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Abstract

The integration of transcriptomic and proteomic data from lung
tissue with chronic obstructive pulmonary disease
(COPD)–associated genetic variants could provide insight into
the biological mechanisms of COPD. Here, we assessed
associations between lung transcriptomics and proteomics with
COPD in 98 subjects from the Lung Tissue Research Consortium.
Low correlations between transcriptomics and proteomics were
generally observed, but higher correlations were found for
COPD-associated proteins. We integrated COPD risk SNPs or
SNPs near COPD-associated proteins with lung transcripts and
proteins to identify regulatory cis-quantitative trait loci (QTLs).
Significant expression QTLs (eQTLs) and protein QTLs (pQTLs)
were found regulating multiple COPD-associated biomarkers.
We investigated mediated associations from significant pQTLs
through transcripts to protein levels of COPD-associated
proteins. We also attempted to identify colocalized effects
between COPD genome-wide association studies and eQTL and

pQTL signals. Evidence was found for colocalization between
COPD genome-wide association study signals and a pQTL for
RHOB and an eQTL for DSP. We applied weighted gene
co-expression network analysis to find consensus COPD-
associated network modules. Two network modules generated
by consensus weighted gene co-expression network analysis were
associated with COPD with a false discovery rate lower than
0.05. One network module is related to the catenin complex,
and the other module is related to plasma membrane
components. In summary, multiple cis-acting determinants of
transcripts and proteins associated with COPD were identified.
Colocalization analysis, mediation analysis, and correlation-based
network analysis of multiple omics data may identify key
genes and proteins that work together to influence COPD
pathogenesis.

Keywords: chronic obstructive pulmonary disease; multi-omics
analyses; quantitative trait locus; weighted gene co-expression
network analysis

Chronic obstructive pulmonary disease
(COPD) is a complex lung disease defined by
persistent airflow obstruction (1). Although
cigarette smoking is the major environmental

risk factor for COPD, genetic determinants
including AAT (a-1 antitrypsin) deficiency
(2) influence COPD risk. The development
of COPD among smokers is highly variable,

and the molecular basis of this varied
susceptibility is not well understood.

The development of high-throughput
omics technologies has enabled large-scale
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assessments of multiple biological levels,
including genetics, transcriptomics, and
proteomics. Progressively larger genome-
wide association studies (GWASs) of COPD
have been performed, and Sakornsakolpat
and colleagues identified 82 loci associated
with COPD at genome-wide significance (3).
High-throughput transcriptomic and
proteomic assays have also been performed,
but, with a few notable exceptions (e.g., the
association of sRAGE with COPD and
emphysema [4]), replication of gene
expression and protein biomarkers for
COPD has been limited. Small sample sizes
and studies focusing on blood rather than
lung samples likely contribute to the
challenges of identifying transcriptomic and
proteomic biomarkers for COPD.

Multi-omics analyses may assist in
overcoming the challenges in COPD
biomarker identification. Analyzing multiple
omics data types together can reduce
technical variability related to each omics
level, provide insights into biological
mechanisms for genetic variation, reflect
different biological time scales, and identify
interactions betweenmolecular levels (5).
Multiple omics integration could also assist
in understanding disease pathogenesis.

Several previous multi-omics analyses of
COPD pathogenesis have been reported. For
example, Li and colleagues used similarity

network fusion with mRNA, microRNA,
proteomics, andmetabolomics from
different biospecimens to attempt to
discriminate patients with COPD from
controls based on their molecular signatures
(6). Using whole-genome sequencing, RNA
sequencing, and mass spectrometry–based
proteomics, we assessed the relationships
between these omics data types in lung tissue
samples and used genetic association,
colocalization analysis, mediation analysis,
and correlation-based networks. We
hypothesized that integrated multi-omics
analysis in lung tissue samples from COPD
cases and control subjects would provide
new insights into COPD pathogenesis and
discover consistent and divergent COPD
biomarkers across omics levels.

Methods

Study Population
Ninety-eight subjects from the Lung Tissue
Research Consortium (LTRC) with matched
whole-genome sequencing and lung tissue
transcriptomics and proteomics data were
included. COPD cases and control subjects
were defined as follows: 1) COPD cases
required a forced expiratory volume in
1 second (FEV1),80% predicted and
FEV1/forced vital capacity ratio lower than
0.7 based on postbronchodilator spirometry
(prebronchodilator spirometry was used if
postbronchodilator spirometry was not
available) and 2) control subjects had an
FEV1 of>80% predicted and FEV1/forced
vital capacity ratio of at least 0.7.

