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Abstract

Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, 

scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain 

new insights into the human brain. However, significant confounding due to batch-related 

technical variation, called batch effects, is present in this data; direct application of downstream 

analyses to the data may lead to biased results. Image harmonization methods seek to remove 

these batch effects and enable increased generalizability and reproducibility of downstream 

results. In this review, we describe and categorize current approaches in statistical and deep 

learning harmonization methods. We also describe current evaluation metrics used to assess 

harmonization methods and provide a standardized framework to evaluate newly-proposed 

methods for effective harmonization and preservation of biological information. Finally, we 

provide recommendations to end-users to advocate for more effective use of current methods 

and to methodologists to direct future efforts and accelerate development of the field.

1. Introduction

Brain imaging acquired via magnetic resonance imaging (MRI) or computed tomography 

(CT) from multiple batches, such as different sites or scanners, has shown promise in 

providing increased sample sizes for imaging-based neuroscience studies, prediction efforts, 

and more (Bethlehem et al., 2022; Casey et al., 2018; Choudhury et al., 2014; Di Martino 

et al., 2014; Horn et al., 2004; Marek et al., 2022; Mueller et al., 2005; Poldrack and 

Gorgolewski, 2014; van Erp et al., 2014; Van Essen et al., 2013). These multi-batch 

neuroimaging data are known to suffer from non-biological, technical variability between 

subjects from different batches, which we refer to as batch effects. Batch effects can be 

due to differences in acquisition protocol, magnetic field strength, scanner manufacturer, 

scanner drift, hardware imperfections, and more (Badhwar et al., 2020; Byrge et al., 2022; 

Cai et al., 2021; Han et al., 2006; Jovicich et al., 2006; Shinohara et al., 2017; Takao et 

al., 2014, 2011). These batch effects may explain, in part, challenges with reproducibility 

of neuroscience studies, generalizability of prediction algorithms, and incorporation of 

radiomics-derived imaging biomarkers in clinical practice (Crombé et al., 2021; Fournier 

et al., 2021; Mårtensson et al., 2020; Schwarz, 2021; Thieleking et al., 2021). Notably, 

batch effects have been shown to be significantly easier to detect than biological effects, 

both by statistical testing and machine learning algorithms (Bell et al., 2022; Fortin et al., 

2018, 2017; Nielson et al., 2018). Additionally, due to the complex nature of batch effects, 

traditional statistical techniques for adjusting for confounders, such as inclusion of batch in a 

linear model as a mean effect, may be inadequate to sufficiently account for batch effects.

There is also growing interest in using neuroimaging to evaluate new treatments across a 

range of neurologic, psychiatric, and other clinical trials (Cash et al., 2014; Dercle et al., 

2022; Polman et al., 2006; Saunders et al., 2016; Tariot et al., 2011; Tondelli et al., 2020; 

van Dyck et al., 2023). While clinical trial treatments are usually randomized within batches 

such that conclusions from unharmonized images are asymptotically unbiased, prespecified 

approaches to account for known confounders, including batch, allow for increased power 

and improved estimation of treatment effects (Hernández et al., 2006, 2004; Kent et al., 

2009; Neuhaus, 1998; Optimising the Analysis of Stroke Trials (OAST) Collaboration 
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et al., 2009). This is especially important when randomized treatment assignments are 

not completely balanced within each batch. Ultimately, in clinical trials where imaging 

biomarkers are measured across multiple centers, addressing batch effects allows for the 

detection of smaller treatments effects while requiring fewer required subjects, minimizing 

participant burden, and reducing costs.

In observational settings where batch effects are present, such as when multiple small 

neuroimaging datasets are aggregated into one larger sample, addressing batch effects is 

even more important to obtain valid conclusions (Grech-Sollars et al., 2015; Keshavan et 

al., 2016; Stonnington et al., 2008; Takao et al., 2014). In these settings, failure to account 

for the known confounding of batch effects may lead to decreased power, less replicable 

findings, and potentially-biased findings. Effective removal of batch effects has been shown 

to enable detection of otherwise-undetected biological effects as well as increase the 

replicability of biological effects of interest in simulations of discovery-validation study 

designs (Bashyam et al., 2022; Bell et al., 2022; Carré et al., 2022; Fortin et al., 2017; Zhang 

et al., 2022; Zuo et al., 2021). Additionally, when batch-wise differences in participant 

populations are present, failure to address batch effects may result in biased conclusions 

(Suttorp et al., 2015).

Various solutions have been proposed and implemented to address this problem at different 

points in data collection and analysis pipelines. For example, in study design, batch effects 

can be minimized by collecting data from only one scanner, one manufacturer, one field 

strength, one acquisition protocol, or some combination of these criteria (Clarke et al., 

2020; De Stefano et al., 2022; Ihalainen et al., 2004; Malyarenko et al., 2013; Meeter et 

al., 2017; Satterthwaite et al., 2014; van de Bank et al., 2015; Vogelbacher et al., 2021). 

However, when data collection is limited to only one batch, it is challenging to collect 

large sample sizes, and design-based solutions cannot address batch effects in data that has 

already been collected (Harms et al., 2018). Additionally, even when acquisition properties 

or scanner manufacturer are tightly controlled, batch effects can still arise due to residual 

differences, such as hardware imperfections, site or operator characteristics, software or 

hardware upgrades in long-running studies, or otherwise non-controllable scanner properties 

(Jovicich et al., 2016; Shinohara et al., 2017).

At other stages of the data analysis pipeline, such as during the image pre-processing 

step, standardization of images using methods for gradient distortion correction, bias field 

correction, and intensity normalization can also reduce batch effects (Brown et al., 2020; 

Fortin et al., 2016; Guan et al., 2022; Hellier, 2003; Jovicich et al., 2006; Nyúl and Udupa, 

1999; Shinohara et al., 2014; Tustison et al., 2010; Wang et al., 1998; Wrobel et al., 2020). 

These normalization methods act on intersubject variability without explicitly modeling 

batch effects, and as a result, can only reduce batch effects that coincide with inter-subject 

variability.

Additionally, some approaches account for batch effects using batch-aware downstream 

statistical or machine learning analyses. For example, data aggregation can be carried 

out in post-analysis through the use of meta-analysis or mega-analysis techniques, where 

estimates of interest are first calculated within batches and then analyzed jointly (Jahanshad 
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et al., 2013). In certain settings, the simple approach of training models on large datasets 

across many batches can be considered, as these models are theoretically able to learn 

generalizable parameters that are invariant to batch, especially if the models are able to 

explicitly incorporate batch status. This approach has been used in normative modeling 

settings (Bayer et al., 2022a; Bethlehem et al., 2022; Kia et al., 2020; Kim et al., 2022). 

However, in many prediction or classification settings, complex machine learning algorithms 

are used that are not able to learn batch-invariant decision boundaries; in these settings, 

if outcome distributions differ across batches, models may incorrectly learn to use batch 

effects to make predictions. Here, transfer learning approaches have been used (Aderghal et 

al., 2020; Chen et al., 2020; Dar et al., 2020; He et al., 2021; Yang et al., 2019). In transfer 

learning, instead of reducing batch effects in the data itself, these methods seek to train deep 

learning models in a reference batch and then recalibrate these models for prediction in new 

batches.

Finally, batch effects can be explicitly modeled for and addressed in image pre-processing, 

such that raw data is mapped from multiple batches into one common batch and the resulting 

harmonized dataset can then be analyzed as if it originated from a common batch. We refer 

to this process as image harmonization, which is the focus of this review.

This review is broadly organized into four sections. In the first and second sections, 

we describe statistical harmonization methods and deep learning harmonization methods, 

respectively. These two sections are additionally subdivided based on whether methods are 

designed for retrospective or prospective study designs. We define prospective study designs 

as those where some subjects, commonly called “traveling subjects,” are purposefully 

scanned across multiple batches within a short time interval; these paired data across 

batches can then be used to facilitate harmonization of these batches at the time of 

analysis. In retrospective study designs, no such paired data are available. In the third 

section, we discuss the evaluation of harmonization methods, including the various domains 

under which harmonization should be evaluated as well as specific tests to perform that 

evaluation. Finally, in the fourth section, we provide recommendations to both end-users 

and methodologists. For end-users, we suggest harmonization methods for each data type 

and study design based on ease of use, theoretical behavior, and empirical validation. For 

methodologists, we provide guidance for further work in harmonization, a standardized 

framework of evaluation, and improved comparability of novel harmonization methods.

2. Literature search

We performed a literature search across the PubMed database using the following search 

term: (“magnetic resonance” OR “MRI”) AND (“harmonization” OR “harmonizing” OR 

“harmonize” OR “harmonisation” OR “harmonising” OR “harmonise” OR “scanner effect” 

OR “site effect” OR “batch effect” OR “batch correct” OR “domain effect” OR “domain 

transfer” OR “technical variability” OR “style transfer”).

This search returned 583 candidate publications, as of January 17th, 2023, which were 

screened by title and abstract. Publications were included if they proposed or validated a 

statistical or deep learning approach to image harmonization. Other literature the authors 
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were aware of, but were not found in this search, were also included as well as relevant 

citations from included publications.

Notably, we identified five relevant review articles on the topic (Bayer et al., 2022b; Bento 

et al., 2022; Da-Ano et al., 2020b; Pinto et al., 2020; Stamoulou et al., 2022). Da-Ano et al., 

(2020b); Bayer et al., (2022b), and Stamoulou et al., (2022) described statistical methods; 

Bento et al., (2022) described deep learning methods; and Pinto et al., (2020) described 

harmonization methods specifically for diffusion MRI. In this review, we seek to add to this 

literature by unifying statistical and deep learning methods for diffusion and non-diffusion 

MRI. Additionally, we describe common evaluation techniques for validating harmonization 

methods and provide a framework for proposing and evaluating new methods to direct future 

efforts in the field.

2.1. Statistical methods

Several overarching statistical models have been used for image harmonization, including 

linear models, basis representations, latent factor models, and others (Figure 1). In this 

review, we provide an overview of methods for harmonization of imaging features across 

known batch labels. These statistical methods can largely be divided into retrospective and 

prospective harmonization methods. Retrospective harmonization is performed after data 

collection and aims to mitigate biases due to scanner with the available data. Prospective 

harmonization needs to be integrated into the study design and often involves collecting 

repeated measures for downstream analyses.

2.2. Retrospective harmonization

2.2.1. ComBat—Fortin et al., (2017) proposed that ComBat, a method first designed for 

batch effect correction in genomics, could be used to harmonize MRI images and derived 

features (Johnson et al., 2007). ComBat and its various extensions, discussed below, have 

been widely used in neuroimaging and are organized in Figure 2.

ComBat employs an empirical Bayes linear model framework, which we briefly review. Let 

yijv, i = 1, 2, …, M, j = 1, 2, …, ni, v = 1, 2, …, V  denote the V -dimensional vectors of observed 

data where i indexes site, j indexes subjects within sites, ni is the number of subjects 

acquired on site i, and V  is the number of features. The observed data can be measured 

across voxels, regions of interest, or any other parcellation of the brain. Our goal is to 

harmonize these features across the M sites. ComBat assumes that the data follow

yijv = αv + xij
T βv + γiv + δiveijv

where αv is the intercept, xij is the vector of covariates, βv is the vector of regression 

coefficients, γiv is the mean site effect, and δiv is the variance site effect. ComBat assumes 

that the errors eijv independently follow eijv ∼ N(0, σv
2). First, least-squares estimates αv and 

βv are obtained for each feature. ComBat then assumes that the site effects follow the 

same distribution across features. That is, ComBat assumes the mean site effects γiv follow 

independent normal distributions and the variance site effects δiv follow independent inverse 
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gamma distributions. The empirical Bayes step estimates the hyperparameters via method of 

moments using data across all features. The empirical Bayes point estimates γiv
∗  and δiv

∗  are 

then obtained as the means of the posterior distributions. The ComBat-harmonized data are 

then obtained as

yijv
ComBat = yijv − αv − xij

Tβv − γiv
∗

δiv
∗ + αv + xij

Tβv (1)

ComBat was first applied to voxel-level fractional anisotropy (FA) values from two diffusion 

MRI datasets where, within each dataset, all subjects were imaged on the same scanner 

(Fortin et al., 2017). Subsequent studies validated ComBat on other neuroimaging features 

including cortical thickness and functional connectivity (Fortin et al., 2018; Yu et al., 2018). 

