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Abstract

Purpose.—Accurate neuroelectrode placement is essential to effective monitoring or stimulation 

of neurosurgery targets. This work presents and evaluates a method that combines deep learning 

and model-based deformable 3D-2D registration to guide and verify neuroelectrode placement 

using intraoperative imaging.

Methods.—The registration method consists of three stages: (1) detection of neuroelectrodes in 

a pair of fluoroscopy images using a deep learning approach; (2) determination of correspondence 

and initial 3D localization among neuroelectrode detections in the two projection images; and 

(3) deformable 3D-2D registration of neuroelectrodes according to a physical device model. The 

method was evaluated in phantom, cadaver, and clinical studies in terms of (a) the accuracy of 

neuroelectrode registration and (b) the quality of metal artifact reduction (MAR) in conebeam CT 

(CBCT) in which the deformably registered neuroelectrode models are taken as input to the MAR.

Results.—The combined deep learning and model-based deformable 3D-2D registration 

approach achieved 0.2 ± 0.1mm accuracy in cadaver studies and 0.6 ± 0.3mm accuracy in clinical 

studies. The detection network and 3D correspondence provided initialization of 3D-2D 

registration within 2mm, which facilitated end-to-end registration runtime within 10 s. Metal 

artifacts, quantified as the standard deviation in voxel values in tissue adjacent to neuroelectrodes, 

were reduced by 72% in phantom studies and by 60% in first clinical studies.

Conclusions.—The method combines the speed and generalizability of deep learning (for 

initialization) with the precision and reliability of physical model-based registration to achieve 
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accurate deformable 3D-2D registration and MAR in functional neurosurgery. Accurate 

3D-2D guidance from fluoroscopy could overcome limitations associated with deformation in 

conventional navigation, and improved MAR could improve CBCT verification of neuroelectrode 

placement.
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intraoperative imaging; 3D-2D registration; deep learning; object detection; deformable 
registration; metal artifact reduction

1. Introduction

Neuroelectrode placement is an important task in deep brain stimulation (DBS) treatment of 

Parkinson’s disease (Deuschl et al 2006), and emerging DBS therapies using novel electrode 

designs (Willsie and Dorval 2015, Steigerwald et al 2016) offer potential breakthroughs 

in a growing spectrum of neuro-pathologies, including Alzheimer’s disease, autism, and 

depression (Laxton et al 2010). Accurate electrode placement is essential to targeting 

functional nuclei (Richardson et al 2009) and avoiding adverse effects (Seijo et al 2014, 

Vakharia et al 2017). Although there is no consensus as to what constitutes a sufficient level 

of accuracy, most studies consider electrodes placed farther than 2 − 3mm from the target as 

misplacement and recommend reimplantation (Burchiel et al 2013, McClelland et al 2005). 

Similarly, electrode placement is a crucial aspect of stereoelectroencephalography (sEEG) 

(Cardinale et al 2013) for epilepsy localization and monitoring (Girgis et al 2020). In each 

case, accurate guidance and verification of electrode placement are important to minimizing 

targeting error and understanding variations in outcome.

Existing standards of care for guiding electrode placement include intraoperative cone-beam 

CT (CBCT) or magnetic resonance imaging (MRI), frame-based stereotaxy (Fitzpatrick et al 
2005), surgical navigation with infrared (IR) or electromagnetic (EM) trackers (Nowell et al 
2014), and (more recently) surgical robotics (Dorfer et al 2017). With the exception of direct 

visualization in real-time MRI, such systems largely assume rigidity with respect to the skull 

and are susceptible to geometric errors resulting from intracranial tissue deformation and 

bending of the electrode array (delivered via a long, thin wire). Kerezoudis et al (2020) 

for example, demonstrated electrode array deformations due to cerebrospinal fluid loss 

during transventricular approaches. Such deformations can confound the accuracy of robot-

assisted sEEG placement, which provides a high-precision (e.g. 0.9 mm using NeuroMate 

[Renishaw, UK]) (von Langsdorff et al 2015), tremor-free platform that can streamline 

procedural workflow (González-Martínez et al 2016), but assume a rigid relation among 

frames, trackers, and intracranial targets. EM tracking can resolve device deformation by 

localizing the tip of a flexible instrument (Burchiel et al 2020), but does not account for 

intracranial deformation and can be susceptible to interference from metal instruments.

