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Abstract 

The majority of these existing prognostic models of head and neck squamous cell carcinoma (HNSCC) have unsatis-
factory prediction accuracy since they solely utilize demographic and clinical information. Leveraged by autophagy-
related epigenetic biomarkers, we aim to develop a better prognostic prediction model of HNSCC incorporating CpG 
probes with either main effects or gene–gene interactions. Based on DNA methylation data from three independent 
cohorts, we applied a 3-D analysis strategy to develop An independently validated auTophagy-related epigenetic 
prognostic prediction model of HEad and Neck squamous cell carcinomA (ATHENA). Compared to prediction models 
with only demographic and clinical information, ATHENA has substantially improved discriminative ability, prediction 
accuracy and more clinical net benefits, and shows robustness in different subpopulations, as well as external popula-
tions. Besides, epigenetic score of ATHENA is significantly associated with tumor immune microenvironment, tumor-
infiltrating immune cell abundances, immune checkpoints, somatic mutation and immunity-related drugs. Taken 
together these results, ATHENA has the demonstrated feasibility and utility of predicting HNSCC survival (http://​bigda​
ta.​njmu.​edu.​cn/​ATHENA/).
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is 
an aggressive malignancy that includes a wide range of 
phenotypes such as cancers of the lip, oral cavity, lar-
ynx, nasopharynx, oropharynx and hypopharynx, which 
results in nearly 900,000 new cases and 450,000 deaths 
globally in year 2020 [1]. Despite recent breakthroughs 
in surgery, radiotherapy, chemotherapy, targeted therapy, 
and immunotherapy, the prognosis of HNSCC is still 
poor and the 5-year survival rate of HNSCC stagnates 
at about 50% [2]. In the past decades, great efforts have 
been made to carry out genetic [3], epigenetic [4], tran-
scriptomic [5] and proteomic [6] studies of HNSCC sur-
vival, since effective biomarkers possess the capability to 
predict prognosis of the disease, and can help to diagnose 
disease in its early stage, which is essential to improve 
the overall survival of HNSCC. Therefore, a significant 
amount of HNSCC associated molecular biomarkers has 
emerged [7].

Autophagy is the collective term covering a number of 
catabolic pathways that regulate cellular homeostasis via 
lysosomal degradation and recycling of cytoplasmic com-
ponents [8]. The role of autophagy in regulating cancer 
progression is complex and contradictory; its specific 
function depends on the cancer type and tumor stage [9, 
10]. Autophagy could negatively or positively regulate 
cancer immunotherapy by degrading immune check-
point protein, releasing pro-inflammatory cytokines, 
and generating or degradating antigens [11]. Change of 
autophagic flux is associated with cancer cell prolifera-
tion and metastasis [12], tumor stem cell phenotype [10], 
tumor malignancy [13], and lymph node metastasis [14] 
in HNSCC. During HNSCC treatment, regulation of 
autophagy may modulate cisplatin resistance [15, 16], 
and help overcome radiotherapy resistance [17].

DNA methylation is a heritable, reversible and one of 
the most fundamental epigenetic modifications, which 
regulates gene transcription [18]. Aberrant DNA meth-
ylation is also involved in the progression of cancer 
[19], and tracking the aberrant methylation contributes 
substantially to the prognostic prediction of cancer sur-
vival [20]. However, the effect of DNA methylation of 
autophagy-related genes (ARGs) on HNSCC survival 
requires further investigation. Furthermore, almost all 
prognostic models of HNSCC merely focus on predic-
tors with main effects, but overlook predictors exhibiting 
gene–gene (G × G) interactions, which may also contrib-
ute to discovery of therapeutic targets and boost prog-
nostic prediction accuracy [21, 22].

Hence, we performed a two-step designed study to 
develop An independently validated auTophagy-related 
prognostic prediction model of HEad and Neck squa-
mous cell carcinomA (ATHENA) by incorporating 

epigenetic biomarkers with main effects and G × G inter-
actions using all available data in The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus (GEO), 
and also analyzed the relationships between the epige-
netic predictors and immune landscape.

Methods
Study populations with DNA methylation data
The level-3 TCGA-HNSCC DNA methylation and clini-
cal data is obtained from the UCSC XENA browser, 
whose tumor sites are mostly tongue, larynx or over-
lapped lesions of lip, oral cavity and pharynx. Two 
additional independent datasets with clinical and DNA 
methylation information are downloaded from GEO 
(GSE75537 [23] and GSE52793 [24]). GSE75537 includes 
tumor samples from 53 tongue squamous cell carcino-
mas, while GSE52793 is consisted of oral rinse samples 
from 82 oral squamous cell carcinoma patients.