Since its publication and validation, ComBat has been widely validated and used in the field 

of MRI imaging (Acquitter et al., 2022; Barth et al., 2022; Bourbonne et al., 2021; Campello 

et al., 2022; Castaldo et al., 2022; P. Chen et al., 2022; A. Crombé et al., 2020; Dai et al., 

2022; Haddad et al., 2022; Ingalhalikar et al., 2021; Leithner et al., 2022; Liu et al., 2022; 

Luna et al., 2021; Meyers et al., 2022; Onicas et al., 2022; Orlhac et al., 2021; Pagani et al., 

2023; Radua et al., 2020; Saint Martin et al., 2021; Verma et al., 2019; Wengler et al., 2021; 

Whitney et al., 2021; H.M. 2020; Xia et al., 2022, 2019; Zavaliangos-Petropulu et al., 2019).

ComBat was also shown to be effective in magnetic resonance spectroscopy, and its 

applications to radiomics have been recently reviewed (Bell et al., 2022; Da-Ano et al., 

2020b). To study its robustness, analyses have evaluated how ComBat behaves at various 

sample sizes (Parekh et al., 2022) and validated ComBat correction against correction 

based on traveling phantoms (Treit et al., 2022). ComBat has been recommended to use 

for harmonizing large-scale open-source neuroimaging datasets, such as the UK Biobank 

(Bijsterbosch et al., 2020; Bordin et al., 2021), ABIDE (Horien et al., 2021), ENIGMA 

(Hatton et al., 2020; Radua et al., 2020), ADNI (Ma et al., 2019), and ABCD (Hagler et al., 

2019; Marek et al., 2019) datasets. Limitations of ComBat have been previously described 

in the field of genomics (T. Li et al., 2021; Nygaard et al., 2016; Zindler et al., 2020). These 

limitations are described in-depth in the “Recommendations for End-Users” section of the 

Discussion.

2.2.2. ComBat extensions—Extensions of the standard ComBat model have sought to 

relax certain model-based assumptions. Many of these methods and their methodological 

details are covered in a recent review (Bayer et al., 2022b). One popular extension is 

ComBat-GAM, which allows for preservation of non-linear covariate effects through use 

of the generalized additive model (GAM) (Pomponio et al., 2020). Such estimation of 

non-linear covariate effects has been shown to be necessary in certain data settings, such 

as in diffusion MRI (Cetin-Karayumak et al., 2020b). Another model-based extension 

incorporates Gaussian mixture models (GMM) into GMM-ComBat to account for 

multimodal feature distributions (Horng et al., 2022b).

Other extensions of ComBat retain the original model but modify its construction and 

estimation. A recent study used a fully Bayesian approach with Monte Carlo sampling 
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in the ComBat model for estimating posterior distributions and found that fully-Bayesian 

ComBat could provide more accurate harmonization results and unconstrained posterior 

distributions compared to the standard Empirical-Bayes ComBat model (Reynolds et al., 

2022). B-ComBat and BM-ComBat estimate site parameters via bootstrapping and allow 

for robust harmonization to the pooled feature distribution or a reference batch, respectively 

(Da-Ano et al., 2020a). TL-ComBat provides an algorithm for applying ComBat parameters 

learned on training data to new subjects from a known batch (Da-Ano et al., 2021). Another 

study found that applying intensity normalization via RAVEL followed by ComBat provides 

greater removal of batch effects (Eshaghzadeh Torbati et al., 2021).

ComBat has been adapted to various study designs. In longitudinal studies where subjects 

may be imaged one or more times, Longitudinal ComBat accounts for intra-subject 

correlation by incorporating random effects into the model (Beer et al., 2020). The ComBat 

framework has also been independently extended by two groups to work in a distributed data 

setting via Decentralized ComBat/Distributed ComBat (D-ComBat), where data is collected 

across multiple sites but data-privacy concerns only allow summary statistics from each site 

to be shared (Bostami et al., 2022b; A. A. Chen et al., 2022b). Many of the above ComBat 

extensions have been externally validated and used in applied studies (Bostami et al., 2022a; 

Richter et al., 2022; Saponaro et al., 2022; Singh et al., 2022; Sun et al., 2022; Tafuri et al., 

2022).

Finally, methodologists have extended the ComBat model to settings where batch status 

could be defined by multiple batch covariates, or an unseen batch must be harmonized 

to a set of known batches. ComBatPC proposed that secondary batch variables to remove 

could be modeled as additional mean effects in the ComBat model, while the primary 

batch variable remained in the model as both a mean and variance effect (Wachinger 

et al., 2021). Additionally, borrowing from the field of genome-wide association studies 

(GWAS), they showed that including first principal component as one of the secondary batch 

variables could capture unobserved subpopulations and therefore improve harmonization 

performance. Applicable to similar settings, OPNested ComBat, an extension of Nested 

ComBat, learns an optimal order for correcting multiple batch variables and then performs 

iterative correction for each batch variable individually via the ComBat or GMM-ComBat 

model (Horng et al., 2022b; Horng et al., 2022a). AutoComBat sidesteps the issue of 

multiple batches by clustering subjects into automatically-identified batches, implicitly 

learning which combinations of metadata, such as image acquisition tags or image summary 

statistics, best define batch status before applying the standard ComBat model (Carré et al., 

2022). For settings where an unseen batch must be harmonized to a set of known batches, 

NeuroHarmony has also been proposed to learn to predict appropriate ComBat parameters 

for correcting the unseen batch using scanner-associated image quality metrics (Garcia-Dias 

et al., 2020).

2.2.3. Basis representation—Several harmonization approaches represent the original 

data using basis vectors or functions estimated from the data then remove batch effects 

from the representation. Compared to methods that treat features individually, basis 

representations can capture more complex batch effects and enable harmonization while 

preserving joint structure among features. The basis chosen varies depending on the imaging 
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modality but includes principal components, independent components, and spherical 

harmonics.

Correcting Covariance Batch Effects (CovBat) performs multivariate harmonization by 

projecting residuals from ComBat onto their principal component axes and applying batch-

specific shifts in the principal component space. (A. A. Chen et al., 2022a). This study 

was the first to show that batch effects are present not only in individual features, but also 

in the covariance structure between features. CovBat first employs standard ComBat to 

globally shift and scale each feature, but additionally harmonizes in the principal component 

space to shift batch-specific covariance matrices towards the global covariance matrix. 

CovBat was shown to outperform existing harmonization methods in both multivariate 

statistical evaluations and prediction-based machine learning metrics in cortical structure 

measurements from the ADNI (A. A. Chen et al., 2022a). In functional connectivity 

harmonization, CovBat was shown to more effectively harmonize community structure, 

when compared to ComBat, in sites from the iSTAGING consortium as well as based on 

information theoretic metrics in the ABIDE, IMPAC, and ADHD-2020 studies (A. A. Chen 

et al., 2022c; Roffet et al., 2022). CovBat has also been shown to remove batch effects in 

the cortical and volumetric measures in the ENIGMA study and diffusion tensor imaging 

features from the ADNI study (Larivière et al., 2022; Sinha et al., 2021; Thomopoulos et al., 

2021).

Independent component analysis (ICA) has been a widely used data-driven approach 

to identify and remove structured noise components, such as head motion-related, 

physiological, and scanner-induced noise, from fMRI signals (McKeown et al., 2003; 

Mckeown et al., 1998). Specifically, one study (Feis et al., 2015) used the Functional 

Magnetic Resonance Imaging of the Brain Centre’s (FMRIB’s) ICA-based X-noiseifier 

(FIX, Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) implemented in FMRIB’s 

Software Library (FSL) to reduce scanner-related effects in resting-state networks (RSNs). 

This study found that ICA-based FIX was useful to remove separate noise components 

in individual subjects’ ICA, but it cannot deal with hardware differences in sensitivity to 

RSNs (in relation to configurations) or RSN spatial variability (in relation to head coils). 

Additionally, ICA-based FIX cannot remove scanner-related differences in the magnitude 

of the BOLD effect. A recently developed linked ICA method was shown to outperform 

standard general linear model and ICA in removing batch effects from multimodal MRI 

data collected on the same scanner, but with hardware and software upgrades and different 

acquisition parameters. Linked ICA used data fusion of multiple MRI modalities to identify 

and remove scanner-related noise components in multimodal spatial maps. It has yet to be 

shown whether linked ICA is efficient for removing batch effects from data collected from 

different scanners.

For diffusion tensor imaging (DTI), voxel-wise signal intensity can be represented in a 

spherical harmonics (SH) basis, which is an orthonormal basis for functions defined on a 

unit sphere. Projection of the original intensities into the SH basis yield rotation invariant 

spherical harmonic (RISH) features. Harmonization from a target batch to reference batch 

has been proposed by representing complex batch effects as mean shifts in RISH features, 

often referred to as RISH harmonization (Mirzaalian et al., 2015). Extensions of the RISH 
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harmonization method have been proposed (Cetin Karayumak et al., 2019; Mirzaalian et al., 

2018; Mirzaalian et al., 2016) and covered in a recent review (Pinto et al., 2020). Recent 

studies have compared statistical and deep learning SH-based harmonization methods, 

finding that the methods effectively mitigate batch effects but vary in performance on 

different metrics (Ning et al., 2020; Tax et al., 2019). A recent study found that RISH 

harmonization outperformed ComBat for preservation of biological effects in large-scale 

multi-center studies (de Brito Robalo et al., 2022, 2021). RISH harmonization has also been 

validated in traveling subjects studies (De Luca et al., 2022; Ning et al., 2020) and several 

major studies (Cetin Karayumak et al., 2019; Cetin-Karayumak et al., 2020a).

2.2.4. Latent factor modeling—Another approach to retrospective harmonization uses 

latent factors to model biological or batch effects in order to separate wanted and unwanted 

variation. A latent factor model was first used in Removal of Artificial Voxel Effect by 

Linear regression (RAVEL) for neuroimaging normalization to model technical variability as 

latent factors estimated using a set of control voxels not associated with biological variables 

of interest (Fortin et al., 2016). RAVEL assumes that the V × n matrix of features Y  follows

Y = βXT + θZT + E (2)

where X is the n × p matrix of known covariates, β is the V × p matrix of regression 

coefficients, Z is the n × b matrix of unwanted latent factors, and θ is the V × b coefficient 

matrix associated with Z. For a subset of voxels Y c where there is no association between the 

voxels and X, an estimate of Z can be obtained by performing factor analysis on Y c. Then, 

estimates for θ are obtained by fitting separate linear regressions for each voxel under the 

model in (2), and the RAVEL-corrected features are obtained as Y RAV EL = Y − ZθT .

The model in (2) was adapted as a Bayesian harmonization method by representing wanted 

variation through the latent factors, including known batch indicators in the linear model, 

and yielding harmonized low-dimensional features as the estimated latent factors (Avalos-

Pacheco et al., 2022). Their model extends (2) by including a known n × (M − 1) batch 

indicator matrix B via

Y = βXT + γBT + θZT + E (3)

where M is the number of batches and γ is the V × (M − 1) coefficient matrix associated 

with B. In contrast to RAVEL, this model also allows the variance of E to vary by batch. 

They develop a non-local spike-and-slab prior to induce sparsity on the factor loadings 

θ. The authors then develop an expectation maximization algorithm for estimation of the 

posterior distribution Z, and the harmonized reconstruction are obtained from the mean of 

the posterior. In an application to gene expression data, they demonstrate that their method 

performs dimension reduction while adjusting for distinct covariance patterns across batches 

and benefits downstream survival analyses.

The UNIFAC harmonization method proposes a generalization of the latent factor model, 

allowing for flexible removal of multivariate batch effects (Zhang et al., 2022). Their main 

Hu et al. Page 9

Neuroimage. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assumption is that the batch effects are low-rank and represented as matrix-valued shifts. 

Similar to ComBat and CovBat, UNIFAC harmonization first fits a linear model with 

known covariates and batch indicators, standardizes the data to have homogenous variance, 

and obtains standardized data Y ∗ = [Y 1
∗; Y 2

∗; , …; Y M
∗ ] where Y j

∗ denotes data from batch j, 
j = 1, 2, …, M. The method then assumes that Y ∗ follows

Y ∗ = R∗ + [I1
∗; I1

∗; …; IM
∗ ] + [δ1E1; δ2E2; …; δMEM]

where R∗ is p × n low-ranked latent structure, Ij
∗ are low-rank latent patterns associated with 

batch, Ej are full-rank noise matrices with unit variance, and δj capture batch-specific scale 

shifts. UNIFAC harmonization estimates these latent patterns by optimizing a loss function 

with a nuclear norm penalty, which yields low-rank structures.

