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Abstract
Machine learning methods promote the sustainable development of wise information
technology of medicine (WITMED), and a variety of medical data brings high value
and convenience to medical analysis. However, the applications of medical data have
also been confronted with the risk of privacy leakage that is hard to avoid, especially
when conducting correlation analysis or data sharing amongmultiple institutions. Data
security and privacy preservation have recently played an essential role in the field of
secure and private medical data analysis, where many differential privacy strategies
are applied to medical data publishing and mining. In this paper, we survey research
work on the applications of differential privacy for medical data analysis, discussing
the necessity of medical privacy-preserving, the advantages of differential privacy, and
their applications to typical medical data, such as genomic data and wearable device
data. Furthermore, we discuss the challenges and potential future research directions
for differential privacy in medical applications.
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1 Introduction

Recently, we have witnessed an increasing number of data science applications in sus-
tainable development field of wise information technology of medicine (WITMED).
More applications include drug discovery and disease surveillance, where personal
information such as name, age, gender, postal code, profession, disease, and medical
history can be collected, published and used by third-party terminal devices or author-
ities. The analysis and applications of medical data have become a hot topic in recent
years [1, 2].

Combining data science and modern medicine, the benefits of analyzing medical
data span disease prediction, new drug research and development, auxiliary diagnosis
and treatment, and health management. However, as more data is collected and pro-
cessed through interconnected devices [3], privacy becomes a significant concern due
to private sensitive information that may be contained within the data.

In data science research, data privacy-preserving has become increasingly signif-
icant in addressing security and privacy challenges. The development of privacy-
enhancing techniques, including differential privacy, secure multi-party computation
and homomorphic encryption, is imperative for enabling privacy protection while
collecting and analyzing data collaboratively. Additionally, transparent and account-
able data governance frameworks that protect privacy and facilitate informed consent
should be developed to ensure the responsible utilization of data. Therefore, adopting
a comprehensive approach that encompasses both technical and ethical considerations
is necessary to effectively address the privacy challenges that arise at the intersection
of artificial intelligence and data science.

As for medical data analysis, we have observed that the attacks on medical datasets
and models have increased rapidly in recent years. Therefore, the research on privacy-
preserving methods has become a crucial area of study in medical informatics field.
Privacy computing can realize medical simulation, prediction and security statisti-
cal analysis of medical data with specific privacy-preserving levels. For publishing
medical data, anonymous methods are capable of defending against linking attacks,
skewness attacks and similarity attacks, to name a few. However, they do not have
enough resistance to background knowledge [4]. Differential privacy is not only
robust to differential attacks, but also defending against all of the above attacks on
medical sensitive data. Moreover, for publicly published models, differential privacy
algorithms also prevent adversarial recovery of private information from the original
medical data.

In recent years, there has been a surge in development of novel algorithms for
differential privacy medical analysis, which this paper aims to conduct a survey on.
And the efforts of this paper can be summarized as follows. First, we discuss why
differential privacy is considerable in medical data publishing data and data mining.
Second, we discuss typical differential privacy methods based on noises, which can
help better understand existing work. Third, we analyze the limitations of differen-
tial privacy strategy and summarize possible future challenges, highlighting future
research directions of medical applications of differential privacy.

The rest of this paper is structured as follows. Section 2 introduces privacy com-
puting technology of medical data and the characteristics of anonymous methods. The
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fundamental theories of differential privacy and its noise mechanisms are obtained
in Sect. 3. Section 4 illustrates applications of differential privacy to medical data.
Subsequently, we analyze and discuss partial possible future challenges of differential
privacy in Sect. 5. Section 6 concludes the paper.

2 Medical Data Privacy Computing

The development of privacy connotation is dynamic, continuing to enrich its meaning
with the progress of social politics, economic culture and the improvement of human
consciousness. The so-called privacy computing is a series of privacy-preservingmeth-
ods that protect sensitive data from being visible but available when using conjoint
analysis and computing collaboratively on model data.

Unlike secure blockchain framework [5] or someweb attack detection techniques in
cloud-IoT system [6], privacy computing hasmainly integrated cryptography, artificial
intelligence and computer hardware technologies into a relativelymature technical sys-
tem represented by multi-party security computation, trusted execution environment
and federated learning. Meanwhile, it also regards differential privacy, homomorphic
encryption, zero-knowledge proof and others as auxiliary technology, providing a
technical guarantee for data security and circulation.