Quality control process for DNA methylation data
DNA methylation is assessed by the Illumina Infin-
ium Human Methylation 450 Array. We use R package 
CHAMP to process level-3 data from TCGA and GEO. 
Ineligible CpG probes are removed if they met any of 
the quality control (QC) criteria: (i) non-CpG probes, 
(ii) common single nucleotide polymorphisms (SNPs) 
located in the position of the CpG probe or 10 bp flank-
ing regions, (iii) cross-reactive probes, (iv) sex chromo-
some probes, (v) deletion rates > 20%, (vi) failed QC 
in either TCGA or GEO cohorts. Type I and II probe 
correction is processed using Beta-Mixture Quan-
tile (BMIQ) normalization. Additional file  1: Figure S1 
describes the details of the QC process. Subjects without 
overall survival time are also removed. Finally, 634 sub-
jects (Table 1) and 361,065 CpG probes are remained in 
the subsequent association analysis.

Study populations with gene expression data and somatic 
mutation data
In the TCGA cohort, 499 HNSCC patients have com-
plete mRNA sequencing data and 493 patients have com-
plete somatic mutation data. TCGA mRNA sequencing 
data processing and quality control are performed by 
the TCGA working group. Level-3 mRNA expression 
data that downloaded from the UCSC XENA database is 
composed of fragments per kilobase per million mapped 
reads (FPKM) values, and is transformed into transcripts 
per kilobase million (TPM) values for association analy-
sis. The expression value of each gene is also transformed 
on a log2 scale before association analysis.
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Quality control process for gene expression and somatic 
mutation data
After quality control, 44 HNSCC subjects with miss-
ing overall survival time or clinical information are 
excluded, yielding a total of 455 HNSCC subjects with 
complete mRNA sequencing data and 449 subjects with 

complete somatic mutation data for subsequent asso-
ciation analysis.

Definition of autophagy‑related biomarkers
We focus on a total of 232 ARGs defined by the Human 
Autophagy Database (HADb, http://​www.​autop​hagy.​lu/), 

Table 1  Demographic and clinical characteristics of subjects in different datasets

Biomarker screening Discovery phase Validation phase Combined dataset

Model development Training set Internal testing set External testing set

Characteristics TCGA​ GSE75537 GSE52793

Number of samples 499 53 82 634

Age at diagnosis (years) 61.08 ± 11.92 49.36 ± 13.47 – –

Age at diagnosis, N (%)

 < 40 18 (3.6) 16 (30.2) – 34 (6.2)

 40–49 58 (11.6) 15 (28.3) – 73 (13.2)

 50–59 144 (28.9) 7 (13.2) – 151 (27.4)

 ≥ 60 279 (55.9) 15 (28.3) – 294 (53.2)

 Unknown 0 0 82 82

Gender, N (%)

 Male 366 (73.3) 42 (79.3) – 408 (73.9)

 Female 133 (26.7) 11 (20.7) – 144 (26.1)

 Unknown 0 0 82 82

T stage, N (%)

 I 33 (6.8) 13 (24.5) – 46 (8.6)

 II 142 (29.3) 15 (28.3) – 157 (29.2)

 III 130 (26.9) 12 (22.7) – 142 (26.4)

 IV 179 (37.0) 13 (24.5) – 192 (35.8)

 Unknown 15 0 82 97

N stage, N (%)

 0 238 (49.9) 25 (47.2) – 263 (49.6)

 1 80 (16.8) 8 (15.1) – 88 (16.6)

 2 152 (31.9) 20 (37.7) – 172 (32.5)

 3 7 (1.4) 0 (0) – 7 (1.3)

 Unknown 22 0 82 104

M stage, N (%)

 0 469 (99.0) 45 (100.0) – 514 (99.0)

 1 5 (1.0) 0 (0) – 5 (1.0)

 Unknown 25 8 82 115

Smoking status, N (%)

 Yes 378 (77.3) – – 378 (77.3)

 No 111 (22.7) – – 111 (22.7)

 Unknown 10 53 82 145

Race, N (%)

 White 426 (87.8) – – 426 (87.8)

 Black or African American 47 (9.7) – – 47 (9.7)

 Asian 10 (2.1) – – 10 (2.1)

 American Indian or Alaska Native 2 (0.4) – – 2 (0.4)

 Unknown 14 53 82 149

http://www.autophagy.lu/
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which is an online database that stores a complete set of 
human encoded genes related to autophagy as described 
in the published literature. After QC, there are 4306 CpG 
probes for association analysis.