The UNIFAC-harmonized data are defined as

Y UNIFAC = δ jRj
∗ + δ Y j

∗ − Rj
∗ − I j

∗

where δ  is the estimated population variance from the standardization step. Unlike ComBat 

and CovBat, the UNIFAC harmonization method can capture multivariate batch effects that 

differ across subjects within the same batch. Compared to CovBat, UNIFAC harmonization 

can model batch effects that are not constrained to principal component directions. The 

authors compare UNIFAC harmonization to existing methods in a schizophrenia study 

conducted across three sites. They show that UNIFAC harmonization outperforms ComBat, 

CovBat, and several multivariate harmonization approaches on reducing differences in 

covariance, obscuring prediction of site, and statistical power in detection age-bydisease 

interactions.

2.3. Prospective harmonization

2.3.1. Traveling subjects linear models—Typical multi-center neuroimaging studies 

collect separate subjects from each study center, which leads to challenges in separating 

biological and technical variability. A recent study design addresses this issue by recruiting 

a subset of participants to travel to every scanner used in the study, often referred to as 

traveling subjects (Noble et al., 2017). Subsequent studies demonstrated that linear models 

effectively estimated and removed scanner-related biases from the traveling subjects subset 

(Yamashita et al., 2019). Increasingly, this study design has been employed in several 

large-scale multi-site studies (Hawco et al., 2022; Tanaka et al., 2021).

In these traveling subjects studies, N subjects, are acquired multiple times across M
scanners. Let yijv, i = 1, 2, …, M, j = 1, 2, …, N, v = 1, 2, …, V  denote the observed data 

where i indexes site, j indexes subject, and v indexes feature. Furthermore, let zj denote 

a Q-dimensional vector of participant factors, which can include indicators for each 

participant, diagnosis labels, sample, or any other relevant label. The traveling-subject 

harmonization model, TS-GLM, assumes that batch effects can be modeled as mean 

shifts within subjects across batches (Yamashita et al., 2019). Notably, unlike many of the 
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retrospective harmonization methods described above, TS-GLM does not model batch effect 

as a scale component in the variance of the residuals. The model is expressed as

yijv = zj
Tθv + γiv + eijv

where θv is the vector of regression coefficients, γiv is the mean site effect, and eijv are 

errors assumed to independently follow eijv ∼ N(0, σv
2). Depending on the choice of indicators 

in zj, this model can have many more parameters than observations. Identifiability of the 

parameters in this model requires constraints on the estimators θv and γ iv. In the simple case 

where zj is a N-dimensional vector of participant indicators, the constraints are ∑q = 1
Q θ vq = 0

and ∑i = 1
M γ iv = 0 for each v. Once estimates are obtained, the mean site parameters γiv can be 

applied to any subject acquired on scanner i, even those not included in the traveling subjects 

dataset. This model has been applied and validated across multiple studies (Koike et al., 

2021; Yamashita et al., 2021; A. 2020).

ComBat has been extended to the traveling subjects study design, accounting for batch 

effects in the scale of measurements and leveraging information across features in parameter 

estimation (Maikusa et al., 2021). This traveling subjects ComBat (TS-ComBat) model is 

formulated as

yijv = zj
Tθv + γiv + δiveijv

where δiv is the variance scanner effect. As in ComBat, the model assumes the mean batch 

effects γiv follow independent normal distributions and the variance batch effects δiv follow 

independent inverse gamma distributions. Estimation also requires identifiability constraints 

on θv and γ iv. The batch effects are obtained as empirical Bayes point estimates γiv
∗  and δiv

∗

are then obtained as the means of the posterior distributions. Comparison of TS-ComBat and 

the model in Yamashita et al., (2019) showed that both models performed well in multiple 

harmonization tasks, but TS-ComBat is superior in smaller sample sizes.

Limitations of TS-GLM and TS-ComBat restrict applicability to common scenarios. Both 

models require that sufficient subjects are scanned on all scanners in order to ensure that 

batch effects are not confounded with biological effects. Furthermore, these models do not 

account for time of scan, so any batch effects may also be driven by changes in imaging 

measurements over time. Since participants may be lost to follow-up and are acquired at 

multiple distant time points, these limitations are often relevant and impact the results of 

harmonization.

2.3.2. Longitudinal ComBat—An alternative for harmonization in traveling subjects 

studies is Longitudinal ComBat, which flexibly models repeated measures across time (Beer 

et al., 2020). Compared to other models, Longitudinal ComBat efficiently captures subject 

effects as random intercepts and incorporates time of scan into the harmonization. While this 

method was originally designed for longitudinal studies, it has recently been applied in a 

traveling subjects study to effectively mitigate batch effects (Richter et al., 2022).
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Let yijv(t), i = 1, 2, …, M, j = 1, 2, …, N, v = 1, 2, …, V , denote the observed data where i
indexes site, j indexes subject, v indexes feature, and t is a continuous or categorical time 

variable. The Longitudinal ComBat model is expressed as

yijv(t) = αv + xj(t)Tβv + ηjv + γiv + δiveijv(t)

where αv is the mean of feature v at baseline, γiv is the mean scanner effect, δiv is the 

variance scanner effect, xj(t) is a potentially time-varying vector of covariates, βv is a 

vector of regression coefficients, and ηjv is a subject-specific random intercept. The errors 

eijv(t) ∼ N(0, σv
2) are assumed to be independent from the random intercepts ηjv. ComBat 

assumptions are placed on the mean and variance scanner parameters, and estimation 

proceeds through standard mixed model estimation followed by a modified empirical Bayes 

step.

3. Deep learning methods

In recent years, a wide range of deep learning methods have been proposed as powerful 

and flexible tools to correct batch effects. These methods have especially shown 

promise for harmonization of unstructured data, such as images themselves, and for 

harmonization jointly across multivariate feature matrices. In the unpaired subject setting, 

popular approaches have used unpaired image-to-image translation frameworks as well as 

autoencoder networks designed to embed subjects into batch-invariant latent spaces. In 

paired subject data, methods have used specialized U-Net architectures adapted to imaging 

data as well as autoencoder methods to estimate direct mappings from one batch to another. 

Methods are categorized in Figure 3.

3.1. Retrospective harmonization

3.1.1. Cycle-consistency GANs (Image-level)—Zhu et al., (2017) proposed 

the cycle-consistent generative-adversarial network (CycleGAN) to address the 

problem of unpaired image-to-image translation. The goal of this network is to 

learn a mapping between two image batches, A and B, using two generator-

discriminator pairs. One generator, GA, seeks to learn a mapping GA( ⋅ ):A B
such that its corresponding discriminator, DB, cannot distinguish the distribution 

of images from G(A) from that of images from B. Similarly, generator GB and 

discriminator DA learn the inverse mapping GB( ⋅ ) = B A. Finally, a cycle-consistency 

loss is introduced as an additional constraint to push the network to preserve 

image-level features, ℒcycle(GA, GB) = EA{‖GB(GA(A)) − A‖1} + EB{‖GA(GA(GB(B)) − B‖1}. This 

cycle-consistency loss enforces that an image translated from batch A to 

batch B and then back to batch A should resemble the untranslated image. 

Thus, classical CycleGAN attempts to minimize the following objective function: 

ℒtotal(GA, GB, DB, DA) = ℒGAN(GA, DB, A, B) + ℒGAN(GB, DA, B, A) + αℒcycle(GA, GB), where α is a 

hyperparameter controlling relative importance of the loss components.
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In image harmonization, this architecture has been leveraged for unpaired image-to-image 

translation in many contexts with minor additions to the original CycleGAN loss function 

and architecture (Dar et al., 2019; Hognon et al., 2019; Kieselmann et al., 2021; Liu 

et al., 2020; Sinha et al., 2021; Tixier et al., 2021; Zhao et al., 2019; Zhong et al., 

2020). Zhao et al., (2019) proposed surface-to-surface GAN (S2SGAN), a variation of 

CycleGAN using spherical U-Net layers instead of standard convolutional layers, in order 

to perform harmonization on subject-wise cortical thicknesses projected to a spherical 

surface. Additionally, they added a cycle-consistency correlation loss component to the 

original CycleGAN loss such that corresponding vertices between input and cycled images 

are highly correlated. Dar et al., (2019) demonstrated that a CycleGAN network could 

generate T1-weighted images from T2-weighted images, and vice versa. Hognon et al., 

(2019) and Tixier et al., (2021) developed a two-stage framework, where the original 

CycleGAN network is first used with early stopping criteria to generate “pseudo-paired” 

data and then a pix2pix network is used on this “pseudo-paired” data to learn the final 

source-to-reference batch mapping. This two-stage framework differs markedly from other 

CycleGAN-based approaches; the authors claimed that it allows for better preservation of 

content information in their data setting where all reference batch subjects were controls 

while a significant subset of source batch subjects had anatomical pathologies. To validate 

the beneficial effects of CycleGAN on performance of downstream tasks, Liu et al., (2020) 

demonstrated that use of the standard CycleGAN model across a multi-batch dataset 

drastically increased the performance of a fully-convolutional segmentation neural network 

trained on reference batch images; however, they noted that post-harmonization performance 

remained substantially lower compared to performance on reference batch images.

Other adaptations of CycleGAN have imposed additional assumptions on the nature of batch 

effects – namely, that there should be no distortions in anatomy across batches. Previous 

studies have described distortions in anatomical features across batches, such as cortical 

thicknesses (Fortin et al., 2018), so the validity of this assumption depends on whether 

these previously described anatomical differences are actually due to true distortions or 

instead due to errors in automated segmentation because of batch-wise intensity differences. 

For example, Kieselmann et al., (2021) added a cycle-consistency geometric loss, where 

binary geometric masks (1 inside the brain and 0 otherwise) generated from input and 

cycled images are encouraged to be similar. Meanwhile, Chang et al., (2022) proposed semi-

supervised harmonization (SSH), a variation of CycleGAN that uses a two-stage framework 

to perform harmonization in a manner similar to intensity normalization. In the first stage, 

the standard CycleGAN model is used to generate an initial harmonized image for each 

raw image. In the second stage, these initial harmonized images are used along with raw 

data to perform intensity normalization – that is, histogram matching is used to match 

each raw intensity to its corresponding initial harmonized intensity. Finally, to generate the 

output harmonized image, the raw intensities within the raw image are swapped out for their 

corresponding initial harmonized intensities. Thus, SSH can maintain the high resolution 

and anatomical fidelity of the raw image, but with brightness and contrast characteristics 

of the desired reference batch. The authors showed that SSH was able to improve the 

performance, when compared to ComBat and standard CycleGAN, of a cervical cancer 

classifier that was trained on subjects from the reference batch and tested on subjects from 
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the source batch that were harmonized to the reference batch. The authors did not compare 

SSH performance against standard intensity normalization techniques (Nyúl and Udupa, 

1999; Shinohara et al., 2014).

3.1.2. Attention-Mechanism GANs (Image-level)—A further extension of the 

CycleGAN network called attention-guided GAN (AG-GAN) incorporated attention 

guidance in both generators and discriminators, where the network is able to learn which 

parts of an image are most different between batches and focus its attention on accurately 

translating these parts (Tang et al., 2019). It has been applied to the image harmonization 

setting with minimal alterations (Sinha et al., 2021). This model leverages the same cycle-

consistency idea as CycleGAN, but additionally seeks to decompose generated images into 

an attention-weighted linear combination of the input image and a restyled image, such 

that voxels that do not differ between batches can be left mostly unchanged. The attention-

guided discriminators then focus on the regions of the generated image that are most 

artificial. The AGGAN loss function consists of the original CycleGAN loss with additional 

attention-guided adversarial components, a pixel-wise loss to minimize unnecessary pixel-

wise changes, and an attention mask loss to prevent attention masks from globally saturating 

to 1. Thus, in AG-GAN, the regions of generated images that are similar between batches 

A and B are largely reconstructed from the input image, allowing generator-discriminator 

pairs to focus on style transfer in the regions that differ. Other CycleGAN-based models 

that include attention mechanisms have also been introduced by Selim et al., (2022) and 

Gutierrez et al., (2023).

3.1.3. Style-conditional GANs (Image-level)—While CycleGAN-based methods 

perform style transfer conditional only on an input image, adaptations to the CycleGAN 

framework allow for GAN-based style transfer that is conditional on both an input image 

as well as a desired output style (Bashyam et al., 2022; Choi et al., 2020; Fetty et al., 

2020; Karras et al., 2019; Liu et al., 2021; Tian et al., 2022; Yao et al., 2022). These 

methods implicitly learn continuous style features such that subtle batch features, like 

different acquisitions parameters within the same manufacturer, can potentially be corrected. 