Intraoperative imaging, such as MRI, CT, and CBCT can provide up-to-date visualization 

that helps to address discrepancies between the preoperative 3D images and surgical plan 

and the intraoperative scene. For example, intraoperative CBCT acquired at the beginning 

of a case can be used to register navigation systems to the cranium, although image 
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artifacts and low-contrast resolution can confound visualization of intracranial deformation 

or verification of the surgical product. Despite such image quality challenges, intraoperative 

CBCT has proven to improve the accuracy of stereotactic electrode placement (Smith and 

Bakay 2011, Holloway and Docef 2013, Carlson et al 2017). Repeat CBCT during the 

case (e.g. CBCT images acquired for planning, registration, guidance, and/or verification), 

however, must be managed judiciously with respect to radiation dose. Recognizing that 

CBCT systems commonly permit 2D fluoroscopy (with one fluoroscopic frame amounting 

to ∼ 1/400th the dose of a CBCT scan), the method described below was developed to 

guide and verify neuroelectrode placement via deformable 3D-2D registration of CBCT and 

fluoroscopy.

3D-2D registration of intraoperative fluoroscopy images for guiding neuroelectrode 

placement was first proposed by Hunsche et al (2017) using an intensity-based algorithm to 

rigidly map electrode locations to the preoperative CT. Prior work established a model-based 

3D-2D registration method that demonstrated utility in spinal pedicle screw placement to: 

(1) guide instruments by providing 3D localization from biplane fluoroscopy (Uneri et 
al 2017); and (2) verify implant placement via 3D imaging with metal artifact reduction 

(MAR) (Uneri et al 2019). While the accuracy of such model-based approaches is well 

established (Uneri et al 2015, 2017), the underlying iterative optimization can suffer from 

limited capture range and require accurate initialization to reach a stable global solution with 

minimal iterations (i.e. short runtime). This is especially true in localizing neuroelectrode 

arrays, where the object is prone to deformation and is small with respect to the field-

of-view. Solving such registrations with complex object models and high-dimensional 

(deformable) transformations within a large search space are subject to local minima and 

can result in long runtimes that may not be suitable to intraoperative workflow. Modern 

approaches using convolutional neural networks (CNN) have seen a rapid growth fueled 

by improvements in parallel computation and GPU hardware and offer to address many 

of these challenges in a fast and context-aware manner. Pinte et al (2021) for example, 

used a U-Net for segmenting EEG electrodes in MRI scans, followed by template-based 

registration to refine the accuracy of the network output. The solution by Pei et al (2017) 

similarly addresses challenges in network generalization by using the CNN within an 

iterative framework to regress deformation parameters that map a 3D CBCT image to 2D 

radiographs.

The deformable 3D-2D registration method presented below is novel in its joint utilization 

of data-driven techniques based on CNNs with physical model-based techniques that 

exercise a principled approach with respect to knowledge of the device and imaging system 

geometry. The CNN-based detection absolves the need for manual initialization, prior 

surgical planning, or time-consuming search strategies that challenged previous conventional 

methods using numerical optimization (Hunsche et al 2017). The subsequent model-based 

registration takes advantage of a-priori knowledge (i.e. C-arm geometry and parametric 

description of the implant shape) to achieve high accuracy while circumventing challenges 

common to current deep learning approaches, such as generalizing learned models to new 

datasets (Pei et al 2017). The resulting deformable registration facilitates two important 

tasks, to our knowledge demonstrated for the first time in DBS surgery: (1) guiding flexible 
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neuroelectrodes to anatomical targets using 2D fluoroscopy (see, repeat 3D imaging and/or 

navigation); and (2) reducing metal artifacts in reconstructed images to verify implant 

placement in 3D CBCT imaging. The work builds on our recent success in detecting 

pedicle screws in radiographs (Doerr et al 2020) and preliminary algorithm development for 

deformable neuroelectrode registration with evaluation of minimum dose in phantom studies 