Statistical analysis
Model development and validation of ATHENA
We depicted the study design and workflow in Fig.  1. 
For the development and validation of the ATHENA, 
we applied a 3-D strategy which was originally proposed 
in our previous study [21], including Double Types of 
Effects, Double Steps of Screening, and Double Steps of 
Modeling.

(1)	 Double Types of Effects We aimed to include epige-
netic predictors with either main effects or G × G 
interactions. (i) To test the first type of effect (main 
effect), we utilized Cox proportional hazards model 
adjusted for covariates including age, gender, smok-

ing status and TNM stage. (ii) To test the second 
type of effect (G × G interaction), we again used 
Cox proportional hazards model adjusted for covar-
iates aforementioned.

(2)	 Double Steps of Screening We adopted a two-step 
design to scan biomarkers with either significant 
main effects or G × G interactions on HNSCC over-
all survival. (i) In the step of biomarker screening, 
we tested those two types of effects through Cox 
models aforementioned in TCGA as a discovery 
phase. Multiple test corrections were performed by 
controlling the false discovery rate (FDR) at the 5% 
level. To reduce the impact of outliers, we deleted 
methylation values out of range mean ± 3 × stand-
ard deviation (SD), and retested these effects as a 
sensitivity analysis. Hazard ratios (HR) and 95% 
confidence intervals (CIs) were calculated for incre-
mental methylation per 1% level. (ii) In the step of 
biomarker validation, we confirmed their signifi-

Fig. 1  Flow chart of study design and statistical analyses
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cances in GSE75537 as a validation phase. Signifi-
cant biomarkers were finally retained if they met 
all following criteria: (i) FDR-q ≤ 0.05 in the discov-
ery phase; (ii) P ≤ 0.005 in the sensitivity analysis 
of discovery phase; (iii) P ≤ 0.05 in the validation 
phase; (iv) consistent direction of effects across two 
phases.

(3)	 Double Steps of Modeling (i) In the step of model 
development, we applied forward stepwise regres-
sion strategy to select the final predictors for 
ATHENA from significant biomarkers survived 
from Double Steps of Screening in TCGA data as a 
training set. Biomarkers retained in the multivari-
able Cox model were identified by the likelihood 
ratio test with Pentry ≤ 0.05 and Premoval > 0.05. (ii) In 
the step of model validation for ATHENA, model 
performance was assessed in one internal testing 
set (GSE75537) and another external testing set 
(GSE52793) with coefficients of all epigenetic pre-
dictors the same as those trained in TCGA.

Kaplan–Meier survival curves are drawn to illustrate 
the survival difference among patients with different risk 
groups. The accuracy of prediction is represented using 
the time-dependent receiver operating characteristic 
(ROC) curve, and is measured by the area under the ROC 
curve (AUC), which can be obtained from R package tim-
eROC. The 95% CI and P value of AUC improvement are 
calculated by 1000-time bootstrap resampling. The con-
cordance index (C-index), an average accuracy of predic-
tive survival across all follow-up years, is also utilized to 
estimate predictive performance. Furthermore, we per-
formed decision curve analysis (DCA) to evaluate clinical 
benefits by using ATHENA to screen out these patients 
at high risk of death. Stratification analysis of ATHENA 
scores is displayed within subgroups stratified by age, 
gender, smoking status, TNM stage and occurrence site 
using the R package forestplot. Finally, one nomogram is 
generated with R package regplot. To facilitate applica-
tion of ATHENA model, we release an online calcula-
tor (http://​bigda​ta.​njmu.​edu.​cn/​ATHENA/), which can 
immediately return predicted survival rates and 95% CIs 
at any time point between 0 and 120 months when input-
ting values of predictors for a HNSCC patient, based on 
an interactive web-based Kaplan–Meier survival curve.

