelial cells and
myofibroblasts. The latent precursor form
can be activated by various mechanisms:
integrins, proteases, reactive oxygen species,
mechanical stress, and low pH (78).
Activation of latent TGF-b1 is critical for all
downstream profibrotic effects. Notably, it
has been reported that low pH can increase
activation of latent TGF-b1 (79–82). We
demonstrated that small airways from IPF
lungs express upregulated ATP12A with
lower ASL pH, and there is more latent TGF-
b1 activation that can be partially blocked by
VON. This evidence supports the hypothesis
that a lower pHmicroenvironment in distal
lungs contributes to lung fibrosis
pathogenesis. We did not explore the
mechanism of pH-dependent change in the
affinity to the TGF receptors in the apical
membrane (83), but it should prove to be a
promising direction for future study.

Apoptosis of Distal Airway and
Alveolar Epithelial Cells Is Involved in
Pulmonary Fibrogenesis
As apoptosis is a highly regulated
physiological process of cell removal, it plays
a fundamental role in the homeostatic

control of the cell population (84). An
increase in the incidence of apoptosis within
a given cell population can result in
considerable cell loss over time. Therefore,
upregulated apoptosis is likely to account for
the excessive loss of alveolar epithelial cells or
the failure to re-epithelize, which is
characteristic of pulmonary fibrosis. Studies
in our labs and others using BLEO-treated
rat and mouse models strongly support the
role of epithelial apoptosis as a profibrotic
event in fibrogenesis (85). Collagen
deposition and epithelial apoptosis induced
by BLEO in rats andmice were blocked by
ZVADfmk, a broad-spectrum inhibitor of
caspase, one of the key enzymes mediating
apoptosis (86, 87). In the present study, we
detected increased apoptosis in ATP12A-
overexpressing mice treated with BLEO,
which can be prevented by VON.We
speculate that lower pH in distal lungs
enhances apoptosis, which is also a
contributor to the fibrogenic process in both
human lungs and animal models (88–90).

In summary, this study is conceptually
innovative, as it provides mechanistic
insights into the role of small airways in the
pathogenesis of IPF, which has been rarely
investigated and poorly understood, despite
clinical data suggestive of its importance in
IPF pathogenesis. The potential roles of
ATP12A in the pathogenesis of IPF are
summarized in Figure E6. The findings
of this study demonstrate the important role
of small airways and ASL pH in the
development of IPF and provide support
for a novel therapeutic avenue to target
the progressive fibroproliferation of this
disease.�
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