Multi-Omics Data Preprocessing
Whole-genome sequencing data from
1,542 LTRC subjects were provided by the
Trans Omics for PrecisionMedicine
(TOPMed) program. Genetic variants were
extracted from the Freeze 9 version of whole-
genome sequencing data. The genetic data of
98 subjects with matched transcriptomics
and proteomics data were extracted and then
filtered by minor allele frequency of at least
0.05 and Hardy-Weinberg equilibrium
(excluding variants with P, 13 1025).
mRNA sequencing was performed through
the TOPMed program at the University of
Washington. In brief, transcriptomics data
were quantified at gene level with RNA-Seq
by ExpectationMaximization (RSEM; v1.3.1)
(7) using Gencode GTF (v29) (8). The gene-
level quantified RNA-sequencing data were

filtered and log2–transformed for further
analyses.

Proteomics data were obtained by mass
spectrometry analysis of lung tissue as
previously reported (9). Proteomics data
were calibrated and generalized logarithm
(glog2)–transformed, andmissing values
were imputed using k-nearest neighbor
imputation. Detailed descriptions of
multi-omics sample selection and data
preprocessing are included in the data
supplement.

Batch effects for transcriptomic and
proteomic datasets were removed using the
Combat function from R package sva v3.38.0
(10). COPD-associated transcripts/proteins
were tested following batch effects removal:
transcript/protein=COPD1 age1 sex.

Correlations between Transcriptomics
and Proteomics
Pearson’s correlations between
transcriptomics and proteomics for each
gene were calculated using residuals after
removing COPD affection status, age, sex,
and batch effects. Pearson’s correlations
between gene pairs were calculated at
transcriptomic and proteomic levels.
Statistical comparisons between gene pair
correlations were performed using the R
package cocor v1.1-3 (11).

Integration of Genetic Variants with
Lung Transcripts and Proteins
Expression and protein quantitative trait
locus analyses within genomic regions of
interest. Quantitative trait locus (QTL)
analyses were performed using the R package
MatrixEQTL v2.3 (12). SNPs for QTL
analyses were selected within a 1-MB
window (6500 kb): 1) around top SNPs in
82 previously reported genome-wide
significant COPDGWAS loci (3) and
2) around the top proteins with FDR lower
than 0.1 associated with COPD [6500 kb
from the lowest start value and the highest
end value of all available transcripts from
Ensembl BioMart (13)].

Target genes (proteins or transcripts)
for cis-QTL analyses were selected as all
available proteins (for protein QTL [pQTL]
analyses) or transcripts (for expression QTL
[eQTL] analyses) within genomic regions of
interest. Principal components of genetic
ancestry were generated from all TOPMed
LTRC whole-genome sequencing data using
LASER (14). Age, sex, and the top two
principal components of genetic ancestry
were included as covariates in QTL analyses.

Clinical Relevance

We observed low overall correlations
between lung tissue transcriptomics
and proteomics in chronic
obstructive pulmonary disease
(COPD) cases and control subjects,
indicating that these omics levels
provide different biological
information. Genetic determinants of
proteomic and transcriptomic COPD
biomarkers were identified, and we
found evidence for colocalization
between COPD genetic association
signals and a protein quantitative
trait locus for RHOB and an
expression quantitative trait locus
for DSP. Correlation-based network
analysis of lung transcriptomics and
proteomics identified COPD-
associated network modules related
to the catenin complex and plasma
membrane components.
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To find functional variants within
COPD GWAS loci, a credible set of 6,509
variants in 82 reported COPD GWAS loci
was previously generated with statistical
fine mapping using PICS (Probabilistic
Identification of Causal SNPs) (15). We
used this fine-mapped set of SNPs for QTL
analysis of COPD GWAS regions. FDR
adjustment was performed with SNPs
around top proteins or fine-mapping
COPD-risk SNPs only. FDRs for
significant QTL effects were controlled
at 0.05.

Mediation analysis. Mediation analysis
is a statistical method to decompose the total
effects of the exposure into a direct effect and

an indirect effect through the mediator. We
observed a significant association between
pQTLs andmatched COPD-associated
proteins (total effect). Because the protein is
encoded by its respective transcript, we
examined the mediator role of the transcripts
of COPD-associated proteins for selected
pQTLs. All mediation analyses were
adjusted for age, sex, and the top two
principal components of genetic ancestry
as covariates using the Rmedflex package
v0.6-7 (16).