Immune landscape analysis of epigenetic predictors 
of ATHENA
Potential genes trans-regulated by epigenetic predic-
tors of ATHENA are identified by genome-wide cor-
relation analysis using linear regression model and 
Cox model adjusted for the same covariates afore-
mentioned in TCGA cohort. Functional annotation 

and gene enrichment pathway analysis based on 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) for potential trans-regu-
lated genes are performed using R Package WebGe-
staltR. The ESTIMATE algorithm is used based on 
gene expression data to explore the pattern of tumor 
immune microenvironment (TIME) among subgroups 
[25], and CIBERSORT, a linear support vector regres-
sion-based deconvolution algorithm [26], is performed 
to determine the composition of 22 tumor-infiltrating 
immune cells (TIICs). We explored the difference of 
immune checkpoint expression in epigenetic score 
subgroups, and also performed the correlation analysis 
between immune checkpoints expression and epige-
netic score of ATHENA. Then, based on the somatic 
mutation data from TCGA, we conducted a differen-
tial analysis of genomic mutations between high- and 
low-risk groups using R package maftools. Finally, we 
explored immunity-related drugs targeting epigenetic 
predictors using the DrugBank database (https://​go.​
drugb​ank.​com/) [27].

Continuous variables are summarized as mean ± SD, 
while categorized variables are described by frequency 
(n) and proportion (%) in description analysis. All statis-
tical analyses are performed in R software (version 4.0.3, 
The R Foundation for Statistical Computing, Vienna, 
Austria), unless otherwise specified.

Results
ATHENA model development
First, 85 CpG probes with main effects and 65,467 pairs 
of CpG probes with G × G interactions were identified 
(FDR-q ≤ 0.05) to be possibly associated with overall sur-
vival in the discovery phase. Of them, 6 probes with main 
effects and 8,665 pairs of probes with G × G interactions 
passed the sensitivity analysis. Finally, 2 probes and 853 
pairs of probes were confirmed with robust significance 
in the validation phase, and were defined to be candi-
date epigenetic predictors. By using forward stepwise 
regression strategy in TCGA cohort as training set, we 
constructed a Cox model including 2 CpG probes with 
main effects (Additional file  1: Table  S1) and 8 pairs of 
CpG probes with G × G interactions (Additional file  1: 
Table  S2), which were used to calculate the epigenetic 
score (Additional file  1: Table  S3). The ATHENA score 
was defined as a weighted linear combination of epige-
netic score and clinical score (Additional file 1: Tables S4, 
S5), where weights were coefficients derived from Cox 
model.

ATHENA model evaluation and validation
To evaluate the discriminative ability of biomarkers 
of ATHENA, patients were categorized into low- and 

http://bigdata.njmu.edu.cn/ATHENA/
https://go.drugbank.com/
https://go.drugbank.com/
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high-risk groups based on the median of (i) clinical score 
which was a weighted linear combination of demographic 
and clinical factors; (ii) main effect score which was a 
weighted linear combination of epigenetic biomarkers 
with significant main effects; (iii) G × G interaction score 
which was a weighted linear combination of epigenetic 
biomarkers with significant G × G interactions; (iv) epi-
genetic score which was a a weighted linear combination 
of main effect score and G × G interaction score; and (v) 
ATHENA score which was a weighted linear combina-
tion of clinical and epigenetic scores, respectively. Com-
pared to the low-risk group, the high-risk group was 
associated with worse survival in TCGA cohort, exhib-
iting a gradually increasing hazard ratio (HR) (HRClinical 

score = 1.45, 95% CI 1.10–1.91, P = 7.88 × 10–03; HRMain effect 

score = 1.58, 95% CI 1.20–2.09, P = 1.23 × 10–03; HRG×G 

Interaction score = 2.99, 95% CI 2.22–4.02, P = 4.54 × 10–13; 
HREpigenetic score = 3.58, 95% CI 2.65–4.83, P < 2.00 × 10–16; 
HRATHENA score = 3.63, 95% CI 2.68–4.91, P < 2.00 × 10–16) 
(Fig. 2A–E). To further illustrate the discriminative abil-
ity of the ATHENA score, we categorized patients by 
the quintiles and the 90 percentile of the score in the 
TCGA cohort. We observed a dose–response asso-
ciation between higher-percentile groups and higher 
mortality risk (HRLevel 5 vs 1 = 8.69, 95% CI 5.22–14.47, 
P < 2.00 × 10–16; HRLevel 4 vs 1 = 5.94, 95% CI 3.69–9.56, 
P = 2.23 × 10–13; HRLevel 3 vs 1 = 2.79, 95% CI 1.78–4.39, 
P = 8.34 × 10–06; HRLevel 2 vs 1 = 1.46, 95% CI 0.90–2.37, 
P = 1.25 × 10–01) (Fig. 2F).