Additionally, since these models include no explicit constraints to disentangle batch from 

non-batch style features, such as age and sex, nonbatch styles may also be incorporated 

into style representations. Notably, style-conditional GANs share key characteristics with 

other broad classes of methods described in this review; these methods incorporate cycle-

consistency loss components, similarly to CycleGAN, and also attempt to learn a latent 

representation of data where content and style information are disentangled, similarly to 

autoencoder-based models discussed further below.

Qin et al., (2022) draw strongly from the original CycleGAN framework and perform 

harmonization between two batches using two paired style-conditional GANs, which they 

call style transfer conditional GAN (ST-cGAN). In each pair, an encoder takes two images 

as input – one image is encoded into a content representation while the other is encoded 

into a style representation. Then, these two components are fused via adaptive instance 

normalization (AdaIN, Huang and Belongie, 2017) by the generator to create an output 

with the content of the first image and style of the second. The loss function involves 
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the cycle-consistency and paired discrimination loss components along with an additional 

constraint of identity loss, which enforces that “harmonization” of an image directly to its 

own true batch should reproduce itself.

Meanwhile, other style-conditional GANs deviate more from the CycleGAN. One such 

model, StyleGAN, was proposed by Karras et al., (2019) and later applied to imaging 

data by Fetty et al., (2020) and Liu et al., (2021). StyleGAN consists of one style-

mapping network, one generator, one image discriminator, and one style discriminator. 

First, StyleGAN uses the style-mapping network to create a style representation from a 

random-noise latent space. Then, the generator encodes an image, combines it with this 

style representation using adaptive instance normalization, and attempts to generate a new 

image in that style, such that the image discriminator cannot tell the image is generated 

and the style discriminator can recover the input style representation. Since this generative 

process is under-constrained, a cycle-consistency loss component is added as well as a style 

diversification loss component. Thus, the network learns to sample diverse styles, generate 

realistic images in those styles that retain content, and implicitly learn the original style of 

each image.

A similar concept is employed by StarGANv2 and has been used in the multi-batch image 

harmonization setting (Bashyam et al., 2022; Choi et al., 2020). This model incorporates 

a style encoder that directly learns style representations from training images, in contrast 

to the StyleGAN mapping network which generates style representations from noise 

and then associates these randomly-generated style representations with relevant images. 

Once style representations as well as realistic image generation are learned by StarGAN, 

style transfer can be achieved by combining content representations with desired style 

representations. Again, both cycle-consistency and style diversification loss components 

are used. Harmonization using this model has been shown to improve out-of-sample 

performance of an age-prediction network trained in the reference batch. A model based 

on similar style-disentangling mechanisms has been shown to improve the performance of 

a 3D segmentation network trained on the reference batch when applied to source batch 

images (Yao et al., 2022). Notably, like autoencoder-based models, StyleGAN, StarGANv2, 

and the model by Yao et al. rely on one common generator that is able to take any content 

representation and combine it with any style representation.

3.1.4. Autoencoder models (Feature-level)—In 2015, Sohn et al., (2015) introduced 

the conditional variational autoencoder (CVAE) in order to generate new data conditional 

on additional covariates. This model can be best understood through its predecessor, 

the variational autoencoder (VAE), which in turn, builds on the standard autoencoder, 

a simple neural network architecture that seeks to learn a non-linear, low-dimensional 

representation of input data that contains sufficient information for reconstruction (Kingma 

and Welling, 2014). The VAE architecture and loss function, discussed below, allow 

for additional constraints compared to the standard autoencoder and seek to improve 

organization of the latent space as well as reduce potential for overfitting. In this model, 

the encoder seeks to embed the input data into a lower-dimensional latent distribution, 

q(z ∣ a), which approximates some pre-specified “prior” distribution, p(z). In practice, p(z)
is usually chosen to be the standard multivariate normal distribution. The probabilistic 
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decoder, p(z ∣ a) then takes a random sample from this distribution, Z ∼ q(z ∣ a) and 

attempts to reconstruct the data using this sample. The VAE seeks to minimize the 

loss function ℒtotal = EA(‖a − p(a ∣ z‖2) + KLD(q(z ∣ a), p(z)), where KLD(, ∣ ⋅ ) is the Kullback-

Leibler divergence between the latent distribution and prior distribution. The reconstruction 

loss component encourages latent-space distributions to efficiently retain information, 

while the Kullback-Leibler divergence component creates a trade-off that encourages 

representations to coexist around the origin as well as inject noise. Together, these 

constraints organize the latent space such that nearby points produce similar reconstructions.

CVAE builds on the VAE architecture by concatenating additional covariates, c, onto the 

inputs for both the encoder and the decoder in order to condition the latent space on 

these covariates. In this model, since the decoder has necessary information from additional 

covariates readily available for reconstruction, the encoder no longer benefits from encoding 

covariate-dependent information in the latent space.

At the feature-level, a number of methodologies have harnessed CVAE ideas to learn a 

latent-space representation that is independent of the imaging batch and the corresponding 

batch-conditioned encoder-decoder pair (An et al., 2022; Moyer et al., 2020). Then, these 

methods perform harmonization by first encoding samples into the batch-invariant latent 

space using each samples’ actual batch, and then decoding those latent-space representations 

using the desired output batch.

Moyer et al., (2020) leveraged a deep learning model using the CVAE structure to perform 

unsupervised image-based harmonization on diffusion MRI images. First, this model maps 

diffusion-weighted imaging (DWI) signal for each voxel to a vector of spherical harmonics 

representations. Then, for each voxel, spherical harmonics vectors from itself and its six 

immediate neighbors are concatenated along with the batch covariate and fed into the CVAE 

to learn the batch-invariant latent representation. The loss function consists of the standard 

VAE loss; a reconstruction error for the projection of spherical harmonics vectors back 

into DWI space; an adversarial loss for detecting batch on the reconstruction as estimated 

by a discriminator; and a penalty on the mutual information between the latent space and 

batch, enforced via the sum of pairwise Kullback-Leibler divergences between latent-space 

representations.

An extension of this model, called goal-specific conditional variational autoencoder 

(gcVAE), has been proposed to perform harmonization on image-derived features that 

is explicitly aware of desired downstream applications – in this case, the prediction of 

Alzheimer disease diagnosis and Mini-Mental State Examination (MMSE) scores (An et 

al., 2022). gcVAE seeks to trains two neural networks independently – first, a CVAE 

model is pre-trained to learn a conditionally-independent latent-space representation and the 

corresponding conditional decoders. Additionally, a generic feed-forward prediction network 

is trained on reference batch data to predict Alzheimer disease diagnoses and MMSE scores 

from unharmonized features, and its weights are frozen. Finally, data from both batches 

are harmonized through the pre-trained CVAE and then fed through the frozen prediction 

network; the loss function for this step seeks to minimize the error in prediction network 

outputs. This loss is used along with a small learning rate and limited training epochs to 
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fine-tune the CVAE model to retain information relevant to diagnosis and MMSE prediction 

in the harmonized reconstruction.

3.1.5. Autoencoder models (Image-level)—In image-level harmonization, methods 

have used ideas from the CVAE as well as from the standard autoencoder to disentangle 

content information from batch and other style features (Cackowski et al., 2021; Cao et al., 

2022; Fatania et al., 2022; Zuo et al., 2021). These methods seek to decompose images into 

low-dimensional style-invariant content representations in the encoding step, and then in the 

generation step, inject these content representations with style information.

Zuo et al., (2021) introduced a harmonization method named Contrast Anatomy Learning 

and Analysis for MR Intensity Translation and Integration (CALAMITI) that uses similar 

tools to CVAE as well as style-conditional GANs. This model was based on previous 

work by the same group (Dewey et al., 2020). However, CALAMITI additionally leverages 

the fact that neuroimaging subjects are often imaged under multiple contrasts, such as 

T1-weighted and T2-weighted acquisitions. These intra-subject contrast pairs can be thought 

to share identical anatomical content with differing styles. Meanwhile, intra-batch images 

– those taken under the same contrast and scanner, but on different subjects – can be 

thought to share identical style but differing anatomical content. CALAMITI uses these 

two sets of pseudo-paired data to train a content encoder, style encoder, generator, and 

batch discriminator. Content representations within intra-subject pairs are constrained to 

be interchangeable and independent of batch as assessed by the batch discriminator. Style 

representations necessary to reconstruct a given image are obtained entirely from a random 

intra-batch image with no shared content. Harmonization is then performed by providing a 

trained decoder with image-specific content representations along with style representations 

from the desired reference batch. Finally, to account for the 3D structure of the brain despite 

using 2D slices, this procedure is performed in axial, coronal, and sagittal directions and the 

three “directional” brain volumes are unified into a final image through a 3D fusion network, 

an idea borrowed from DeepHarmony, described below (Dewey et al., 2019).

CALAMITI has been validated by Shao et al., (2022), who showed that training a 3D 

thalamus-segmentation network on images harmonized to the reference batch resulted in 

better out-of-sample performance on true images from the reference batch when compared 

to the same segmentation network trained on unharmonized images. Meanwhile, in-sample 

performance of the network did not decrease after harmonization, suggesting minimal 

degradation of anatomy. Additionally, the direct predecessor to CALAMITI, proposed by 

Dewey et al., has been shown to allow for improved harmonization, when compared to 

CycleGAN, of diffusion MRI across multiple batches as well as simultaneously allow for 

estimation of multi-shell diffusion MRI from single-shell data (Dewey et al., 2020; Hansen 

et al., 2022).

Inspired by the use of imaging data structure in CALAMITI, ImUnity sought to apply 

these ideas to the harmonization of not only batches available in the training dataset, but 

also unseen batches (Cackowski et al., 2021). At each training iteration, ImUnity takes two 

random slices, S1 and S2, from the same image as input, such that the slices can be thought 

to have different content but share the same style. Next, both S1 and S2 are modified to 
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S1
γ and S2

γ, respectively, using the gamma transformation, an image processing function that 

changes the relative intensity of gray colors. Slice S1 is then embedded into a latent content 

representation, slice S2
γ is embedded into a style representation, and these content and style 

representations are used to reconstruct slice S1
γ, which should have the same content as 

S1 and same style as S2
γ. Additionally, this model applies both a batch discriminator and 

optional biological information classifier to the latent content representation which serve 

to promote the removal of batch information and maintenance of biological information, 

respectively. Through this process, content information can be disentangled from style in a 

self-supervised manner without additional imaging contrasts, and image harmonization can 

be carried out by inputting source batch slices to the content encoder and reference batch 

slices to the style encoder. If unseen batches are similar enough to training batches such that 

the content encoder can appropriately embed slices from unseen batches, the model can be 

easily extended to these settings.

StyleMapper also takes advantage of the ability to apply various image transformation 

functions to raw images in order to generate images that are known to have the same 

content but different styles (Cao et al., 2022). In this approach, each raw image is 

transformed to seven different styles using the following transformation functions: original, 

negative, logarithmic, gamma transformation, piecewise linear, Sobel X filter, and Sobel Y 

filter. Then, for each iteration, two raw images and two randomly-sampled corresponding 

transformed images (both using the same transformation function) are fed to a model 

consisting of one content encoder, one style encoder, and one generator, where the generator 

seeks reconstruct an image with desired style using the content and style representations. 

Notably, no discriminator is used in the StyleMapper model. To constrain this process, 

a number of loss function components are used: reconstruction of both raw images; 

reconstruction of both transformed images; similarity of style representations between 

raw images; similarity of style representations between transformed images; similarity of 

content representations between raw images and their corresponding transformed image; 

and cross-reconstruction, where swapping content and style representations between across 

input images should result in an output image that is similar to the corresponding “ground-

truth” image. Thus, StyleMapper is able to create pseudo-paired data with the same 

content but different styles, learn to disentangle content and style within this dataset, and 

perform harmonization, given that differences across batches are somewhat similar to the 

transformations used in training.

Finally, HarMOnAE removes batch effects using style transfer within a standard 

convolutional autoencoder (Fatania et al., 2022). In this model, style representations are 

explicitly defined as the batch covariate and directly injected into the decoder via adaptive 

instance normalization. To enforce the learning of batch-invariant content representations, an 

adversarial loss is imposed on the content representation space.

3.1.6. Batch-unlearning classifiers (Other)—Related to standard harmonization 

methods, some deep learning methods have been developed to simultaneously perform 

harmonization and downstream classification tasks, such that classification should be 

robust to batch effects (Dinsdale et al., 2021; Hong et al., 2022). Notably, unlike other 
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harmonization methods described in this review, these batch-unlearning classifiers do not 

attempt to produce a harmonized output dataset that can then be used for any generic 

downstream analysis.