Colocalization analysis. Colocalization
with COPD GWAS results (3) and
regional transcripts or proteins within
1-MB genomic regions around 85

COPD-associated proteins (FDR, 0.1) or
82 previously reported COPD GWAS loci
was assessed using R package coloc v5.1.0
(17). R package coloc calculates the
posterior probabilities under a single causal
variant assumption and estimates the
posterior probability for each SNP in the
colocalization analysis region. LocusZoom
plots were drawn using R package
LocusCompareR (18) to present colocalized
regions with high probability of
colocalization, which means both traits
are associated with their respective
phenotype and shared a single
causal variant.

Weighted Gene Co-expression
Network Analysis
Consensus weighted gene co-expression
network analyses (also known as weighted
gene correlation network analyses
[WGCNA]) were performed comparing
transcriptomics and proteomics residuals
with batch effect removal using the R
packageWGCNA v1.70-3 (19). The minimal
module size was set as 10 genes, and the soft
threshold (power) was set at 8 to optimize
connectivity between each network node.
COPD-associated network modules were
identified using linear regression models
with age and sex as covariates: module
expression=COPD1 age1 sex.

Gene Ontology enrichment analyses
were performed on genes from COPD-
associated modules using R package topGO
v2.46.0 (20).

Table 1. Clinical Information of 98 Lung Tissue Research Consortium Subjects with
Matched Whole-Genome Sequencing, Lung Tissue Transcriptomics, and Lung Tissue
Proteomics Data for Multi-Omics Analyses

Controls COPD Cases

Number of subjects 25 73
Age* 66.168.6 63.167.9
Sex (male/all) 44% (11/25) 44% (32/73)
Pack-years of smoking* 30.6619.5 48.7628.3
FEV1, % predicted* 104.9618.7 35.0617.0
FEV1/FVC* 0.7760.08 0.3960.14
Race (White/all) 100% (25/25) 93% (68/73)
BMI* 29.066.3 26.164.9
Lung cancer (cancer/all)* 68% (17/25) 32% (23/73)

Definition of abbreviations: BMI=body mass index; COPD=chronic obstructive pulmonary
disease; FEV1= forced expiratory volume in 1 second; FVC= forced vital capacity.
Values presented as mean 6 SD where applicable.
*P, 0.05 based on t test for quantitative variables and x2 test for categorical variables
comparing COPD cases and control subjects.

Table 2. Shared Chronic Obstructive Pulmonary Disease-Associated Biomarkers at Transcriptomics and Proteomics Levels with
False Discovery Rate Lower than 0.05

Gene Name UniProt ID

Proteomics Transcriptomics

P Value FDR b (SE) P Value FDR b (SE)

FOLR1 P15328 1.3631026 2.8531023 21.738 (0.337) 6.413 1025 1.1731022 20.444 (0.106)
AQP4 P55087 1.1031025 1.1331022 21.102 (0.237) 4.323 1024 2.2131022 20.46 (0.126)
RDX P35241 3.7831025 1.4531022 20.461 (0.107) 1.913 1025 8.6431023 20.413 (0.092)
AGER Q15109 4.1631025 1.4531022 20.871 (0.202) 8.783 1025 1.3131022 20.736 (0.18)
CA3 P07451 1.4331024 2.4331022 0.746 (0.188) 7.713 1024 2.6531022 0.827 (0.238)
CAV1 Q03135 1.4531024 2.4331022 20.537 (0.136) 2.503 1024 1.9431022 20.509 (0.134)
COL14A1 Q05707 1.5831024 2.4331022 0.818 (0.208) 3.523 1024 2.1731022 0.781 (0.211)
SUSD2 Q9UGT4 1.5331024 2.4331022 20.643 (0.163) 2.203 1023 3.5631022 20.396 (0.126)
PCYOX1 Q9UHG3 1.3631024 2.4331022 20.349 (0.088) 3.133 1024 2.1531022 20.47 (0.126)
IFIT3 O14879 2.5731024 2.8731022 20.748 (0.197) 8.063 1026 8.6431023 20.554 (0.117)
VAMP3 Q15836 2.9231024 3.0231022 20.618 (0.164) 1.283 1023 3.0831022 20.255 (0.077)
FARP1 Q9Y4F1 3.8431024 3.5831022 20.805 (0.218) 5.743 1024 2.4131022 20.289 (0.081)
ALCAM Q13740 4.1331024 3.7631022 20.864 (0.236) 2.943 1025 9.1331023 20.479 (0.109)
S100A10 P60903 4.9731024 4.2531022 20.408 (0.113) 4.873 1023 4.8631022 20.238 (0.082)
ARRB1 P49407 5.1031024 4.2831022 20.463 (0.129) 2.213 1023 3.5631022 20.385 (0.122)

Definition of abbreviations: FDR= false discovery rate; SE=standard error.