We then evaluated the prediction performance of 
these biomarkers. The model with only clinical score 
had a limited prediction ability (AUC​36-month = 0.61, 
AUC​60-month = 0.53, C-index = 0.60), and the predic-
tion accuracy increased by adding main effect score 
(AUC​36-month = 0.67, AUC​60-month = 0.59, C-index = 0.64) 
or G × G interaction score (AUC​36-month = 0.75, AUC​
60-month = 0.72, C-index = 0.72). Further, by adding epi-
genetic score, the AUC increased by 27.9% (95% CI 27.2–
28.5%, P < 2.00 × 10–16) and 37.7% (95% CI 37.2–38.3%, 
P < 2.00 × 10–16) for 3-year and 5-year survival predic-
tion, respectively (Fig.  3A, B). And, ATHENA achieved 
an acceptable prediction accuracy (AUC​36-month = 0.78, 
AUC​60-month = 0.73, C-index = 0.73). In further subgroup 
analyses in subpopulations stratified by age, gender, 
smoking status and TNM stage, ATHENA still presented 
robust discriminative ability with HR ranging from 2.61 
(95% CI 2.21–3.08, P < 2.00 × 10–16) to 3.49 (95% CI 
2.45–4.96, P = 4.51 × 10–12), and exhibited reasonable 
prediction accuracy with AUC ranging from 0.71 (95% 
CI 0.64–0.78) to 0.90 (95% CI 0.84–0.97) for 36-month 
survival prediction, and 0.67 (95% CI 0.58–0.77) to 0.86 
(95% CI 0.73–0.99) for 60-month survival prediction, 
respectively (Fig. 4A–C). Considering the potential tissue 

heterogeneity, we also evaluated ATHENA model in dif-
ferent subgroups by occurrence sites, and observed its 
robust performance (Additional file  1: Figure S2A–C). 
DCA showed that ATHENA presented more clinical 
net benefits than model with only clinical and demo-
graphic indicators (Fig.  5A–D). To facilitate application 
of ATHENA in clinical practice, we developed a nomo-
gram, which estimated patients’ 36- or 60-month survival 
(Fig. 5E).

Finally, for ATHENA model validation, we retained 
the coefficients of CpG probes when applying to two 
extra datasets (GSE75537 as an internal validation and 
GSE52793 as an external validation). ATHENA showed 
a satisfactory prediction accuracy in GSE75537 (AUC​
36-month = 0.82, AUC​60-month = 0.80, C-index = 0.75) (Addi-
tional file  1: Figure S3A), while epigenetic score was 
still an independent and significant risk factor for prog-
nosis (HR = 1.55, 95% CI 1.16–2.07, P = 3.09 × 10–03) 
(Additional file  1: Figure S3B). The AUC of ATHENA 
model in GSE52793 were limited because of the absence 
of covariates (AUC​36-month = 0.59, AUC​60-month = 0.62, 
C-index = 0.59) (Additional file  1: Figure S4A), while 
epigenetic score was again significantly associated with 
HNSCC overall survival (Pp=0, q=1 = 2.39 × 10–02 and Pp=1, 

q=1 = 2.97 × 10–02) as shown by Kaplan–Meier survival 
curves (Additional file  1: Figure S4B), which was con-
firmed by Harrington–Fleming test that was designed for 
the late or delayed effect of variable during the follow-up 
[28].