(Uneri et al 2021). Current work extends the previous approach by using a CNN trained for 

object detection combined with the projective geometry of the imaging system for reliable 

pose initialization of the registration process. The subsequent deformable registration of a 

3D neuroelectrode model leverages the CNN-based initialization to reach a solution with 

fewer iterations and reduced susceptibility to local minima. The performance of instrument 

detection, registration, and MAR were experimentally evaluated in phantom, cadaver, and 

first clinical studies.

2. Methods

2.1. Algorithm for 3D-2D localization of neuroelectrodes

As illustrated in figure 1, the algorithm operates on a pair of fluoroscopic images containing 

one or more neuroelectrodes in the patient and comprises three main stages: (1) keypoint 

detection of the neuroelectrode using Mask R-CNN (He et al 2020), (2) establishing 3D 

correspondence of detections from multiple views via backprojection and rank-ordering 

of identified points; and (3) deformable 3D-2D image registration of the patient and 

electrodes using the known-component registration (KC-Reg) (Uneri et al 2017) algorithm. 

The method outputs the deformable shape and pose parameters of the neuroelectrode with 

respect to the patient anatomy, which in turn is used to guide instrument placement (section 

2.2.1) and to mitigate metal artifacts in CBCT acquired at the end of the case to verify 

placement (section 2.2.2).

2.1.1. Detection and keypoint localization of neuroelectrodes—The first stage 

of the approach detects neuroelectrodes in the fluoroscopic images and extracts 2D 

locations. An extended version of Mask R-CNN was adapted for concurrent object detection 

(tip of the electrode array) and keypoint localization (individual electrodes) (He et al 2020). 

The network uses a ResNet-50 backbone for feature extraction pre-trained on the COCO 

dataset (Lin et al 2014), and the last 3 layers were retrained on our training dataset (below). 

The region proposal network identifies rectangular regions-of-interest (ROIs) containing 

neuroelectrodes, which are then pooled and aligned on the image pixel grid, yielding the 

output bounding boxes containing all four electrodes with associated confidence scores. 

A separate head performs one-hot binary segmentation on each bounding box, producing 

single-pixel keypoint detection of individual electrode centers. A threshold on confidence 

scores ts  is commonly used to reduce the incidence of false detections.

The model was trained on patient images acquired under an IRB-approved clinical study 

involving 35 CBCT scans from 23 patients undergoing cranial neurosurgery. Training 

dataset images were drawn from projections underlying 26 of these CBCT scans that 

did not contain DBS electrodes, although most included other instrumentation, such as 

microelectrode arrays or sEEG electrodes. Projection data were sampled from each scan 
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at 4∘ intervals, yielding a total of 2314 images, which was split 10:1 for training and 

validation. For each image, 1–2 electrodes were simulated using the parametric device 

model illustrated in figure 2(a) and detailed in section 2.1.3. Model parameters were 

randomly sampled from uniform distributions to capture variations in design, including: 

distance between electrodes δe = 2.5 ± 0.5mm ; electrode diameter de = 1.4 ± 0.2mm ; length 

le = 1.5 ± 0.1mm ; attenuation μe = 0.5 ± 0.1mm−1 ; and cable diameter dc = 1.4 ± 0.2mm . 

The electrode arrays were randomly positioned in 3D ±6cm and ±30∘, with respect to 

the C-arm isocenter), and random deformations were applied by displacement of the 

B-spline control points αj . The 3D model was forward-projected according to the projective 

geometry Pθ  associated with the projection view at gantry angle θ. The true bounding box 

and keypoint labels were automatically defined from the forward projection model. The 

model was trained using the Adam optimizer with a learning rate of 10−4 and batch size of 

10 . The multi-task loss function was defined over each ROI as:

ℒ = ℒclass  + ℒbox  + ℒkeypoint, (1)

where ℒclass represents the combined log loss over 2 classes (i.e. electrode or not),ℒbox

is the box regression using smooth L1 loss, andℒkeypoint is the binary cross-entropy. Data 

augmentation during training included random horizontal and vertical flips and small 

perturbations of the pixel values (by adding 0%−1% uniform noise) to help prevent 

overfitting by ensuring no image is observed more than once.