ORIGINAL RESEARCH

Zhang, Cho, Morrow, et al.: COPD Genetics, Transcriptomics, and Proteomics 653



Associations between the top SNPs in
82 previously reported genome-wide
significant COPD GWAS loci and COPD-
associated network modules were
evaluated using linear regression models
with age, sex, and the top two principal
components of genetic ancestry as
covariates.

Detailed descriptions ofWGCNA
methods are presented in the data
supplement.

Cell-Type Proportion Estimation and
Adjustment on Omics Associations
R package BisqueRNA estimates cell
proportion using single-cell RNA sequencing
data as a reference to decompose bulk RNA
sequencing data. The Human Lung Cell
Atlas (https://hlca.ds.czbiohub.org/)
provided single-cell RNA sequencing data of
approximately 75,000 human lung and blood
cells clustered in 41 known cell types and 14
new clusters (21). Here, we estimated the cell

proportion of four groups of cell types—
epithelial cells, endothelial cells, stromal cells,
and immune cells—in our 98 subjects using
BisqueRNA and single-cell RNA sequencing
data from the Human Lung Cell Atlas (21) as
reference. We compared the cell group
proportions between patients with COPD
and controls. The effects of cell type
proportion on shared omics biomarkers’
association with COPDwere evaluated using
linear regression models with cell proportion

Figure 1. Correlations between transcriptomics and proteomics. Correlations between all proteins and transcripts and correlations between
genes with proteomics COPD–associated FDR lower than 0.05 are presented. COPD=chronic obstructive pulmonary disease; FDR= false
discovery rate; LTRC=Lung Tissue Research Consortium.

Table 3. Consistent Correlations between Gene Pairs of Omics Biomarkers with False Discovery Rate Lower than 0.05 at
Transcriptomics and Proteomics Levels Ranking by Correlation Coefficient at Proteomics Level

Gene A Gene A UniProt ID Gene B Gene B UniProt ID

Correlation Coefficient r Omics Cocor Test

Transcript Protein P Value q-Value (FDR)

EHD2 Q03135 CAV1 Q9NZN4 0.718 0.821 7.223 1022 1.5431021

AGER Q15109 GPRC5A Q8NFJ5 0.753 0.803 3.523 1021 5.0431021

AGER Q03135 CAV1 Q15109 0.848 0.776 1.043 1021 2.0331021

SUSD2 Q15109 AGER Q9UGT4 0.805 0.757 3.563 1021 5.0831021

RALA P11233 CALCRL Q16602 0.803 0.716 1.433 1021 2.5931021

Gene pairs with Pearson’s correlation coefficient >0.8 at the transcriptomic and/or proteomic level were included.
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as covariates as shown below: transcript/
protein=COPD1 age1 sex1 cell type
proportions (epithelial cells1 endothelial
cells1 stromal cells).

To represent the cell proportion
effects and avoid potential collinearity of
cell proportion variables, we used three cell
groups (epithelial cells, endothelial cells,
and stromal cells) to represent the effects
of cell type proportion on gene expression
at the transcriptomics or proteomics level.
QTL analyses with cell proportion metrics
as covariates were also performed on
significant QTL–gene associations.

Results

Clinical Characteristics of the
Study Population
Clinical characteristics of 98 LTRC subjects
with matched genetics, transcriptomics, and
proteomics data are presented in Table 1.
The longer smoking history (in pack-years)
and lower lung function parameters (FEV1

percentage predicted and FEV1/forced vital
capacity ratio) in COPDwere expected.
Suspected lung cancer was a frequent reason
for control subjects to undergo thoracic
surgery, whereas patients with COPD often
underwent thoracic surgery for lung
transplant or lung volume reduction surgery.
The lung tissue samples obtained by the
LTRC were selected to be distant from tumor
(if present).

Comparisons of Transcriptomics and
Proteomics in Lung Tissue
COPD-associated biomarker identification.
COPD-associated proteins and transcripts
were identified based on multiple linear
regression analysis with FDR lower than
0.05. Within the 98 LTRC samples analyzed,
we observed 55 COPD-associated proteins.
Among them, 15 shared biomarkers were
identified for transcriptomics and
proteomics. The comparison between
COPD-associated proteins (FDR, 0.1)
at transcriptomics and proteomics levels is
presented in a Venn diagram in Figure E1
in the data supplement, and the shared
significant biomarkers are presented in
Table 2 (FDR, 0.05) and Table E1 in the
data supplement (FDR, 0.1).