Dinsdale et al., (2021) proposed a domain-adaptation classifier that could be used to improve 

the generalizability of age predictions across multiple batches where age distributions 

differed. The three-module network consists of a convolutional feature extractor, a batch 

discriminator, and a main task classifier, where the goal of the feature extractor is to 

learn a latent space representation of raw images that is useful for the main task classifier 

and can simultaneously fool the batch discriminator. Thus, the feature extractor learns to 

extract batch-invariant features, and the main task classifier learns generalizable decision 

boundaries. Importantly, the batch-unlearning classifier is trained using a subsample of the 

data where the outcome of interest is balanced across batches in order to avoid confounding. 

The authors showed this strategy is especially useful in settings where one batch makes up 

a large majority of the dataset and the distribution of the outcome of interest differs greatly 

in this batch compared to others. The method also improved performance of age prediction 

in an unseen batch. Similarly, Hong et al., (2022) showed a non-convolutional version of 

this network, which they call scanner-generalization neural network (SGNN), could be used 

to improve prediction of general psychopathology factors (Caspi and Moffitt, 2018) using 

functional connectivity matrices within the ABCD study.

3.2. Prospective harmonization

3.2.1. Direct mapping—In specially-curated multi-batch studies where traveling 

subjects are available, the “ground truth” batch-specific scans for these subjects are known 

under the assumption that all differences between these scans are entirely due to technical 

artifacts. This allows for a class of much more powerful and accurate methods that leverage 

this unique pairing of data to learn a mapping from one batch to another. Then, this mapping 

can be applied to unpaired images to remove batch effects, under the assumption that 

data from traveling subjects are a representative sample of those from unpaired subjects. 

However, despite the benefits of prospective harmonization methods, datasets where the 

required traveling subjects are available are expensive to obtain and can be limited in terms 

of subjects. Additionally, the assumption that traveling subjects are representative of all 

subjects should be verified; traveling subjects could, for example, be healthier or wealthier 

than non-traveling subjects.

Dewey et al., (2019) proposed DeepHarmony, a convolutional U-Net-based architecture 

could be applied to 2D patches across multiple contrasts from twelve subjects each 

scanned under each of two batches in order to directly harmonize the images themselves. 

In this architecture, the network attempts to jointly use multiple contrasts (T1-weighted, 

T2-weighted, FLAIR, and proton density) from each subject collected under one protocol. 

These multiple contrasts are used simultaneously to reconstruct the corresponding contrasts 

for that subject collected under another protocol. This “many-to-many” reconstruction 

approach can be thought of as allowing for the use of complementary information across 

contrasts. Additionally, DeepHarmony slightly modifies the vanilla U-Net architecture such 

that, in the final convolutional layer, the input contrasts are concatenated to the final 
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feature map. Thus, instead of having to recreate reference contrasts entirely from scratch, 

the network can instead focus on learning an appropriate transform of the input data to 

reconstruct the intended output. Finally, as with CALAMITI, DeepHarmony sought to 

learn three independent image-to-image mappings for slices in each of the axial, sagittal, 

and coronal directions. These “directional” images are then aggregated using voxel-wise 

medians to produce a final harmonized image.

For diffusion imaging, Tong et al., (2020) showed that deep learning can be applied to 

pre-processed DWI images across traveling subjects in order to estimate derived diffusional 

kurtosis imaging (DKI) measures that are harmonized across batches. This study leveraged 

a 3D hierarchical-structured convolutional neural network (H–CNN) designed to take 3 × 

3 × 3 voxel patches as input and jointly produce eight scalar DKI measures as output 

(axial diffusivity, radial diffusivity, mean diffusivity, fractional anisotropy, axial kurtosis, 

radial kurtosis, mean kurtosis, kurtosis fractional anisotropy) (Li et al., 2019). To perform 

harmonization, Tong et al. used DWI images from traveling subjects in the reference 

batch to calculate DKI measures for each image using an iteratively-reweighted linear least 

squares method. Then, these DKI measures were non-linearly registered to corresponding 

paired DWI images in source batches to create a training dataset, where the input is a DWI 

image from a source batch while the output is the set of DKI measures extracted from the 

paired image in the reference batch. Next, H–CNN is trained on this dataset in order to 

learn a mapping from source batch DWI images to reference batch DKI measures. Finally, 

this trained H–CNN was applied to other DWI images from the source batches in order to 

estimate DKI measures harmonized to the reference batch.

3.2.2. Content-style disentanglement—Another approach for directly harmonizing 

images, Multi-scanner Image harmonization via Structure Preserving Embedding Learning 

(MISPEL), was introduced by Torbati et al., (2022). Unlike DeepHarmony, MISPEL hopes 

to perform harmonization across m batches, where m can be more than two, through the 

use of a set of m batch-specific convolutional autoencoders that are trained via a two-step 

algorithm. Importantly, the encoders are allowed to be deep networks while the decoders 

merely perform a linear combination of the latent-space representations. In step one, 

MISPEL seeks to train each batch-specific encoder to embed slices from its batch into a 

common latent space and then train the corresponding decoder to use those latent-space 

representations to reconstruct slices in the style of its batch. To do so, MISPEL trains each 

batch-specific autoencoder separately in a self-supervised fashion using a reconstruction 

loss and additionally enforces a common latent space between all autoencoders through 

a representation similarity loss, which penalizes high variance across all latent-space 

representations. In step two, all encoders are frozen and only the decoders are updated 

such that all decoders produce similar harmonized output slices and the outputs are also 

similar to the input slice. Thus, intuitively, MISPEL can be thought of as disentangling 

images into content and style representations, where the latent-space representations contain 

content information and differences in how those representations are linearly combined by 

the decoder describe style differences.

Tian et al., (2022) address the setting of paired data in a multiple-batch setting via their 

model, DeRed. This model can be thought of as an adaptation of CycleGAN and especially 
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ST-cGAN, discussed in the style-conditional GAN section. Similarly to ST-cGAN, DeRed 

uses paired GANs to perform harmonization – however, to adapt the paired-GAN framework 

to the multiple-batch setting, DeRed trains a separate style encoder and generator for each 

batch-to-batch harmonization task, such that each set of networks harmonizes images either 

to or from the reference batch. Then, DeRed is able to harmonize any batch to the reference 

batch by combining a source-batch content representation with a reference-batch style 

representation. Additionally, harmonization to any source batch can be achieved through 

a two-step process, where all other source batches are first harmonized to the reference 

batch and then these generated reference-batch images are harmonized to the desired source 

batch. Data from paired subjects is taken advantage of in the loss function, which consists 

of four components: 1) batch consistency, where style representations should be similar 

within each batch; 2) content consistency, where content representations should be similar 

within paired subjects even from different batches; 3) reconstruction, where content and 

style representations from the same image should result in reconstruction of that image; and 

4) cross-reconstruction, where content and style representations from different images of 

the same subject should result in reconstruction of the image that corresponds to the style 

representation.

4. Evaluation metrics

Increasing interest in the development and application of harmonization methods requires 

standardized and effective metrics that quantify performance. Harmonization evaluation 

metrics can largely be grouped into two categories, harmonization performance metrics and 

predictive performance metrics (Figure 4). Harmonization performance metrics aim to detect 

or quantify batch effects and can be separated into metrics measured at the feature level and 

at the image level. These metrics can often be interpreted as summary statistics, requiring 

accompanying visualizations to complement their findings. Predictive performance metrics 

measure the effects of harmonization on performance in downstream analyses. Importantly, 

effective harmonization methods should reduce detectable batch effects in the data while 

preserving performance in downstream analyses.

4.1. Harmonization performance

4.1.1. Feature-level metrics—Evaluation approaches for methods that perform feature-

level harmonization can be broadly grouped into four general paradigms: statistical testing 

for differences in distribution across batches, predictive modeling of batch, assessing feature 

dispersion and similarity, and qualitative visualization.

Features can be interpreted as each having their own distribution that can be split along 

batch variables such that in the absence of batch effects, these sub-distributions should be 

identical. Harmonization methods can thus be evaluated based on their ability to remove 

differences in feature distribution across batch groups. This can be evaluated using statistical 

testing, where the test used depends on the assumed form of the distributional differences. 

Location effects can be assessed using tests for differences in mean (e.g. students and 

paired t-tests, ANOVA, linear regression to control for covariates, Wilcoxon rank-sum and 

signed rank tests, and Kruskal-Wallis test) while scale effects can be detected using tests 
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for differences in variance (e.g. Bartlett’s sphericity test) (Fortin et al., 2018; Y. Li et 

al., 2021; Wengler et al., 2021; Yu et al., 2018). To test for more general differences in 

distribution beyond disparity in mean and variance, the Kolmogorov-Smirnov or Anderson-

Darling tests can be used (Da-Ano et al., 2020a; Fatania et al., 2022; H.M. Whitney et 

al., 2020). These tests are all completed at the feature-level such that if harmonization is 

effective, significant differences in distribution due to batch will be detected before but not 

after harmonization. This result would indicate that the harmonization tool has removed 

differences in distribution associated with batch variables. In settings where a p-value would 

be inappropriate, effect size measures (e.g. Cohen’s d, Hedge’s g) can be used (Radua et 

al., 2020; Reardon et al., 2021). In the specific setting of functional connectivity matrices, 

which can be studied from the network theory perspective, Roffet et al., (2022) demonstrated 

the utility of the Kruskal-Wallis test on batch-wise differences between Normalized Network 

Shannon Entropy and Normalized Network Fisher Information metrics.

If biological covariates are imbalanced across batches, it may be expected that this 

imbalance may lead to differences in marginal batch-wise feature means that should not be 

corrected by harmonization. In these settings, it is instead important to evaluate harmonized 

outputs for differences in biological-covariate-conditional batch-wise feature means. One 

common approach is to use linear regression or linear mixed effects regression, where 

batch and biological covariates (e.g. age, sex) are used to jointly model the feature. The 

estimated regression coefficients for batch and biological covariates can be tested for 

significant effects on each feature, where a significant regression coefficient for the batch 

covariate corresponds to statistically-detectable batch effects (Badhwar et al., 2020; Bell et 

al., 2022; Wengler et al., 2021; Zavaliangos-Petropulu et al., 2019). Notably, this approach 

will provide a valid assessment of batch effects even if the biological covariates are not 

imbalanced across batches. Looking beyond batch, this evaluation procedure allows for 

simultaneous assessment of preservation of biological covariates; comparing regression 

coefficients for biological covariates before and after harmonization can provide insight into 

whether biological information is preserved.

Another approach uses features as predictors in a machine learning classifier – random 

forests, support vector machines (SVM), AdaBoost, and others – in order to predict batch 

as an outcome. If harmonization is effective, there will be reduced signal from batch in 

the data and therefore reduced classifier performance (An et al., 2022; A. A. Chen et al., 

2022a; Saponaro et al., 2022). While this approach is more general than using a linear 

model, this comes at the cost of interpretability. When using a statistical test for differences 

in distribution or on linear model regression coefficients, there is a clear null hypothesis 

about the nature of batch effects – that is, whether they are differences in mean, variance, or 

distribution. This is contrasts with the machine learning classifier approach, where detection 

of batch effects is easy, but understanding the nature of these detected batch effects is 

challenging. While there are methods for measuring feature importance for machine learning 

classifiers, further visualization is necessary to fully characterize batch effects. Additionally, 

it is challenging to account for confounders when using this machine learning approach; 

for example, if there is significant imbalance in a biological covariate such that batch can 

be easily predicted by this biological covariate, preservation of biological information in 
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the harmonized data would also result in predictability of batch, even if batch effects were 

perfectly removed.

A more direct metric for identifying variation associated with batch in feature-level data is 

the coefficient of variation (CoV). The CoV is the ratio of the mean to the standard deviation 

and can be used to measure between-batch variability by calculating the CoV within each 

batch for each feature (Cai et al., 2021; Garcia-Dias et al., 2020; Treit et al., 2022). The 

resulting set of CoV values is then described using summary statistics, and if harmonization 

is effective, the differences in CoV distributions between batch groups will be reduced 

post-harmonization.

In traveling subject studies or other datasets where matched-subject data is available, another 

direct metric for measuring feature similarity across batches is correlation coefficients, 

including the intra-class correlation coefficient (ICC), Spearman’s correlation, and Pearson’s 

correlation. If batch effects are not present in the data, then a feature extracted from scans 

associated with the same subject under different acquisition protocols should be more 

similar across protocols (Crombé et al., 2021; A. 2020; Kurokawa et al., 2021). Effective 

harmonization tools should increase the correlation coefficient for a given feature across 

batch groups provided the scans are from the same subject. Additionally, the discriminability 

statistic may also be a reasonable metric for this data setting, though this statistic has not yet 

been used in the context of harmonization (Bridgeford et al., 2021).