Trans‑regulation analyses of epigenetic predictors 
of ATHENA and immune landscape analysis
Genome-wide trans-regulation analyses by the linear 
regression model indicated that expressions of 6507 
genes were significantly trans-regulated by the epigenetic 
predictors of ATHENA (FDR-q ≤ 0.05). Among them, 
1564 genes were further significantly associated with 
HNSCC overall survival (P ≤ 0.05), which were evalu-
ated by the Cox proportional hazards model adjusted 
for the same covariates aforementioned. KEGG enrich-
ment analysis categorized gene probes into 21 pathways, 
including classic autophagy-related pathways such as 
PI3K-Akt signaling pathway, and GO annotation iden-
tified 65 biological process pathways, 10 cellular com-
ponent pathways and 14 molecular function pathways, 
suggesting potential biological functions (Fig.  6A–D). 
By extracting CpG probes of autophagy-related genes in 
PI3K-Akt signaling pathway, and testing these biomark-
ers using the same criteria aforementioned, again, we 
observed 35 pairs of CpG probes with significant G × G 
interactions in discovery and validation phases, which 
could be potential drug target therapeutics to overcome 
autophagy in HNSCC (Additional file 1: Table S6).
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Moreover, the compositions of 12 types of immune 
cells were differently distributed between low- and high-
risk groups determined by median of epigenetic score of 
ATHENA (Fig.  7A), the correlation of epigenetic score 
of ATHENA with each immune cell composition varied 
a lot (Fig.  7B), including positive (e.g., with M0 Mac-
rophages) and negative correlations (e.g., with Plasma 
cells) (Fig.  7C). Further, epigenetic score of ATHENA 

had statistically significant but very weak positive corre-
lation with the stromal score (r = 0.11, P = 1.99 × 10–02), 
and showed no significant negative correlation with the 
immune score (r = − 0.09, P = 5.24 × 10–02) (Additional 
file 1: Figure S5). As a result, we checked the connectivity 
and correlations between epigenetic score of ATHENA 
and immune checkpoint genes. Almost all of the immune 
checkpoints genes were lower expressed in the high-risk 

Fig. 2  Kaplan–Meier survival curves for high- and low-risk HNSCC patients. The high- and low risk groups are defined by the median of A clinical 
score, B main effect score, C G × G interaction score, D epigenetic score, and E ATHENA score. F Discriminative ability of the ATHENA score is 
illustrated by Kaplan–Meier survival curves of six groups, defined by quantiles at 20%, 40%, 60%, 80% and 90% of ATHENA score
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Fig. 3  ROC curves of different prognostic prediction models using different combinations of clinical information, epigenetic predictors with 
main effects and G × G interactions. ROC curves are presented for both A 36-month and B 60-month survival prediction. The AUC increase (%) is 
evaluated by comparing ATHENA model and the model with only covariates. P values and 95% CIs are calculated by using 1000 bootstrap samples

Fig. 4  Subgroup analyses of ATHENA score. A Hazard ratio is used to evaluate the association between ATHENA score and HNSCC survival. The AUC 
is used to measure the prediction accuracy of ATHENA for B 36-month and C 60-month survival
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group (Fig.  8A), thus suggested a negative correlation 
between immune checkpoint gene expressions and epi-
genetic score of ATHENA (Fig.  8B), especially ICOSLG 
(r = − 0.30, P = 1.19 × 10–10) (Fig.  8C). Then we used 
waterfall maps to investigate the differences in genomic 
mutations between the high- and low-risk groups. 
TP53 (79%), TTN (36%), CDKN2A (26%), FAT1 (24%) 
and LRP1B (19%) were the top 5 genes with the highest 
mutation frequencies in the high-risk group, while TP53 
(60%), TTN (40%), CSMD3 (20%), SYNE1 (19%) and 
FAT1 (18%) were the top 5 genes in the low-risk group 
(Fig.  9A, B). Finally, numerous immunity-related drugs 
targeting genes, which epigenetic predictors located, 
have been documented (Additional file 1: Table S7), and, 
thereby ATHENA model may have potential roles in 
guiding immunotherapy.

Discussion
One major reason of limited accuracy of the prognostic 
model is the solely use of demographic and clinical infor-
mation. These unsatisfactory models cannot accurately 
indicate high-risk patients who require close follow-up 
and postoperative adjuvant therapy [29]. Hence, there is 
an urgent need to develop accurate prognostic prediction 
models aiding in clinical decisions [30]. Using available 
public HNSCC epigenetic data from three independent 
cohorts, we employed a 3-D analysis strategy to screen 

biomarkers and established an autophagy-related epige-
netic prognostic prediction model, ATHENA. ATHENA 
showed acceptable prediction accuracy in both training 
and internal testing sets, and also showed fair accuracy 
and discrimination in external testing set with oral rinse 
samples of HNSCC patients, suggesting the robustness 
and clinical significance of ATHENA.