Correlations between transcriptomics
and proteomics. The correlations between
transcriptomics and proteomics were
evaluated using residuals that removed
effects of COPD affection status, age, sex, andT
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batch. Principal component analysis results
for the transcriptomic and proteomic
residuals are shown in Figure E2 in the data
supplement, with comparisons versus raw
datasets and residuals removing batch effects
only. We tested 4,039 pairs of matched
transcripts and proteins.

The distributions of correlation
coefficients and P values between
transcriptomics and proteomics of all
matched genes and genes with proteomic
associations with COPD are shown
in Figure 1 (FDR, 0.05) and Figure E3
in the data supplement (FDR, 0.1).
Comparisons between correlation
coefficients of COPD-associated proteins,
non–COPD-associated proteins, and all
matched genes are shown in Figure E4 in the
data supplement.

The mean correlation coefficient
between transcriptomics and proteomics in
all genes was low (0.054), with a standard
deviation of 0.134 and standard error of the
mean of 0.002, but the correlation
coefficients between omics pairs are
significantly greater than zero (one-sample
Wilcoxon signed-rank test, P, 53 102113).
There were 606 genes (among 4,039 matched
genes) correlated with a P value lower than
0.05 and 172 genes with an FDR lower than
0.05; the median correlation value is 0.045.
For genes with proteomic associations with
COPD (FDR, 0.05), the mean correlation
coefficient is higher (0.232; standard
deviation, 0.159; standard error of the mean,
0.021; significantly greater than zero with
P, 4.43 10210), and the median value is
0.196. The omics correlations for COPD-
associated proteins and non–COPD-
associated proteins were significantly
different, withWilcoxon rank-sum test
P, 1.13 10215.

Because of the small sample size of our
study population, we estimated the
correlation test power for COPD and control
populations. The estimated power for the
correlation test between transcriptomics and
proteomics is greater than 0.8, with a
correlation coefficient threshold of 0.5, even
in the control group (25 subjects), as shown
in Table E2 in the data supplement.

Correlations between COPD-associated
gene pairs at different omics levels. We
assessed correlations between transcripts and
proteins for gene pairs associated with
COPD at FDR lower than 0.05 in the
transcriptomics and/or proteomics datasets;
47 gene pairs were correlated at proteomic
and/or transcriptomic levels with correlationT
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coefficients greater than 0.8. Statistical
comparisons between gene pair correlations
in transcriptomics and proteomics datasets
were performed using the cocor test with
FDR controlled at 0.05 (11). For five
consistent gene pairs (similar correlations in
proteomics and transcriptomics), the
differences between their correlations at the
transcriptomics and proteomics levels are
not significant, as shown in Table 3.
Correlations between gene pairs associated
with FDR lower than 0.1, with 8 consistent
gene pairs and 51 inconsistent gene pairs, are
shown in Tables E3 and E4 in the
data supplement.

Integration of Genetic Variants with
Lung Transcripts and Proteins
eQTL and pQTL analyses on selected
genomic regions. Separate eQTL and pQTL
analyses were performed for local, cis-acting
effects located within a 1-MB window of the
82 top COPDGWAS SNPs or 85 COPD-
associated protein-coding genes. Descriptive
information for all QTL analyses is shown in

Tables E5 and E6 in the data supplement.
Q-Q plots for QTL analyses are presented in
Figure E5 in the data supplement.

In the 82 COPDGWAS regions,
multiple significant cis-QTLs were associated
with fine-mappedCOPD risk SNPs at FDR
lower than 0.1. Significant cis-QTLswith FDR
lower than 0.05 are presented in Tables 4
and 5 (eQTLs and pQTLs, respectively).
Significant cis-eQTL and cis-pQTL effects
were identified on chromosome 17 near the
MAPT gene with different top SNPs. This
genomic region has a common large
chromosomal inversion (22). NoCOPD
GWAS regions with shared eQTL and pQTL
determinants of genes encoding COPD-
associated proteins were found.

For genomic regions around genes
encoding COPD-associated proteins
(FDR, 0.05), significant QTL results
influencing those COPD-associated proteins
with FDR lower than 0.05 are shown in
Tables 6 and 7 (eQTLs and pQTLs,
respectively). Multiple cis-eQTLs were
associated with COPD-associated biomarker

gene expression, including PPIL3, AQP1,
LGMN, ENO1, and HPCAL1. A smaller
number of significant cis-pQTLs were found,
which included associations with COPD-
associated proteins (ARRB1 and
COLGALT1). Significant shared cis-eQTLs
and cis-pQTLs near COPD-associated
proteins were found for C4A and HLA-
DRB5, but they were not related to COPD-
associated protein levels. The cis-QTL results
with FDR lower than 0.1 for COPDGWAS
regions and COPD-associated proteins
(FDR, 0.1) are presented in Tables E7–E10
in the data supplement.