The research on privacy problems can be divided into five categories: financial
privacy, Internet privacy, medical privacy, political privacy and information privacy
[7]. Among them, medical privacy comes from a wide range of sources and complex
types of medical data, mainly including information that patients do not want to be
known to the outsideworld, such as genomic information, pastmedical history,medical
records, etc. They are commonly stored in the form of electronic medical record
(EMR), electronic health records (EHR) and personal health records (PHR).

Medical data scattered in different institutions is difficult to interconnect each part,
which may seriously restrict the output of clinical scientific research results. For this
problem, privacy computing technology has the ability to provide a series of practical
solutions to achieve data circulation and take full advantage of medical data. What’s
more, it can also solve the problem of insufficient samples from a single institution
that leads to credibility loss of research results.

During the COVID-19 epidemic prevention and control period [8, 9], analyses on
medical services and tests, pulse count, body temperature and the overall effect of age
and gender was done [10, 11]. Furthermore, the use of privacy computing technology
such as multi-party security computing enables researchers from all over the world to
jointly conduct genome analysis of case samples and share sequencing results without
disclosing detailed personal information, so as to implement real-time tracking of the
current virus situation and prediction of future strain evolution [1, 12]. This will help
more countries diagnose COVID-19 patients efficiently and take effective measures
in time.

Generally, genome analysis relies on a large number of personally private data.
Using privacy computing will have the original genetic data sealing in local database
and realize safe sharing of sensitive genomic data. Then the joint calculation and
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Fig. 1 Privacy-preserving life cycle of medical data

association analysis will be carried out. In this way, various genome resources can be
mined by different medical institutions under the premise of privacy-preserving.

For clinical medical research, utilizing local data protected by privacy computing
technology can implement distributed statistical analysis algorithms to joint modeling
and obtain related results, such as feasibility analysis of clinical research, cohort study
with large samples, disease prediction and drug insight, etc. Therefore, the application
of privacy computing will greatly improve medical research efficiency and accelerate
the transformation of scientific research achievements.

As shown in Fig. 1, the complete medical data life cycle incorporates data publish-
ing, storing, mining and utilizing [13, 14]. Data publishers, storage parties, miners and
users are involved in this process. Both the private data threats and the corresponding
privacy-preserving techniques are different at each phase.

In practical medical scenarios, the data publishing phase usually involves continu-
ous release of medical data, and attracts the attention of adversaries, who are able to
combine specific background knowledge to carry out a series of analyses and attacks
on sensitive medical data. Thus, in data publishing phase, while ensuring efficient
transmission and strong usability of data, considering how to safely and reliably deal
with sensitive information which may be leaked is also a crucial issue for medical
researchers and clinicians.

Traditional anonymous publishing methods are usually adopted in the process of
medical data release, including k-anonymity [15], l-diversity [16] and t-closeness
[17]. Through generalization, suppression and substitution of dataset tuples, they align
identifier classification based on specific rules so as to meet the need for medical data
desensitization release. Although anonymous approaches are capable of protecting
sensitive plaintext information [18, 19], they cannot effectively prevent the attackers
from using background knowledge depending on external databases to link attacks,
and their privacy protection effect lacks strict theoretical proof. Exactly, the differential
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privacy computing technology mainly introduced in the following can make up for
the disadvantages of anonymization methods to solve corresponding problem.

3 Differential Privacy

In a hypothetical scenario, if data collectors have to collect the published patient diag-
nosis and treatment records from a hospital, differential privacy can protect sensitive
information by adding random noise or disturbance to the original records, which
not only cannot reveal certain personal data of a certain user in the datasets, but also
ensures the overall statistical characteristics within specified bounds, thus maintaining
data utility to a certain extent. That strategy greatly ensures the privacy and security
of medical data.

Proposed by Dwork et al. [20], the concept of differential privacy comes from
semantic security in cryptography. On the one hand, differential privacy makes it
impossible for adversaries to distinguish the encryption results of different plaintexts.
On the other hand, it provides a strict upper limit of privacy protection in mathematics,
that is, privacy budget. To prevent differential attacks by adding random noise is the
direct purpose of differential privacy, so that the adversary cannot effectively infer
personal privacy while maximizing the availability of query results in neighboring
datasets. The differential attack is that the adversary makes use of subtraction think-
ing in neighboring datasets to infer sensitive data of a certain person by comparing
statistical results of queries.

In the data publishing phase, using differential privacy can ensure that one same
data is queried in two neighboring datasets and the results are basically the same, so
as to confuse the judgment of the adversary. In addition to guarding against differ-
ential attacks, differential privacy can also prevent link attacks based on background
knowledge to a large extent.