2.1.2. Correspondence of detected electrodes—The correspondence among 

keypoint detections on multiple fluoroscopic images—i.e. the determination of which 

keypoint detections correspond to the same electrode—is established by backprojection 

of 2D keypoint locations into a 3D coordinate frame according to the imaging system 

geometry. Each detected keypoint kθ, i  is backprojected according to the projective 

transform Pθ  of its associated fluoroscopic view (Galigekere et al 2003), yielding a ray 

from the x-ray source to the detector plane, where the source point s  and direction vector 

v  for each ray are:

s = − P 1…3
−1 P 4 , (2a)

v = P 1…3
−1 k, 1 T , (2b)

where P 1…3  signify the first 3 columns of P , and P 4  is the last. Fluoroscopic views (each 

with Kθ detections) yield the backprojected rays:

rθ = sθ, v θ, i: i = 1…Kθ . (3)

Rays from multiple views are intersected in a combinatorial fashion (e.g. the Cartesian 

product rAP × rLAT) to compute their intersections in 3D. Exact intersections are not expected 

due to small variations in system geometry and keypoint localization; therefore the 
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intersection is approximated as the 3D point xi that minimize the sum of squared distances to 

rays:

x̂i = arg min
xi θ

δθ, i
2 xi , (4)

where δθ, i is the distance from xi to a ray, such that

δθ, i
2 xi = sθ − xi

T I − v θ, i v θ, i
T sθ − xi . (5)

The least-squares minimization in equation (4) can be solved algebraically by rearranging 

the terms as A = ∑θ I − v θ, i v θ, i
T

 and b = ∑θ I − v θ, i v θ, i
T sθ, and solving Ax = b using 

Moore–Penrose pseudoinverse. A is expected to be full rank, except for instances in which 

ray directions from multiple views are parallel. Such cases, however, would either indicate 

failure to rotate the gantry for the second view or require joint translation of the source and 

detector along the same axis, which is not possible with C-arm geometries considered here.

The points that represent true electrode positions are then identified as the set that result 

in the smallest average distance Δi = 1
N ∑θ δθ, i x̂i , filtering intersections with Δi > 10mm as 

outliers due to false detections. All such possible sets are evaluated in a permutative fashion, 

ensuring that the mapping from 2D keypoints to 3D points is bijective (i.e. each detection is 

uniquely associated with a point). Establishing correspondences in this manner is inherently 

robust to false positives but requires a minimum of false-negative detections. The preceding 

detection stage can therefore be tuned to take advantage of this bias as presented in section 

3.1 below.

2.1.3. Deformable known-component 3D-2D registration (KC-Reg)—The third 

stage of the approach leverages a parametric form of the KC-Reg algorithm (Uneri et al 
2017) to compute the 3D pose of flexible neuroelectrodes from a pair of fluoroscopy images. 

The 3D model of a neuroelectrode E  was a B-spline (Goerres et al 2017):

E α, u =
j = 0

M
αjBj, k u (6)

chosen due to its locality in manipulation of individual control points αj  without changing 

the shape of the entire curve. A cubic spline k = 3  was used and the knots were clamped 

t0 = t1⋯ = tk . Using M = 4 control points, the deformable transformation of an electrode 

array amounts to 12 degrees-of-freedom (DOF).

As illustrated in figure 2(a), a cylindrical cable of diameter dc contains N = 4 electrodes 

separated by δe, where each electrode was modeled as a rigid cylinder of diameter de and 

length le. The combined transformation and shape parameters,λ = α1…4, dc, le, de, δe , result in 

a component model with λ = 16 DOF. Such parametric modeling circumvents the need for 
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exact implant models (e.g. manufacturer CAD specifications) and supports a broad variety of 

designs, such as those used in phantom and cadaver studies, shown in figures 2(b)–(e).