Mediation analysis. The directed
acyclic graph used for the mediation analysis
is presented in Figure E6 in the data
supplement. Mediated associations linking
cis-pQTLs (as exposure), the transcripts of
COPD-associated proteins (as mediator),
and the COPD-associated protein levels (as
outcome) based on significant cis-pQTL
results with FDR lower than 0.1 are
presented in Table E11 in the data
supplement. The total causal effects for all

Figure 2. Significant colocalized effects between COPD genome-wide associated study (GWAS) and expression quantitative trait locus (eQTL)
signal for DSP. Probability of colocalization between eQTL and COPD GWAS is 0.907; no evidence for colocalization between protein
quantitative trait loci and COPD GWAS was found. pQTL=protein quantitative trait locus. DSP=desmoplakin.
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candidate associations were significant,
reflecting the significant associations between
cis-pQTLs and proteins. However, no
evidence of mediated effects from transcripts
to proteins was observed at an FDR lower
than 0.1.

Colocalization of QTLs near COPD-
associated proteins and COPD GWAS
signals. With 85 COPD-associated proteins
and 82 COPDGWAS genomic regions, two
genomic regions showed supportive evidence
for colocalization as shown in Figures 2
and 3. First, a colocalized effect between
COPDGWAS and eQTL effects (regulating
DSP) around COPD-associated protein
TXNDC5 was observed with a colocalization
probability of 0.907. This region is also near
COPDGWAS SNP rs1334576. The top
COPDGWAS SNP inDSP (rs2076295) is a
significant eQTL for DSP, as shown in Table
E9. Second, another genomic region near
RHOB, which encodes a COPD-associated
protein, showed evidence for colocalized
effects between COPDGWAS and pQTLs
with a probability of 0.579. The top COPD
GWAS SNP (rs6531216) of the RHOB region

is in strong linkage disequilibrium with a
significant cis-pQTL (rs11096641) in the
same region (Table E10), with an r2 of 1 in
Europeans in the 1000 Genomes Project (23).
Interestingly, no significant eQTLs in the
RHOB region or significant pQTLs in the
TXNDC5/DSP region at an FDR lower than
0.05 were detected. The previously reported
pQTLs for AGER in blood samples were not
observed in lung tissue samples (Figure E7 in
the data supplement).

WGCNA
We selected optimized parameters to identify
consensus correlation networks between
transcriptomics and proteomics as described
in Figure E8 in the data supplement. With a
minimummodule size of 10, we identified 53
candidate modules, and 2 modules (modules
6 and 22) were shown to be associated with
COPD. Associations between COPD and
genes from COPD-associated modules at the
transcriptomics and proteomics levels are
presented in Tables E12 and E13 in the data
supplement.

Plots presenting the functional
enrichment results of genes from these two
consensus COPD-associated modules are
shown in Figure 4. The most significantly
associated biological processes were the
catenin complex for one of the correlation
network modules and plasmamembrane
components (including endosomes and
exosomes) for the other correlation network
module.

Nominally significant associations
(P, 0.05) between several of the 82
previously reported COPDGWAS loci and
COPD-associated consensus network
modules (modules 6 and 22) are shown in
Table E14 in the data supplement. One
shared significant SNP–module association
between transcriptomics and proteomics
levels for rs11655567 (on chromosome 17
near SOX9) and module 6 was found.

Cell Type Proportion Estimate and
Adjustment on Omics Associations
We estimated the proportion of four groups
of cell types (epithelial cells, endothelial cells,
stromal cells, and immune cells) based on the

Figure 3. Significant colocalized effects between GWAS and pQTL signals for RHOB (UniProt ID: P62745, COPD proteomic FDR: 0.096). Probability
of colocalization between pQTL and COPD GWAS is 0.579; no evidence for colocalization between eQTL and COPD GWAS was found.
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bulk RNA sequencing data of our 98 subjects
with matched transcriptomics and
proteomics data. The distribution of four
major cell group proportions across subjects
is shown in Figure E9 in the data
supplement. The proportions of cell groups
were compared between COPD and control
groups as shown in Figure E10 in the data
supplement. Differential cell type
proportions between patients with COPD
and controls were observed for endothelial
and stromal cells but not immune or
epithelial cells.

The P values and b-coefficients of
COPD associations with shared omics
biomarkers after adding cell type group
proportions as covariates are shown in
Tables E15 and E16 in the data supplement.
Many of these associations are attenuated,
suggesting that they are at least partly
attributed to differences in cellular
composition between COPD and control
lung tissue samples.