Gene–environment and gene–gene interactions pro-
vided additional insights into the biological mechanisms 
of complex diseases [31–33]. In our previous study [34], 
we explored epigenome-wide gene–age interaction and 
significantly improved the accuracy of prognostic predic-
tion model of oral squamous cell carcinoma. ATHENA is 
the first attempt of an autophagy-related epigenetic prog-
nostic model in HNSCC patients, and also one of the ear-
liest explorations of G × G interaction of HNSCC overall 
survival on epigenome-wide scale. Our results showed 
that biomarkers with G × G interaction significantly 
improved the prediction accuracy of prognostic model 
of HNSCC and demonstrated the importance of complex 
association patterns among multiple factors in the study 
of complex diseases (e.g., HNSCC) again.

Interestingly, CpG probes located on ITPR1 appeared 
several times in the interaction terms of ATHENA model. 
Inositol 1, 4, 5-trisphosphate receptor type 1 (ITPR1), 
located on chromosome 3, is a pivotal gene for autophagy 
[35, 36]. Expression of ITPR1 can be upregulated by 

Fig. 5  Decision curve analysis and nomogram of ATHENA. The net benefit (NB) and net reduction (NR) of patients avoided unnecessary 
interventions are given at threshold (0.4) for both 36-month (A, B) and 60-month (C, D) survival. E For the nomogram of ATHENA model, the value 
of each predictor can be converted into the corresponding points according to the axis in the top of nomogram. The sum of points for each 
predictor can correspond to the total points axis at the bottom of the nomogram and further be used to estimate the patient’s 36- and 60-month 
survival rate
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EGOT via RNA–RNA and RNA–protein interactions 
to enhance autophagy [37], meanwhile, showed asso-
ciation with tumorigenesis of cells squamous [38] and 
prognosis of HNSCC patients [39]. We hypothesize that 
ITPR1 may be a hub gene of epigenome-wide, and even 
transcriptome-wide interaction of autophagy-related 
genes in HNSCC. In the enrichment pathway analy-
sis, trans-regulated genes were significantly enriched 
in autophagy-related pathways or processes (PI3K-Akt 
signaling pathway; NF-kappa B signaling pathway), and 
classic processes of the extracellular matrix (ECM) (Focal 
adhesion). This suggests that there may also be a cooper-
ative exchange between ECM and autophagy during pro-
gression of tumor in HNSCC patients, which is proved in 
other kinds of neoplasms [40, 41]. Notably, in our study, 
epigenetic score of ATHENA has statistically significant 
positive correlation with stromal scores, indicating that 
higher stromal scores may lead to poorer HNSCC sur-
vival and suggesting that higher ECM stiffness may affect 
autophagy [42].

In addition, the relationship between autophagy 
and immunity has been widely reported. Autophagy is 
upregulated in many cancers, which may support the 
growth, survival and malignancy of neoplasm, may sup-
press activation of the innate immune response, and 
may suppress the adaptive immune response and con-
tribute to tumor immune evasion [43], suggesting epi-
genetic score of ATHENA is negatively correlated with 
immune score. Also, autophagy may reduce the ability 
of T cells to kill tumor cells [44], inhibit antigen pres-
entation [45], which explains the negative correlation 
between epigenetic score of ATHENA and helper follicu-
lar T cells. The correlation between the epigenetic score 
and immune cell composition could be also partially 
explained by the biological process pathways enriched 
in trans-regulated genes. For example, the negative cor-
relation between CD8 T cells and epigenetic score may 
be caused by impaired T cell activation due to increased 
tumor malignancy. Moreover, inhibition of autophagy 
may enhance response of targeted therapy and blockade 
of immune checkpoints [46, 47]. In our study, there was 

Fig. 6  Significant pathways with genes trans-regulated by epigenetic predictors of ATHENA in gene enrichment pathway analysis. A The top 15 
significant KEGG pathways, B the top 15 significant biological process pathways, C the top 10 significant cellular component pathways, and D the 
top 10 significant molecular function pathways were sorted by enrichment ratio
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also a clear inverse correlation between epigenetic score 
and immune checkpoint expression, which is also con-
sistent with previous researches [48, 49], indicating that 
HNSCC is an immunosuppressive malignancy. Finally, 
genes involved in epigenetic score were transcriptional 
predictors with immune relevance, which can be immu-
notherapeutic targets.