Finally, visualizations are an essential tool for characterizing batch effects more 

comprehensively than summary metrics. Visualization methods pertinent to harmonization 

can be broadly grouped into decomposition-based approaches and displays of feature 

distributions. Decomposition-based approaches condense high-dimensional data into a 

two to three-dimensional space suitable for visualization and include methods such as 

principal components analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), 

and uniform manifold approximation and projection (UMAP). In low-dimensional space, 

batch effects can be seen as increased distances between points of differing batch groups. 

Harmonization should reduce these distances and bring points of different batch closer 

together (Acquitter et al., 2022; A. A. Chen et al., 2022c; Guan et al., 2021).

However, decomposition-based methods condense information from all features into a 

single figure, necessitating visualizations of univariate or bivariate feature distributions to 

further characterize distributional differences affiliated with batch (e.g. feature density plots, 

box-plots, scatterplots etc.). Effective harmonization should reduce visual differences in 

distribution across batch groups (Bethlehem et al., 2022; Clarke et al., 2020; Da-Ano et al., 

2021; Saint Martin et al., 2021). These visualizations can also be used to identify cases in 

which distributional assumptions of model-based methods are violated (e.g. non-Gaussian 

for ComBat) and further troubleshoot harmonization methods by providing comprehensive 

information regarding the effects of harmonization on feature distributions (Horng et al., 

2022b).

4.1.2. Image-level metrics—Applications of deep learning to harmonize image-level 

data have emerged as promising approaches for correcting unstructured data. Consequently, 
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their evaluation requires metrics that quantify the effects of harmonization at the image 

level. Because the goal of image-level harmonization can be viewed as mapping an image 

from one batch to another, the resulting evaluation is often based around measuring the 

distance between images of different batches.

When paired data are available, this distance can be directly quantified as the voxel-level 

difference between the harmonized image and the true image from the reference batch using 

metrics such as Mean Absolute Error (MAE) or Mean Squared Error (MSE). Also included 

in this category is peak signal to noise ratio (PSNR), a measure of image quality that takes 

the ratio of the maximum image value and the root MSE. For example, Dewey et al., (2019) 

use the MAE as a component of their loss function as well as a final measure of image 

similarity to compare paired images from the same subject scanned with different MRI 

acquisition protocols. While this approach likely provides the most accurate quantification 

of image differences associated with batch, it is not as commonly used because datasets of 

sufficient sample size to train deep learning algorithms that also contain paired samples from 

each batch are rare. A possible solution to this problem is to use unpaired data for training 

and use a more limited paired dataset for testing and evaluation (Denck et al., 2021).

The scenario of unpaired data is more common, but this setting requires more indirect 

measures of image similarity because no “ground truth” is available. The two most common 

metrics used in this context are the structural similarity index measure (SSIM) and Fréchet 

Inception Distance (FID) (Heusel et al., 2018; Wang et al., 2004). SSIM, as the name 

implies, measures the degree to which structures are preserved post-transformation. While 

historically used in paired data, SSIM can be applied in unpaired data under the assumption 

that key structures are largely the same between subjects. FID is a common evaluation 

metric for GANs that measures the distance between the ground truth and generated image 

distributions as opposed to the images themselves. Both FID and SSIM have been employed 

in the evaluation of adversarial networks used for image-level harmonization (Liu et al., 

2021; Sinha et al., 2021). Notably, while SSIM measures presence of similar anatomy and 

FID measures “realism” of generated images – both important metrics for assessing the 

quality of generated images – neither explicitly evaluates whether generated images match 

the distribution of the reference batch or how well the images are harmonized. Additionally, 

FID is based on features learned on natural scenes from the ImageNet database; such 

features may not be applicable to medical images, so FID may not be a reliable measure of 

realism in this setting (Deng et al., 2009).

Finally, qualitative visualizations may include side-by-side image slices representing 

unharmonized slices, harmonized slices, and reference slices. Importantly, “directionality” 

of visualized slices (i.e. axial, coronal, sagittal) is important, since many image-level 

methods correct images at the individual slice level. Thus, visualization using slices in 

the same direction as the harmonization as well as slices in different directions may be 

revealing.

While these metrics are commonly used in the evaluation of image-level harmonization, 

recent work by Ravano et al., (2022) suggests that image-level metrics are poor indicators 

of cross-batch consistency and robustness in downstream analyses. While predictive 
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performance should not be the sole evaluation metric for harmonization methods, as will 

be discussed below, these findings indicate image-level metrics should be interpreted with 

caution and that increases in image similarity do not guarantee improved robustness. 

Therefore, additional evaluation may be carried out by extracting select features, such 

as voxel intensities or measures of structural characteristics, and assessing feature-level 

harmonization performance using the techniques described in the above section. Evaluation 

of the distributions of extracted features may also be useful in assessing for mode collapse, 

where GAN-based methods and CVAE-based methods only generate a small subset of the 

original variability in harmonized images.

4.2. Downstream analysis performance

For many applications, the primary goal of harmonization is not necessarily to remove batch 

effects from the data, but instead to improve robustness or overall performance in some 

downstream analysis, such as inference or prediction. Inference tasks tend to be associated 

with feature-level data and can be viewed as seeking to precisely estimate the magnitude 

and direction of biological effects of interest. These tasks involve regression of feature-level 

data on biological covariates, and successful harmonization is often assessed as removal of 

batch effects while statistical power for detecting such biological effects is preserved but 

not artificially biased or inflated. Many studies have suggested harmonization can improve 

inference when biological covariates are explicitly controlled for in the model; however, it 

remains a challenge to validate such claims as ground-truth biological effects are unavailable 

in real data, and simulation of realistic batch-confounded data is unsolved (An et al., 2022; 

A. A. Chen et al., 2022a; Fortin et al., 2018; Yu et al., 2018). Additionally, it is important 

to keep in mind that, in cases where batch status and biological effects are highly correlated, 

unbiased removal of true batch effect may correctly reduce observed biological effects.

In the harmonization literature, post-harmonization prediction evaluation can be broadly 

grouped into three major categories: segmentation, classification, and regression. 

Segmentation involves the separation of regions of interest (ROIs) from the surrounding 

anatomy, a task often affected by the differences in intensity associated with differences 

in image acquisition. Segmentation is an essential task for many downstream analyses, as 

the resulting regions can be used in the extraction of quantitative features for predictive 

modeling. Many studies have already demonstrated that image-level harmonization can 

improve downstream segmentation performance (Dewey et al., 2019; Dinsdale et al., 2021; 

He et al., 2021; B. Li et al., 2021; Shao et al., 2022). The performance of segmentation 

algorithms can be quantified using metrics such as the Dice coefficient, Mean Surface 

Distance (MSD), Hausdorff distance, and others. Classification and regression use a matrix 

of quantitative features to predict discrete and continuous outcomes, respectively. In these 

contexts, batch effects may introduce additional noise that can obscure signal, result in 

models that learn batch-confounded parameters, as well as induce overfitting that reduces 

the ability of models to generalize to unseen data from other batches. To this end, 

many studies have applied harmonization techniques to demonstrate improved predictive 

performance and model robustness in the prediction of a variety of outcomes, including 

malignancy, age, survival, neurodegenerative disease, and more (Fortin et al., 2018; Tixier 

et al., 2021; H.M. Whitney et al., 2020; Zavaliangos-Petropulu et al., 2019). Classification 
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performance is typically evaluated using metrics such as accuracy, sensitivity, specificity, 

and area under receiver operating curve (AUROC) (Ingalhalikar et al., 2021; Sinha et al., 

2021; Whitney et al., 2021). Evaluation for regression methods involves measuring the 

distance between the observed and predicted outcome vectors using metrics such as mean 

squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) 

(Bashyam et al., 2022; Chen et al., 2020).

4.2.1. Accounting for confounders—Notably, evaluation of harmonization 

performance and downstream analysis performance in the presence of confounding by 

biological covariates of interest remains an active challenge. Depending on the strength 

and nature of such confounding, naive application of the above evaluation metrics may 

incorrectly show harmonization is performing poorly even if it is working perfectly, or 

incorrectly show harmonization is performing well even if it is working poorly. The same is 

true for downstream analyses.

For example, imbalance of biological covariates across batches may result in seemingly poor 

harmonization performance even in the setting of theoretically-perfect batch effect removal. 

In imbalanced datasets, biological information will and should remain correlated with 

batch status after harmonization. Therefore, accurate preservation of biological information 

will result in marginal differences in imaging data across batches that will be detectable 

by statistical and machine learning methods that do not condition on these covariates. 

Notably, even evaluation approaches that do condition on biological covariates, such as 

linear regression, may provide inaccurate conclusions if the model is mis-specified with 

respect to the relationship between biological covariates, batch, and the imaging data.

In the opposite direction, imbalance of biological covariates may also induce incorrect 

removal of biological information that the harmonization method views as batch effects. 

For example, if age is imbalanced across batches but not appropriately accounted for 

by the harmonization methods, age-related differences between batches that should be 

preserved will instead be attributed to batch effects and removed. Additionally, in this 

setting, naive approaches for evaluating harmonization performance will incorrectly show 

the harmonization method is performing well, since marginal batch-wise differences may be 

removed when they should be preserved.

While downstream analysis performance is a key priority in the wider imaging community, 

it is critical to distinguish this performance from the specific goal of harmonization: the 

removal of batch effects from data. Evaluating within-sample performance does not provide 

explicit information regarding harmonization performance, nor vice versa, particularly in 

settings where biological and batch variables are associated (Dinsdale et al., 2021; Horng et 

al., 2022a).

For example, consider a hypothetical study in which most patients with a cancer diagnosis 

are imaged at a tertiary referral hospital, while most patients without a cancer diagnosis 

are imaged at a primary care hospital. Because of this imbalance, the batch variable 

of hospital type becomes highly associated with the outcome of cancer diagnosis. In 

this setting, a theoretically-perfect harmonization method will eliminate this association, 
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therefore resulting in reduced within-sample performance. In a different example, if there 

is minimal confounding between batch status and an outcome of interest, removal of batch-

related noise may increase the relative signal of the outcome of interest, and within-sample 

performance may improve.

While harmonization is not guaranteed to improve overall predictive performance, 

the removal of batch effects can result in increased predictive model robustness and 

generalizability. This can be evaluated by measuring predictive performance on out-of-

sample testing data in the harmonized output space. For example, such external validation 

has been applied as test-retest analyses (Mirzaalian et al., 2016; van de Bank et al., 2015), 

out-of-sample cross-validation procedures (Dinsdale et al., 2021), or true out-of-sample test 

datasets (Chang et al., 2022; Liu et al., 2020; Shao et al., 2022). Improved performance on 

external, out-ofsample data would indicate that a predictive model trained on harmonized 

data is more robust to differences in image acquisition and is overfitting less on batch-related 

noise.

5. Discussion

5.1. Recommendations for end-users

Image harmonization methods have been proposed for a wide variety of data structures and 

study designs. Optimal selection of the state-of-the-art harmonization method for each study 

is thus highly dependent on these characteristics as well as on the ease-of-use of available 

methods. In this section, we provide our recommendations to users seeking to apply existing 

harmonization methods to their own datasets in order to best reduce bias and improve 

generalizability of results.

Generally, for both feature-level and image-level data, we recommend that image 

harmonization should be used as a final correction step. That is, raw imaging data 

should first be pre-processed using available non-harmonization methods designed to 

minimize technical artifacts, including bias field correction (Tustison et al., 2010), intensity 

normalization (Shinohara et al., 2014), and if applicable, other steps like brain extraction 

(Smith, 2002), registration to a common template (Avants et al., 2008). In the setting of 

functional MRI, additional preprocessing steps should also be used, if necessary, such as 

motion correction (Ciric et al., 2017; Jenkinson et al., 2002) or spatial smoothing (Mikl 

et al., 2008). Notably, small differences in both functional and structural pre-processing 

pipelines can induce marked variation in downstream analyses (Cetin-Karayumak et al., 

2020b). Consensus as to how to perform such pre-processing is critical in multi-batch 

studies if pre-processing is conducted independently within sites (Li et al., 2022). Finally, 

once all standard pre-processing steps have been implemented in order to reduce technical 

noise, remaining batch effects can be addressed via harmonization.