We selected two significant QTL genes:
MAPT (eQTLs and pQTLs) and RHOB
(pQTLs) to investigate cell type proportion
effects on QTL associations. The Pearson’s

correlations between the omics expression
levels for these genes (after adjusting for
COPD, age, and sex, with batch effects
removed) and cell proportions are shown in
Figure E11 in the data supplement.
Nominally significant association between
RHOB and endothelial cell proportion at the
transcriptomics level and between RHOB
and immune cell proportion at the
proteomics level were observed with a
P value threshold of 0.05.

The QTL analysis results with or
without cell proportion adjustment (Table
E17 in the data supplement) of MAPT
(Microtubule-associated protein tau) are not
significantly affected by cell proportion
adjustments, but association between genetic
determinants and proteomic expression of
RHOB was attenuated by cell group
proportion adjustment.

Discussion

By integrating whole-genome sequencing
with lung tissue transcriptomics and
proteomics data, we found a subset of 15

shared transcriptomic and proteomic
analytes associated with COPD that are likely
valid lung tissue COPD biomarkers. We
found weak correlations overall between lung
tissue transcriptomics and proteomics, but
stronger omics correlations for COPD-
associated genes. One COPDGWAS signal
was associated with MAPT expression and
could implicate the key gene (MAPT) for
that GWAS locus. Multiple cis-acting QTLs
for transcripts and proteins associated with
COPDwere detected. Colocalized effects for
RHOB and DSP were observed, but evidence
for colocalization was not consistent between
eQTLs and pQTLs. Finally, we identified
concordant correlation network modules in
transcriptomics and proteomics that
implicated key pathways in COPD
pathogenesis, including b-catenin signaling
andmembrane-based transport.

Approaches for multi-omics analysis
methods can be broadly divided into three
scientific goals: 1) to identify COPD-
associated pathogenic factors with QTL
analyses integrating genetic data and
quantitative omics data, 2) to perform
disease subtyping, and 3) to identify

Figure 4. Gene Ontology (GO) enrichment analysis results on genes from Weighted Gene Co-Expression Network Analysis consensus modules
between transcriptomics and proteomics levels. Top 10 enriched terms for each GO cluster are presented.
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networks of interacting genes and proteins.
In 2015, Kim and colleagues developed an
integrative phenotyping framework for
COPD subphenotype identification by
integrating phenotypes and other omics
information (24). In 2018, Li and colleagues
published multi-omics analyses integrating
omics data frommRNA, microRNA,
proteomics, andmetabolomics using
similarity network fusion (25). Quantitative
relationships betweenmulti-omics data were
evaluated, and improved COPD
classification was observed using multi-
omics data compared with data from single
omics levels (25). We focused on the first and
third goals because of our limited sample
size. Larger sample sizes of lung tissue multi-
omics data will be needed for well-powered
efforts to reclassify COPD into endotypes:
subtypes based on molecular etiologies.

Previous studies have attempted to
integrate COPD-associated omics
biomarkers. In 2020, Mastej and colleagues
applied SmCCNet analysis (Sparse Multiple
Canonical Correlation Network) (26), which
integrated proteomics andmetabolomics
data to identify novel regulatory networks
connecting different omics levels (27).
Although these approaches implicated
different COPD biomarkers than we
identified, they were similar in emphasizing
the importance of network relationships in
COPD pathogenesis.

We observed low correlations between
transcriptomics and proteomics in lung
tissue. In 2002, Chen and colleagues tested
correlations between transcriptomics and
proteomics levels. Correlation coefficients for
69 tested genes varied between20.467 and
0.442, with a gene-level mean r of 0.103 (28).
In 2009, Gry and colleagues observed
correlations between cDNA or oligo-based
microarray–detected RNA and protein
across 23 human cancer cell lines, yielding
lowmean correlation coefficients of 0.2
(cDNA) and 0.25 (oligo), respectively (29). In
2019, Wang and colleagues performed
systematic analyses of the correlations
between transcriptomics and proteomics in
29 paired healthy tissues and reported a
linear relationship with a correlation
coefficient of 0.52 (30). In our study,
approximately 15% (606 of 4,039) of all
matched genes are correlated at
transcriptomics and proteomics levels with
correlation coefficients statistically different
from zero. Various factors including
translational efficiency, codon bias, ribosome
density, posttranslational modification,

mRNA/protein half-life, and experimental
measurement bias may lead to low
correlations between transcriptomics and
proteomics (31).