3.1 Definition

Generally speaking, differential privacy is defined as follows: Given a randomized
algorithm (query function) M , Pm is the set of all range values that M outputs, and
Sm ⊆ Pm . For any two neighboring datasets D and D′ (at most differing on one-row
data), if the algorithm M satisfies:

Pr[M(D) ∈ Sm] ≤ eε · Pr[M(
D′) ∈ Sm

]
(3.1)

Then it is said that algorithm M satisfies ε-differential privacy, where the parameter
ε is the privacy budget. As can be seen fromEq. (3.1) (or put eε on the right side alone),
the smaller the privacy budget is, the probability distribution of query results returned
byM on neighboring datasets is more similar, accompanied by the harder it is for the
adversary to distinguish the pair of neighboring datasets. It provides higher protection
degree of sensitive data, but correspondingly, data utility will get worse gradually. On
the contrary, a larger privacy budget will lower the degree of privacy protection and
improve data utility.
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Notably, the probabilities of the third party querying neighboring datasets to get
the same statistic value are only very close, not exactly equal. While protecting spe-
cific data from leakage, it is also essential to prevent the data from being completely
randomized, leading to the loss of usability.

3.2 Noise-BasedMechanisms

In this part, we discuss three noise mechanisms commonly used in differential privacy.

3.2.1 Laplace Mechanism

The query request of the original dataset D is regarded as the value of a function f
on D. Laplace mechanism is achieved by adding noise η to f (D) and the result is

f (D) + η. η is a continuous random variable satisfying Lap
(
0, �( f )

ε

)
distribution

and its probability density function is:

P(η) = 1
2λe

− |η|
λ (3.2)

In Eq. (3.2), the expected value of the Laplace distribution is 0, the variance is
2λ2, and the parameter λ reflects the amplitude of noise and the intensity of privacy
protection. Larger λ means the greater range of noise added and the higher degree of
privacy protection. In addition, the sensitivity is also an important factor affecting the
strength of privacy protection.

Given a query function f , if f : D → R (query result), the global sensitivity of f
is:

�( f ) = max
D,D′ ‖ f (D) − f

(
D′)‖1 (3.3)

for all neighboring datasets D and D’.
The global sensitivity reflects the maximum range of variation of a query function

over neighboring datasets, in conjunction with privacy budgets to control the amount
of generated noise.

3.2.2 Gaussian Mechanism

The Gaussian noise is a mechanism to achieve (ε, δ)-differential privacy, which is
defined as follows:

Pr[M(D) ∈ Sm] ≤ eε · Pr[M(
D′) ∈ Sm

] + δ (3.4)

Here in (3.4), the additive term δ denotes the probability of violating plain ε-
differential privacy is allowed. Given a function f over dataset D, if ε < 1, δ ∈
(0, 1) and δ ≥ 4

5e
−(σε)2

2 [21], δ >

√
2ln 1.25

δ
� f /ε, Gaussian noise mechanism can be

expressed as: M(D) = f (D) + N
(
0,� f 2 · σ 2

)
[22, 23], N is the standard Gaussian
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distribution with zero-mean Gaussian noise parameter σ and a standard deviation of
� f · σ . Compared with L1-sensitivity norm used by Laplace mechanism, Gaussian
mechanism follows the same privacy composition, but uses the L2-sensitivity norm.

3.2.3 Exponential Mechanism

The above two noise mechanisms are mainly used to protect numerical data, while
the exponential mechanism is suitable for non-numerical data. It defines a practical
evaluation function q, in charge of calculating a satisfaction score ω for each output
scheme. The scheme with high score will have a higher probability to be published,
the exponential mechanism satisfies:

Pr(ω) ∝ exp
(

ε
2�(q)

q(D, ω)
)

(3.5)

In Formula (3.5), �(q) is the global sensitivity of the evaluation function.

3.3 Classification of Differential Privacy

Traditional differential privacy will gather the original datasets to a data center and
then release relevant statistical information satisfying differential privacy, which is
called centralized differential privacy (CDP). In other words, CDP’s protection of
sensitive information has always been based on the assumption that the third-party
data collectors are trusted, that is, they will not steal or disclose sensitive information
from users. However, in practical applications, users’ privacy is still not guaranteed
[24]. An investigation in 2018 showed that most mobile health apps jeopardized users’
privacy by violating data protection regulations and revealing sensitive information
[25].

In view of this, local differential privacy (LDP) [26] emerges in the scenario of
untrusted third-party data collectors. When suffering the same quantified privacy
attacks of CDP, LDP will subdivide the protection of sensitive personal information.
Specifically, LDP delivers data protection authority to each user, enabling users to
protect sensitive personal information independently, thus achieving more thorough
privacy preservation locally. At present, LDP has been mainly used in frequency esti-
mation, mean estimation [27] and gradually been put into industrial applications. For
example, Apple [28] applied it in iOS 10 operating system to protect user device data,
and Google [29] used it to collect users’ behavior statistics from the Chrome browser.