For feature-level data from studies without traveling subjects, ComBat and its various 

extensions should still be considered state-of-the-art despite recent advances in deep learning 

methods. Specifically, CovBat is a strong choice when batch effects are suspected in the 

covariance structure of the linear model residuals (A. A. Chen et al., 2022a), ComBat-GAM 

should be used when non-linear covariate or batch effects may be at play (Pomponio 

Hu et al. Page 27

Neuroimage. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2020), and FC–CovBat is recommended for the specific application to functional 

connectivity values (A. A. Chen et al., 2022c). In datasets where at least one batch 

has a small sample size, the standard ComBat model likely outcompetes more complex 

methods – in these settings, estimation of higher-order biological and batch effects may 

be imprecise and reduce harmonization performance (Fortin et al., 2017; Nygaard et al., 

2016; Zindler et al., 2020). In these settings, the principal component decomposition step 

of CovBat and the GAM estimation step of ComBat-GAM may be highly variable and 

therefore unreliable. For study designs with longitudinal data and therefore non-independent 

observations, Longitudinal ComBat should be used (Beer et al., 2020). In the presence 

of privacy-preserving constraints, D-ComBat yields equivalent results as standard ComBat 

without the need to have the full dataset at a single location (Bostami et al., 2022b; A. A. 

Chen et al., 2022b).

While it is unlikely that batch effects are perfectly modeled in these ComBat-style 

methods, these methods have been extensively validated in many datasets and data types 

including cortical thicknesses, fractional anisotropy values, functional connectivity values, 

and radiomic features. Even in the setting of data types that have not been previously 

validated, ComBat-style methods can be applied reliably; they perform principled model-

based correction with minimal risk of overfitting and tend to err on the side of under-

correction rather than over-correction. For multisite studies with small sample sizes, the 

simplicity of these models and the empirical Bayes estimation procedure allow for stable 

correction in settings where more sophisticated correction would be infeasible. Importantly, 

these methods also provide easy-to-use open-source code in R, Python, or both. However, 

because of the simplicity of these models, substantial multivariate batch effects will remain 

following correction, and model misspecification poses the potential for bias and increased 

false positives. While CVAE-based methods have been proposed for feature-level correction, 

such as Moyer et al., (2020) and gcVAE (An et al., 2022), these methods still require users 

to have considerable deep learning experience for hyperparameter tuning and evaluation, and 

the behavior has not yet been extensively validated by follow-up studies in different datasets 

or data types.

For feature-level data in the prospective setting where matched pairs are available, TS-

GLM and Longitudinal ComBat have strong theoretical foundations in the linear model 

and random effects model framework, respectively (Beer et al., 2020; Yamashita et al., 

2019). While TS-GLM has been used more often in this setting, Longitudinal ComBat is 

theoretically advantageous as this model can jointly use both paired and unpaired data in the 

estimation of batch effects.

For image-level harmonization, while ComBat-style methods can be applied on the voxel 

level, where subjects are registered to each other and represented by vectorized voxel 

intensities, ComBat is almost certainly inadequate. In this setting, deep learning methods 

are a much more reasonable choice. However, while image-level harmonization is almost 

certainly the ultimate goal for the field of harmonization, given the current state of the 

field, we recommend that, if possible, end-users should avoid image-level harmonization and 

instead seek to extract relevant features from the images and apply feature-level methods. 

This is because image-level methods have only been evaluated under ideal settings, require 
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extensive deep learning expertise and computational capacity, and may introduce bias in 

datasets where biological covariates confounders are present. These limitations are discussed 

in more depth below.

If image-level harmonization is necessary and unavoidable, we recommend the following 

methods. In studies where individuals are imaged under at least two modalities on the same 

scanner but no traveling subjects are used, CALAMITI has an elegant theoretical basis, has 

been validated in a few follow-up studies, and most importantly, provides readily-available 

code (Zuo et al., 2021). In the prospective setting, MISPEL should be considered, as it 

provides open-source code and has been internally validated to improve harmonization both 

in terms of images and image-extracted features when compared to a matched-pairs-aware 

version of CALAMITI; however, no follow-up studies have yet externally validated this 

model (Torbati et al., 2022). While many CycleGAN-based methods have been proposed 

and assessed, we do not recommend these methods. This is because the CycleGAN 

architecture is known to be under-constrained which could lead to potential anatomical 

distortions; GAN models can be challenging to train; and to our knowledge, no open-access 

code is available for proposed adaptations of the architecture or loss functions.

Despite the potential that CALAMITI and other deep learning methods have shown in 

correcting image-level data, we believe these methods are not yet ready for end-users to 

apply to their own imaging data. Firstly, from the resource perspective, this is partly due 

to the immense computational resources required for training and the extensive technical 

expertise necessary to troubleshoot code and perform hyperparameter tuning. Additionally, 

deep learning methods require that end-users thoroughly validate harmonization results – 

the flexibility of these networks can result in unexpected behavior that may break down in 

certain unknown settings. Secondly, from the technical perspective, since training these deep 

learning models require large sample sizes and three-dimensional convolutional models are 

computationally prohibitive, deep learning methods treat each axial slice as an independent 

sample, even when slices are from the same subject or from nearby planes; this process 

does not explicitly model the correlation between these slices and hopes the model can 

implicitly pick up on these relationships. Thirdly, while these methods have been shown to 

work well in their respective published manuscripts, limited follow-up studies have been 

published to validate these results in other datasets, so it is uncertain if the results are easily 

generalizable. Finally, for most studies, harmonization was also only validated in the image 

domain with the implicit assumption that, if the image is harmonized, then extracted features 

from these harmonized images will also be subsequently harmonized; explicit evaluation 

of whether this assumption holds will be important to strengthen the case for using these 

methods.

Across data types and study design settings, once a reasonable harmonization method is 

applied, the resulting harmonized dataset can be evaluated for harmonization performance 

and predictive performance. Evaluation for harmonization performance is especially 

important for more complex methods that are sensitive to changes in user-defined 

hyperparameters, as these methods may underperform if the hyperparameters not tuned 

appropriately. Note that such methods include CovBat and ComBat-GAM, since they 
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require the specification of the number of principal components to correct and the standard 

GAM hyperparameters, respectively.

End-users can also evaluate harmonization methods based on predictive performance, 

especially on out-of-sample data, such as that generated using cross-validation, train-test 

splits, or test-retest data. Effective harmonization should improve the generalizability of 

prediction models, so predictive performance on out-of-sample data may increase. However, 

end-users should be aware that predictive performance may decrease in training sample 

data, especially if batch status was correlated with the outcome of interest. Additionally, 

large increases in predictive performance might be observed if the harmonization method 

accidentally introduces biases or artifacts – end-users should be especially aware of this 

possibility if using less-constrained methods such as GAN-based models.

5.2. Limitations of harmonization

Importantly, end-users should be aware of two limitations of harmonization – namely, that 

removal of batch effects induces correlation between subjects and that removal of batch 

effects and preservation of biological effects depends on the ability to precisely estimate 

these effects (Bayer et al., 2022a; T. Li et al., 2021; Nygaard et al., 2016; Zindler et 

al., 2020). The studies below specifically describe these limitations within the context of 

the ComBat model, since this model is easily used and has been widely studied in the 

field of genomics for over a decade; however, these limitations are broadly true of any 

harmonization method.

Firstly, harmonization is used as a pre-processing step, where batch effects are estimated 

using the whole dataset under some model, and subsequently removed. The harmonized 

output is then used for any downstream inference or prediction analyses. This separation 

of harmonization from downstream analyses is advantageous – under this paradigm, 

harmonization methods can be as complex as necessary to adequately remove batch effects, 

and any downstream analysis model can be used afterwards. This contrasts with joint 

methods for inference that account for batch effects. For example, multiple linear regression 

where batch status is included as a covariate is a simple joint method; however, in this 

model, batch effects can only be accounted for as differences in expected mean, and the 

only downstream analysis possible is inference on the linear effect of biological covariates 

of interest.

However, separation of harmonization from downstream analyses also induces artificial 

correlation between originally-independent subjects (T. Li et al., 2021). This is because 

batch effects are estimated using all subjects in the dataset, and then this estimated batch 

effect is removed from each subject’s data. As a result, each harmonized data point is some 

function of all the other data in the dataset and therefore correlated with each other. This 

limitation could lead to exaggerated or reduced findings in downstream analyses that do not 

account for this induced correlation. Li et al. provide a potential solution to this problem in 

the context of ComBat through their approach, ComBat+Cor. This model applies standard 

Combat for harmonization, but accounts for the induced correlation in downstream linear 

models. Notably, this approach would not be useful for downstream analyses that cannot 

account for sample correlation (i.e. machine learning models, qualitative visualizations, 
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etc.), and ComBat+Cor has only been validated in the genomics context. Additionally, Li et 

al. noted that ComBat+Cor was too conservative in settings with large variance batch effects, 

which may be common in neuroimaging data; in these settings, they recommended standard 

ComBat instead.

Secondly, harmonization methods may inaccurately remove batch effects in settings where 

it is challenging to accurately estimate batch effects (Nygaard et al., 2016; Zindler et al., 

2020). For example, in datasets where biological covariates are heavily imbalanced across 

batches, there will be insufficient overlap of these biological covariates to independently 

estimate batch and biological effects. Instead, batch and biology can be thought to be a form 

of “multicollinear” which will result in unstable estimation for both batch and biological 

effects (Nygaard et al., 2016). Similar estimation issues occur in datasets with a large 

number of batches and a small number of subjects within each batch, as well as in settings 

where batch effects are extremely small or non-existent such that they are easily overfit 

(Zindler et al., 2020). In all these settings, harmonization will be carried out using only 

the point estimate for batch effects; the large estimation errors for batch effects will be 

ignored. If the magnitude of the original batch effects is greater than that of the estimation 

errors, harmonization may partially ameliorate the batch effects problem, but if the reverse 

is true, harmonization may make things worse. Additionally, when considered together, the 

combination of harmonization-induced correlation and inaccurately-estimated batch effects 

may result in increased false positives.

Ultimately, while it is important for end-users to be aware of these issues with 

harmonization as a whole, we still consider harmonization to be the state-of-the-art approach 

for addressing batch effects, since no better solution exists for removing complex batch 

effects while allowing the flexibility of using any downstream methods. However, end-

users should exercise care to avoid blindly applying harmonization methods in settings 

where batch effects cannot be precisely estimated to reduce the risk of false positives. In 

these settings, end-users should reach for alternative approaches, such as joint methods 

for inference that account for batch effects, or consider consultation with neuroimaging 

statisticians. Harmonization-induced correlation is more challenging to avoid or take into 

account, but we believe that the increased generalizability of post-harmonization analyses 

outweighs the risk of exaggerated or diminished findings due to correlation-induced bias.

5.3. Recommendations for methodologists

As methodologists continue to propose novel ideas to improve both feature and image-

level harmonization, we provide recommendations for a more standardized framework for 

describing evaluating, comparing, and releasing novel methods that we believe will help 

accelerate the advancement of the field.

5.3.1. Transparency in assumptions and limitations—Firstly, new methods should 

be explicit about the specific scenarios under which the method is intended to work, since 

use, evaluation, and comparison to similar methods all depend on the scenario. To do so, 

methods should define assumptions made about the data-generating process as well as 

describe assumptions about the availability of various information in their dataset. The need 
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for such transparency becomes clearer when harmonization is viewed as causal inference 

problem. Under the causal inference framework, different batches are different “treatments,” 

unharmonized data are “observed outcomes” under these treatments, and harmonization 

methods attempt to estimate “counterfactual outcomes” at the individual level – what the 

data would have looked like in a hypothetical scenario where all subjects were scanned in 

the same batch (Höfler, 2005; Rosenbaum and Rubin, 1983; Rothman et al., 2008). Notably, 

such estimation requires strong assumptions that may be relevant when end-users decide 

which harmonization method may be most reasonable for their dataset.

As an example of a common implicit assumption, prospective methods are defined by the 

assumption of paired data across batches; however, they also assume variation within pairs 

is entirely due to batch effects and that the batch effects estimated using this paired data 

is representative of batch effects in the rest of the sample. While such assumptions may be 

reasonable in some datasets, they may be unreasonable in others. The first assumption is 

violated if paired scans across batches are taken with a larger interval of time in between, 

since differences between scans may be due to changes in age or disease progression in 

addition to batch effects. The second assumption is violated if traveling subjects tend to be 

more able or willing to travel than non-traveling subjects, perhaps due to relatively younger 

age or better health. In this setting, if covariates that affect tendency to be a traveling subject 

also affect brain structure or function, estimation of batch effects in these traveling subjects 

may be non-representative.