With only 98 subjects for QTL analyses,
we identified multiple cis-QTL effects for
COPD-associated proteins; however, lead
SNPs in COPDGWAS regions were rarely
QTLs in lung tissue, which is consistent with
the concept that most COPDGWAS signals
are not associated with gene expression
changes that can be detected in lung tissue
(32). Such expression differences might be
detectable in larger samples, single cell types,
or specific developmental stages. One COPD
GWAS signal (rs12373142) was associated
withMAPT expression and could implicate
the key gene for that locus. A common
genomic inversion of theMAPT genomic
region has been previously reported (22).
MAPT itself has also been recognized as a
potential high-priority eQTL-regulated gene
with a genomic variant (rs2532349)
associated with FEV1 (33, 34).

A cis-pQTL (but not cis-eQTL) near
RHOB, which encodes a COPD protein
biomarker, colocalized with a sub-genome-
wide significant COPDGWAS association,
suggesting that the genetic determinants of
this COPD protein biomarker also influence
COPD susceptibility. RHOB is a mediator
for hypoxia-induced pulmonary vascular
remodeling (35), which has been reported to
be associated with COPD (36). TheDSP
eQTL for rs2076295 was previously reported
to colocalize with a COPDGWAS signal
(37); interestingly, no pQTL effect was found
in that region. These results confirm the
independent value of transcriptomics and
proteomics in determining the functional
impact of GWAS signals.

Mediation analyses for significant cis-
pQTL results validated the associations
between pQTLs and proteins but failed to
recognize the mediator role of matched
transcripts between SNPs and proteins in our
small dataset, implying that pQTLs may not
only regulate the protein expression level
directly through protein-coding transcripts.
Further studies with larger sample sizes may
help identify more COPDmulti-omics
biomarkers and regulatory mechanisms
between different omics.

We used concordant relationships in
transcriptomics and proteomics to identify
COPD-related correlation networks. By
usingWGCNA, we found evidence that
shared network modules for transcriptomics
and proteomics are associated with COPD

and implicate important biological processes
in COPD, including b-catenin signaling and
membrane-based transport. Wnt/b-catenin
signaling has been reported to be associated
with COPD pathogenesis at transcriptomics
(38) and proteomics (39) levels. We observed
a nominal association between COPD-
associatedWGCNAmodules and several
reported COPDGWAS loci. The biological
mechanisms for these associations will
require further investigation.

Differential cellular composition of lung
tissue could contribute to the observed
transcriptomic and proteomic associations
with COPD. Using cellular deconvolution,
we observed significantly lower proportions
of endothelial cells and higher proportions of
stromal cells in COPD lung tissue samples.
The statistical significance of many of the
COPD-associated transcriptomic and
proteomic biomarkers was partially
attenuated with cell type proportion
adjustment. For QTL genesMAPT and
RHOB, after cell proportion adjustment, the
MAPTQTL associations remained
significant and the RHOB pQTL was
attenuated. Thus, cellular composition may
influence COPD omics biomarkers and their
QTLs. Future investigations should assess
cell type–specific transcriptomic and
proteomic biomarkers for COPD.

Limitations of the Present Study
Although we have conducted multi-
omics analyses integrating genetics,
transcriptomics, and proteomics of COPD
and control lung tissues, our study has
several limitations. Although we have found
some associations between COPD risk SNPs
and protein biomarkers and colocalized
effects comparing GWAS and QTL signals,
our dataset (98 subjects) is underpowered to
find connections between different omics
levels and to identify mediated associations
linking significant QTLs, genes, and COPD
affection status. QTL analyses were used to
find downstream transcripts or proteins
regulated by COPDGWAS loci. However,
not all of the previously reported COPD
GWAS loci–associated proteins were
detected in our mass spectrometry
proteomics dataset. Associations between
COPDGWAS loci and reported functional
proteins likeHHIP and FAM13Amay be
missed because those proteins were not
detected in our lung tissue proteomics
dataset. Use of bulk gene expression and
proteomic analysis limited detection of cell
type–specific effects, although cellular
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deconvolution methods can help to
overcome this limitation.

Conclusions
In our lung tissue multi-omics analyses, a
weak overall correlation between lung
transcriptomics and proteomics values
was observed, but some highly significant
correlations were found. Biological

connections between genetic variants and
omics expression levels are likely to be
complex network relationships, which will
require larger sample sizes to study
comprehensively. Mediation analyses and
correlation-based network analyses of
multiple omics data identified potential
genes and proteins that may influence
COPD pathogenesis. With limited

correlations between transcripts and
proteins, additional studies of COPD
proteomics are warranted.�
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