The KC-Reg algorithm (Uneri et al 2015, Uneri et al 2016) iteratively optimizes component 

model parameters λ  to maximize the gradient similarity (viz. gradient correlation, GC) 

(Penney et al 1998) between the acquired images Iθ  and the component forward projections 

as:

λ̂ = arg max
λ N

θ
GC   Iθ, Pθ ∘ E λ (7)

where the parametric component is rendered as a 3D triangular mesh and forward-projected 

(using trilinear interpolation) according to the projective transform Pθ.

The output from the CNN-based electrode detection stage helps the registration process in 

two ways. First, correspondent keypoint detections at 3D location xi are used to initialize 

αj, and their mean separation is used as an initial value for δe. Second, the bounding box 

locations are used to crop projections to ROIs that limit the search space, allow more 

efficient use of images at their original resolution (without downsampling), and absolve the 

need for a multi-resolution pyramid (commonly used to increase capture range).

2.1.4. Known-component metal artifact reduction (KC-MAR)—The precise 3D 

localization offered by KC-Reg forms the basis of a MAR strategy, referred to as KC-MAR. 

Previous studies (Uneri et al 2019) demonstrated the approach in the context of MAR 

in CBCT images containing spinal fixation hardware (pedicle screws and rods), where 

accurate 3D-2D registration was shown to overcome common pitfalls associated with metal 

segmentation.

The KC-MAR approach forward-projects the registered component models according to the 

imaging system geometry to obtain precise 2D segmentations. Specifically, pixels associated 

with metal objects were identified as the region where Pθ ∘ E λ̂ > 0. A bilinear interpolation-

based sinogram inpainting method was used for projection data correction. As the localized 

region does not constitute a regular grid, Delaunay triangulation was used to partition the 

2D space (Barber et al 1996), followed by barycentric interpolation over each triangle. 

To further mitigate effects due to image noise, the surrounding metal-free region was first 

median-filtered with a 3 × 3 pixel kernel prior to interpolation. The filtered image was only 

used to obtain a noise-reduced interpolation, and the original measurements in the metal-free 

region were used during reconstruction.

The corrected 2D projection data were reconstructed using 3D filtered backprojection on a 

710 × 710 × 534 voxel grid with 0.3 × 0.3 × 0.3mm3 voxel size, using a 2D Hann apodization 

filter with cutoff at 50% of Nyquist frequency. The metal implant was reintroduced to the 3D 

image using a conventional voxel replacement approach in which the reconstructed voxels 

that correspond to the metal were replaced by the expected attenuation coefficients.
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2.2. Experimental validation in image-guided neurosurgery

2.2.1. Guidance of electrode placement using KC-Reg—The accuracy of 3D-2D 

registration of neuroelectrodes from two fluoroscopic views was first evaluated in a cadaver 

study. Neuroelectrodes E A…D  were first placed in the head via Kocher’s point burr holes 

to approximately 6 cm depth—first unilaterally, then bilaterally. Following each electrode 

placement, CBCT scans were acquired on the O‐armTM imaging system (120kV, 186mAs, 745
projections, 33.6mGy . Two scans were consecutively acquired to assess the impact of pixel 

size on registration accuracy: first using the standard clinical 2 × 4 pixel binning mode 

(giving 0.388 × 0.776mm2 pixel size); and the second scan using a higher-resolution 2 × 2
pixel binning mode (with isotropic 0.388 × 0.388mm2 pixel size).

Registration accuracy was quantified in terms of the 3D target registration error (TRE) 

measured for each electrode as follows:

TREi = ∥ E λ̂, iδe − xi ∥
2
, (8)

where the registered location of electrode i was calculated by evaluating the spline E  at iδe

distance from the tip. True electrode locations xi  were manually identified in 3D images, 

reconstructed from 2 × 2 binned projection data within a 2 × 2 × 2cm3 ROI reconstruction 

with a finely oversampled 0.05 × 0.05 × 0.05mm3) voxel grid to mitigate partial volume 

effects.