In retrospective studies, these assumptions on paired data are not necessary. However, these 

methods instead make assumptions on the nature of batch effects and how confounders 

are controlled for. For example, ComBat relies heavily on an assumption of correct model 

specification; that is, batch effects can be fully captured by univariate shifts in mean and 

rescaling of error terms and that biological effects are confounders that can be controlled for 

linearly. Meanwhile, deep learning methods make minimal model specification assumptions, 

but data-based assumptions are encoded in model parameters based on biases present in 

the training data. For example, when deep learning methods do not account for biological 

covariates when performing harmonization; implicitly, they assume that batch status is 

independent of biological covariates. This may not be reasonable if, for example, sicker 

subjects tend to be scanned at tertiary care hospitals while healthier patients tend to be 

scanned in primary care hospitals. Thus, transparency in assumptions about confounders is 

necessary in understanding when methods can be applied.

Transparency of methods known to require more computational power, higher technical 

expertise, or larger sample sizes is also recommended. While harmonization methodologists 

may prioritize implementing interesting ideas to advance the field and improve our ability to 

remove batch effects, end-users may place less emphasis on using such “optimal” methods 

and instead look to apply methods that are more accessible yet still perform acceptably. 

Thus, methodologists should include a discussion of computational resources required, 

approximate run times, and approximate empirical lower bounds for sample size required 

so that subsequent readers can have a better sense of when/if the method is usable in their 

settings.
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5.3.2. Standardized evaluation framework—Secondly, methods should be explicitly 

evaluated both in terms of removal of batch effects as well as preservation of biological 

effects. In feature-level data, evaluation of batch effects should consist of statistical testing 

for difference in means for individual features, prediction of batch using machine learning 

classifiers, and qualitative visualization of feature distributions using dimension reduction 

techniques as well as univariate and bivariate plotting. For statistical testing, we recommend 

use of the linear model, where batch and confounding covariates are the independent 

variables and feature data is the dependent variable, in order to estimate the mean batch 

effects when confounders are controlled for. For batch prediction, we recommend random 

forests or support vector machines as powerful multivariate methods that are easy to apply 

and robust to hyperparameter tuning. For qualitative visualization, we recommend UMAP 

or PCA for multivariate visualization, univariate/bivariate density plots across batches for a 

small number of randomly selected features, and scatterplots of unharmonized data against 

harmonized data for a small number of randomly selected features.

Evaluation of preservation of biological effects should be tested by choosing a few 

biological effects that may be of interest to end-users and using them as the covariate 

or outcome of interest in the above analyses. Note that in batch effects evaluation, less 

evidence of batch effects is desired, while in biological effects evaluation, more evidence of 

biological effects is better. For both batch effects and biological effects evaluation, additional 

evaluation can be added as appropriate, including other metrics highlighted in Figure 4. For 

example, if the primary goal of the harmonization method is to use a reference batch-trained 

prediction algorithm on source-batch data, improvement in test time performance of this 

prediction algorithm should be included as part of the evaluation. For all metrics, baseline 

comparison of outputs should be made to those from unharmonized data in addition to one 

or more previously validated methods designed for the same data setting.

To evaluate removal of batch effects in image-level data, we encourage the use of both 

image-level and feature-level metrics to fully characterize harmonization performance. At 

the image-level, evaluation should be conducted through both quantitative image metrics, 

such as SSIM and FID, as well as qualitative visualization of several comparable image 

slices. In prospective study designs, comparable image slices refer to paired data, and in 

retrospective designs, they refer to slices from individuals with similar pertinent covariates. 

For qualitative visualization, we encourage the inclusion of axial, coronal, and sagittal 

slices for each of unharmonized, harmonized, and reference images. We recognize that 

many harmonization methods on 3D neuroimaging data are limited to correction of axial 

slices, small 3D patches, or even individual voxels due to constraints in computational 

power, model complexity, and sample size, so coronal and sagittal slices may look distorted. 

However, we believe it is important to establish a baseline as to the extent and characteristics 

of such distortions.

For feature-level evaluation of image-level harmonization methods, we recommend that 

methodologists extract a small number of relevant image-derived features from both 

unharmonized and harmonized datasets. Then, the full set of metrics described above for 

evaluating feature-level harmonization can be applied to assess for effective harmonization 

and look out for signs of mode collapse. We argue that while image-level harmonization 
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should imply harmonization of downstream extracted features, this may not necessarily 

be the case in existing methods due to how challenging it is to estimate and remove 

batch effects in images. More thorough characterization of how image-level methods affect 

these subsequent features is necessary for methodologists to better understand areas for 

improvement and for end-users to assess the robustness of these methods.

As we encourage authors of image-level methods to include potentially distorted 

visualizations or sub-optimal evaluation results on image-derived features, we 

simultaneously encourage editors and reviewers to ask for such assessments in order 

to characterize the behavior of current state-of-the-art methods more comprehensively. 

Additionally, we hope these editors and reviewers recognize the immense challenge of 

image-level harmonization, and in doing so, publish manuscripts with interesting ideas or 

making encouraging progress despite distortions or bias that may be evident.

5.3.3. Code availability—Thirdly, we encourage methodologists of both image-level 

and feature-level methods to provide easy-to-use, open-source code so that novel 

harmonization methods can be compared to previously described methods, applied to real-

world problems by neuroscientists, and understood at the code level. The lack of such 

available code is particularly evident in deep learning image-level methods, where most 

methods provide no code or refer readers to the original codebase the novel method was 

based on. Methods that do provide code tend to do so by uploading entire project directories 

with minimal curation, leaving subsequent users to parse through, edit, and re-implement the 

code themselves. Ideally, both deep learning and statistical methodologists should strive to 

write comprehensive tutorials, provide well-organized code, and create a small number of 

high-level wrapper functions such that subsequent users can run the method on their own 

data with only a few lines of user-written code. Software engineering principles would also 

be useful, including implementation of continuous integration tests, containerization of code, 

and reduction of dependencies.

Such standards are already widespread in similar fields, such as batch effect correction 

methods for single-cell RNA sequencing (scRNA-seq) analyses. In scRNA-seq batch effect 

correction, most statistical and deep learning methods have been proposed with the inclusion 

of easy-to-use code. As a result, comprehensive reviews have been conducted to assess 

method performance across different large datasets, allowing for empirical quantitative and 

qualitative comparison (Tran et al., 2020). A similar ability to comparatively assess a broad 

range of harmonization methods and establish a current gold-standard would be hugely 

impactful for the field. In application, improved accessibility to proposed harmonization 

methods will allow these methods to now only present interesting ideas for growth, but also 

provide useful and applicable methods for end-users.

Finally, code-level understanding is especially important in deep learning models. While 

descriptions of network architecture and theoretical loss functions illustrate the main 

ideas behind a model, there are numerous ways these design choices, and others, can be 

implemented. For example, there are many details that may be unimportant for theoretical 

understanding and therefore excluded from the manuscript text, but still have large empirical 
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impacts, including: choice of optimizer and optimizer parameters; hyperparameter-tuning 

algorithm and hyperparameter search ranges; minimization of mode collapse risk; and more.

5.3.4. Future work—In retrospective feature-level data, methodologists should seek 

to further develop statistical techniques for harmonization. While widely-used statistical 

approaches have largely relied on univariate modeling or strong assumptions about the 

nature of batch and biological effects, recently proposed multivariate harmonization methods 

such as CovBat and UNIFAC have been shown to greatly improve harmonization. However, 

these approaches continue to make strong assumptions and require more validation. For 

example, CovBat assumes multivariate batch effects is present only in the covariance matrix 

of the residuals while UNIFAC assumes multivariate batch effects can be estimated as low-

rank latent patterns. Thus, further work in validating such methods as well as developing 

novel statistical methods to remove complex multivariate, non-linear batch effects in a 

theoretically-rigorous manner may be warranted.

Complementary work on applying deep learning methods to feature-level data is a promising 

next step, with the hope that an appropriately-designed neural network may be able to 

model and remove complex batch effects in a data-driven manner. In this vein, methods 

such as CVAE and gcVAE have been proposed. However, CVAE has been shown to have 

the unintended consequence of removing biological effects of interest along with batch 

effects. To address this consequence, gcVAE explicitly rewards the model for retaining 

biologic effects, which may introduce bias into the harmonized dataset; this consequence 

has not been empirically demonstrated. Additionally, like many image-level deep learning 

methods and unlike statistical methods, CVAE and gcVAE assume the complexity of their 

neural networks allow for near-perfect model fit, such that output can be directly treated as 

harmonized data without explicit reintroduction or modeling of error terms. Further work 

in deep learning harmonization of feature-level data should evaluate the validity of this 

assumption and its impact on downstream analyses.

Ultimately, efforts should be made to develop strong methodology that can easily and 

robustly perform harmonization on image-level data across a range of sample sizes, 

acquisition sequences, and study designs. To do so, methodologists should consider 

leveraging both statistical and deep learning ideas; statistical methods may allow for 

improved robustness and strong performance in smaller samples or when confounding is 

present, while deep learning models may better capture the complexity of image-level data, 

which pose serious challenges to traditional statistics. For all image-level harmonization 

methods, care must be taken to characterize harmonization performance both qualitatively 

and quantitatively, not only at the image level, but also for subsequent features extracted 

from these harmonized images; evaluation on extracted features is both sensitive and 

specific for poor harmonization performance, and performance on extracted features may 

additionally be of interest to end-users. Again, when reviewing image-level harmonization 

papers that include unfavorable results, we encourage editors and reviewers to note the 

difficulty of performing harmonization at the image level.

Finally, more work is necessary in evaluation. Firstly, further development of sensitive, 

covariate-aware multivariate evaluation metrics is important. While univariate feature-wise 
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regression approaches can detect batch effects conditional on confounding biological 

covariates; similar capabilities of conditioning should be developed or borrowed from 

other fields for multivariate machine learning approaches and validated in the context 

of harmonization. Additional qualitative and quantitative image-level metrics suited for 

retrospective datasets are also necessary to provide better assessment of image-level 

harmonization. To support this effort and demonstrate the validity of these newly proposed 

metrics as well as pre-existing ones, progress must be made in developing simulation studies 

with realistic batch effects and biologic effects or large traveling subject cohorts, such that 

“gold-standard” harmonization can be known. The availability of these datasets will also 

allow methodologists to confirm the behavior of newly developed methods.

Comprehensive comparative analyses of currently proposed harmonization methods under a 

wide range of data settings would also be hugely beneficial. In the current literature, novel 

methods tend to compare their harmonization outputs to a small set of similar methods 

using a limited number of evaluation metrics. This leads to challenges in comparing novel 

methods with one other and a less complete understanding of how each harmonization 

method succeeds or why it struggles. Thorough quantitative and qualitative comparison will 

allow for end-users to more confidently choose optimal methods and for methodologists to 

better focus their efforts on addressing underlying problems.

Conclusion

In neuroimaging, multi-batch data is increasingly necessary to obtain sufficient sample 

sizes and produce generalizable results. Furthermore, in these settings, end-users are 

more interested in applying powerful and flexible models to perform both inference and 

prediction. To enable these efforts, removal of batch effects via image harmonization is an 

important, but complex, pre-processing step.

In this review, we comprehensively discuss the growing set of statistical and deep learning 

image harmonization methods, categorizing these methods broadly to highlight common 

themes. We then summarize approaches for evaluating the effectiveness of harmonization 

in feature-level and image-level methods. Finally, we provide recommendations to 

neuroscientists and harmonization methodologists. For neuroscientists, we give suggestions 

on when to perform harmonization and which harmonization method to choose in each data 

and study design setting. We also discuss important limitations of harmonization and the 

settings where these limitations may be most relevant. For methodologists, we highlight 

critical methodological obstacles, advocate for a standardized evaluation framework, push 

for increased transparency in assumptions and code-availability, and provide guidance on 

possible future directions for the field. Overall, we hope these recommendations will allow 

for more effective and widespread application of current harmonization methods as well as 

accelerated progress towards thorough and precise removal of batch effects in increasingly 

complex neuroimaging data.
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Fig. 1. 
Flowchart of statistical models organized by study design and underlying model class. 

Asterisks indicate methods that have been evaluated in more than one study.
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Fig. 2. 
Flowchart of ComBat-based models organized by study design and underlying model class. 

All models presented in this figure perform feature-level harmonization in retrospective 

settings. Asterisks indicate methods that have been evaluated in more than one study.

Hu et al. Page 56

Neuroimage. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Flowchart of deep learning models organized by study design and underlying model class. 

Asterisks indicate methods that have been evaluated in more than one study.
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Fig. 4. 
Flowchart of evaluation metrics for harmonization organized by data type and evaluation 

types. Asterisks indicate the set of standardized evaluation types that we believe should be 

included in the evaluation of novel harmonization methods, depending on data type and 

study design. Note that metrics included here are only for evaluating harmonization and do 

not include metrics for evaluating performance in downstream analyses.
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