3.4 Differential Privacy in Machine Learning

Recently, differential privacy has also been gradually applied in data mining field and
combined with increasing machine learning algorithms.

Differential privacy depends on noise or disturbance, so compared with other
privacy computingmethods, it has low computational complexity, improving its appli-
cation efficiency in the field of machine learning while providingmore explicit privacy
guarantees. Noises can not only be added to original data, objective function, output
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model parameters or features extracted by neural network [30], but also be disturbed
or screened for sensitive features specified by users or automatically detected by the
recognition network [31, 32]. Shokri et al. [33] used differential privacy mechanisms
to design a distributed learningmethod for privacy protection early on. In theirmethod,
privacy loss can be calculated according to the parameters of the model, but too many
model parameters may lead to huge privacy loss. On this basis, Abadi et al. [22]
improved it and introduced a more efficient gradient descent algorithm based on dif-
ferential privacy, which has a smaller privacy budget and better performance. More
importantly, Abadi et al. [22] also introduced a measuring method of privacy loss,
Moment Accountant, to automate the calculation of privacy loss. The differential pri-
vacy stochastic gradient descent (DP-SGD) algorithmmentioned in the paper also laid
the foundation formore scholars researching onmachine learning of privacy protection
in the future.

Applyingdifferential privacy tomachine learningwill reduce the probability that the
adversary can reversely deduce sensitive personal information from the model in the
original training datasets. Data utility and model security are both crucial in this pro-
cess.On the one hand, it is necessary to reasonably select and control the privacy budget
in the training process according to the privacy loss. Methods such as dynamic alloca-
tion of privacy budget [34], utilizing differential privacy post-processing property for
noise reduction [35], or reducing privacy budget that may be caused by combination
characteristics [36] can be considered. On the other hand, some model architectures
that are more conducive to protecting user privacy can also be selected [37, 38].

4 Differential Privacy for Medical Data

In medical data, differential privacy is mainly applied to data publishing and data
mining. In the data publishing phase, it can greatly prevent the privacy leakage caused
by the data query based on background knowledge. In the data mining phase, it can
resist the privacy leakage caused by the membership inference attack (MIA) of the
adversary on the model.

As Fig. 2 shows, current applications research focuses on genomic data, medical
wearable devices, electronic medical records and medical images, etc.

4.1 Genomic Data

Genomic data in medicine is DNA sequence with genetic benefits of individuals, such
particular data is difficult to change over the life cycle and of long-lived value [39–41].
Given this, some enterprises may be tempted by commercial interests to violate the
genetic privacy of others.

Genome-wide association study (GWAS) is conducive to learning genome-
phenome associations by analyzing the statistical correlation between the variants
of a case group (phenotype positive) and a control group (phenotype negative) [4].
The adversarymay infer the potential traits and genotypes of victims depending on trait
associations available from GWAS catalogue [42]. In order to reduce the possibility
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Fig. 2 Differential privacy application to medical data

of leaking genome privacy from published aggregate statistics of GWAS, differential
privacy strategies can be widely introduced in it. For example, to a certain extent,
differential privacy can prevent attackers from inferring the number and location of
single nucleotide polymorphisms (SNPs) that might be significantly linked with cer-
tain diseases in the original genetic datasets, so as to protect the gene privacy [43, 44].
For another example, the controlled noise in differential privacy can be added to query
results from genomic database, which promotes genome openness while preserving
privacy [45, 46]. However, large scale of added noise to high-dimensional genomic
data will inevitably degrade data utility. To address this problem, He et al. [47] pro-
posed an effective method to factorize a huge-dimensional distribution into a set of
local distributions, reducing the scale of added noise.

Moreover, Almadhoun et al. [48] showed that the adversary could infer genome
privacy from query results added noise by exploiting the correlations between the
genomes of family members with dependency, then Almadhoun et al. [49] formalized
the differential privacy notion to avoid sensitive information inference by adversary
relying on tuples prior knowledge. Similar to this work, in order to strengthen the
effect of differential privacy against correlation attacks, Yilmaz et al. [50] proposed
a scheme which eliminates certain states of a SNP loosely correlated with previously
shared SNPs. Chen et al. [51] researched onmachine learningmodel’s ability to defend
against MIA on genomic data and evaluated the effect of model sparsity on privacy
vulnerability with different differential privacy settings.