Our study has several strengths. First, to our knowl-
edge, this may be the first study to investigate G × G 
interaction on HNSCC survival on epigenome-wide 
scale, which provides new insights into the prognosis 
of HNSCC patients. Second, we adopt an effective 3-D 
strategy for biomarker screening and model construc-
tion, and focus on biomarkers with either significant 

Fig. 7  The association analysis between immune cells and epigenetic score of ATHENA. A The abundances of 22 immune cells are compared 
between high- and low- risk-groups. * means P < 0.05, ** means P < 0.01, *** means P < 0.001 and **** means P < 0.0001. B The correlation 
coefficients between immune cells and epigenetic score of ATHENA are derived from Pearson correlation analyses and are presented in a heatmap. 
C The correlation coefficients between immune cells and epigenetic score of ATHENA are derived from Pearson correlation analyses and these pairs 
are listed in lollipop chart
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main effects or G × G interactions, which can improve 
the accuracy of the prediction model. Third, we perform 
internal and external model validation of ATHENA, 

therefore, confirm the accuracy and extrapolation of 
ATHENA in HNSCC patients. Finally, we provide a web-
based tool to facilitate the application of ATHENA.

Fig. 8  The association analysis between immune checkpoints and epigenetic score of ATHENA. A The gene expressions of 26 immune checkpoints 
are compared between high- and low-risk-groups. * means P < 0.05, ** means P < 0.01, *** means P < 0.001 and **** means P < 0.0001. B The 
correlation coefficients between immune checkpoints and epigenetic score of ATHENA are derived from Pearson correlation analyses and these 
pairs are listed in lollipop chart. C The scatter plot and linear regression analysis between epigenetic score of ATHENA and expression of ICOSLG with 
the strongest association
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Fig. 9  Waterfall plots of the top 20 somatic mutated genes in high- and low-risk groups. A The high-risk and B the low-risk group are defined by 
the median of the epigenetic score of ATHENA
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We also acknowledge some limitations. First, the sam-
ple sizes of the discovery and validation cohorts are 
unbalanced, which may affect our results. Though we 
performed a comprehensive database search, only three 
available HNSCC DNA methylation datasets with overall 
survival information were suitable for our study, includ-
ing TCGA (n = 499), GSE75537 (n = 53) and GSE52793 
(n = 82). We performed strict correction of type I error 
and sensitivity analysis in TCGA cohort, and again vali-
dated significant signals in GSE75537 cohort to reduce 
the false positive probability. Indeed, limited sample 
size of GSE75537 yields to limited statistical power of 
confirming the significance of epigenetic predictors. 
Anyway, we still observed 2 CpG probes with signifi-
cant main effects and 853 pairs of CpG probes with sig-
nificant G × G interactions, which indicating our results 
are conservative. But, we envision more available data-
base with large sample size and more identified epige-
netic predictors in future, which will probably improve 
the accuracy of ATHENA. Second, sample origins vary 
across three different cohorts. HNSCC tumor samples 
in TCGA are composed of 23 types of tissues by occur-
rence site, including tongue, larynx, overlapped lesion of 
lip, oral cavity and pharynx, floor of mouth, etc. While, 
GSE75537 includes merely tongue tumor samples, and 
GSE52793 is consisted of oral rinse samples. Though 
sample heterogeneity exists among different types of 
tissues, under the strict premise of retaining the coef-
ficients of epigenetic biomarkers instead of retraining 
the model, ATHENA still reflects acceptable prediction 
accuracy and discrimination ability in all three cohorts, 
indicating its robustness. Besides, ATHENA still retains 
statistical significance and prediction accuracy in almost 
all occurrence site subgroups with sufficient sample size 
(Additional file 1: Figure S2), which suggests well general-
ization ability of ATHENA model again. Finally, since the 
majority of samples in the TCGA cohort are Caucasians 
(87.8%), generalization of our results to the other ethnici-
ties should be cautioned.

Conclusion
We propose ATHENA, an accurate and independently 
validated prognostic prediction model of HNSCC incor-
porating autophagy-related epigenetic biomarkers with 
either main effects or G × G interactions. A free and user-
friendly online tool is released at http://​bigda​ta.​njmu.​
edu.​cn/​ATHENA/.

Web resources
TCGA: https://​portal.​gdc.​cancer.​gov

GEO: https://​www.​ncbi.​nlm.​nih.​gov/​geo/
UCSC Xena browser: https://​xenab​rowser.​net

Human Autophagy Database (HADb): http://​www.​
autop​hagy.​lu/

The DrugBank database: https://​go.​drugb​ank.​com/
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