4.2 Wearable Device Data

Medical wearable devices storing personal health data such as heart rate and blood
sugar play an important role in disease diagnosis and treatment, and they made it
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possible to collect real-time medical health data continuously [52]. Personal sensitive
data stored in medical wearable devices need to be collected in real time, they also
have a demand for privacy-preserving in data publishing.

Tu et al. [53] applied differential privacy to numerical mean stream data publishing
of medical wearable devices, and adopted an adaptive sampling algorithm based on
Kalman filter adjustment error to allocate privacy budgets, which improves the usabil-
ity of published stream data. Kim et al. [54] added Laplace noise to salient points for
collecting one-dimensional heart rate data, but existing large data error.

Revolving around Laplace mechanism, researchers have extended a series of works
to provide better data utility and privacy guarantee. Li et al. [55] proposed an improved
randomized method to tackle stream medical data collection with a single attribute.
That method incorporates random response and Laplace mechanism, further improv-
ing the availability of mean value estimation with stream data in medical wearable
devices. Moreover, for partitioning or temporal medical datasets, the geometric tech-
nique [56], Haar Wavelet technique [57], bucket partition algorithm [58] and Fourier
perturbation algorithm [59] have also been adopted to combine with Laplace distribu-
tion of differential privacy.

4.3 Other Medical Data

As an inevitable product of modern information technology in the medical field, the
electronicmedical record is the carrier of variousmedical information in diagnosis and
treatment process, greatly benefitingmodernmanagement of hospital medical records.
Combining with LDP strategy, Wu et al. [60] designed a blockchain-enabled frame-
work to provide attribute-based privacy protection for transactions. Medical diagnosis
results also belong to a part of electronic medical records, Chen et al. [61] presented
a differential privacy quasi-identifier classification scheme to tackle original disease
dataset and defined privacy ratio for evaluating dataset vulnerability. Zhang et al. [62]
designed an attribute association-based differential privacy classification tree method
of data publishing, conducting experiments on real medical record datasets.

In addition, Ziller et al. [63] proposed an open-source software framework based
on DP-SGD algorithm application to deal with medical imaging classification and
semantic segmentation deep learning tasks. Yuan et al. [64] exploited collaborative
deep learning with Gaussian noise mechanism to experiment on X-ray Images (Pneu-
monia) dataset and found the accuracy loss was small, affecting little to the results.
Adnan et al. [65] indicated that federated learning with differential privacy has been
the viable and reliable collaborative machine learning framework for medical image
analysis.

5 Discussions

Although differential privacy to medical data has made some achievements at present,
it still faces difficulties and challenges in terms of practical application.
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Firstly, we still need to explore how to constantly improve data utility when med-
ical data is shared and circulated across institutions, and to select suitable algorithm
strategies to reduce global sensitivity and control privacy budget.

Second, due to the complexity of the scale and structure to medical data, rapidly
increasing medical data has begun to be expressed in an unstructured form. As a pop-
ular method to describe networked data [66, 67], graph neural network (GNN) has
also been successively applied to kinds of medical tasks by plenty of researchers, such
as predicting chemical properties of molecules, biological interaction properties of
proteins, drug recommendation, etc. [68–70]. However, when the GNN models are
uploaded to the server and the graph nodes or labels involve personal sensitive infor-
mation, the process of learning graph data still has the possibility of privacy leakage.
For this scenario, differential privacy strategy can also be used to add noise locally
[71, 72]. Combined with differential privacy, graph data has a more complex structure
than general medical data types. On the one hand, the structural characteristics of the
graph may extremely increase the global sensitivity of queries, resulting in excessive
noises. On the other hand, since each user locally perturbs the data independently, how
to ensure the relevance between original data and then build a graph structure with
high availability based on disturbed data also become the main challenges in current
practical applications.

Third, existing privacy-preserving computationmethods have their own limitations.
Finding a reasonable trade-off between privacy-preserving intensity, data utility and
algorithm execution efficiency has always been the common goal of these methods
[73–75]. Regarding differential privacy as a privacy-enhancing technique to combine
withmainstream privacy computingmethods like federated learning can be considered
and widely applied to distributed training of decentralized medical data in the future.

6 Conclusion

Due to increasingly large scale and complex structure, medical data contains sensitive
personal information inevitably, and the demand for privacy-preserving is particularly
prominent. In this survey, we discussed the development of differential privacy and its
applications to medical data. As a privacy computing method with strict mathematical
limitations and various implementations, differential privacy is capable of solving
the security and efficiency challenges during medical data publishing and mining.
Moreover, this work provided a reliable environment and solution for medical data
analysis. Finally, we discussed major challenges and future research directions about
the medical data applications of differential privacy.
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