2.2.2. Verification of electrode placement using KC-MAR—The performance of 

deformable 3D-2D registration was also evaluated in terms of the reduction in metal artifacts 

yielded by the KC-MAR algorithm in CBCT images of a head phantom. As shown in 

figure 3 , the phantom was a water-tight 3.2 mm thick cranium shell (LiquiPhil, Phantom 

Laboratory, Greenwich NY) modified to include entry ports for low-contrast simulated 

intracranial structures and neuroelectrodes. A set of cylindrical rods emulating low-contrast 

intracranial soft tissues were inserted in the head phantom, including plastics of varying 

density with −150, − 135, − 105, + 40, and +200HU contrast to water. Neuroelectrodes were 

introduced from positions approximating Kocher’s point. CBCT images were acquired using 

the same scan protocols described above. The analysis involved implant detection (via CNN) 

and deformable registration (via KC-Reg), followed by projection data correction and 3D 

image reconstruction (via KC-MAR). Artifact magnitude was quantified as the standard 

deviation of voxel values within homogeneous regions of interest adjacent to the electrode.

2.2.3. Clinical study of electrode guidance and verification—The performance 

of 3D-2D neuroelectrode guidance and verification was tested on clinical images obtained 

under an IRB-approved protocol. CBCT scans were acquired with a clinical O‐armTM

imaging system (120 kV, 75–240 mAs) operated either in a rotated-detector mode with 40 

cm axial FOV (23/35 scans) or a centered-detector mode with 20 cm axial FOV (12/35 

scans). Images from 26 cases were used as training data as described in section 2.1.1. The 

KC-Reg and KC-MAR methods were tested on 100 images from 9 cases containing a total 

of 15 neuroelectrodes.
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Electrode detection accuracy was evaluated on the clinical dataset in terms of recall 

TP/ TP + FN  and precision (TP/(TP + FP)). Projection distance error (PDE) was measured 

as the 2D distance (on the detector plane) between the true and predicted electrode position, 

with the true 2D location estimated by forward-projecting manually identified true 3D 

locations Xi . The TRE was computed for each electrode after 3D-2D registration, and 

artifact reduction was measured in KC-MAR images in terms of the standard deviation in 

voxel values in regions adjacent to the implant.

3. Results

3.1. Electrode detection with keypoint localization

Figure 4 summarizes the accuracy of electrode detection in 100 intraoperative fluoroscopy 

images obtained from various perspectives in 9 clinical cases, demonstrating the ability 

of the network to generalize from the (simulated) training set to real electrode images. 

Example images from the training dataset are shown in figures 4(a)–(b), which highlight 

the degree of variations in curvature, electrode interval distances, and the complexity of 

the underlying radiographic scene with instruments and other implants. Training loss curves 

in figure 4(c) indicate a limit of 35 epochs, beyond which an increase in validation loss 

suggests overfitting. Keypoints with < 10mm PDE were considered as correct (true positive) 

detections, based on an empirical observation of figure 4(d), which shows that values of 

8–15 mm do not affect recall or precision. While a 10mm PDE is significant from a clinical 

perspective, it is well within the capture range of the subsequent 3D-2D registration and is 

sufficient for purposes of initialization.

Figure 4(e) highlights the tradeoff in recall and precision with the detection score threshold 

ts . A typical selection criterion balances performance—e.g. ts = 80 % giving recall = 94.3 %
and precision = 93.1 %. As noted above, while the multi-stage detection/correspondence 

approach intrinsically filters false-positive detections, the process requires a minimum of 

false-negative detections; therefore, ts = 0 % was adopted (all detections considered valid), 

thereby eliminating false negatives (100% recall) at the expense of precision (60.0%)

3.2. Correspondence of detected electrodes

The accuracy of correspondence was evaluated on pairs of fluoroscopic images with 

Δθ = 90∘ angular separation (e.g. AP and LAT) obtained from the 100 images. The 

method demonstrated 98.8% precision in correspondence (see 60% precision for detection), 

reflecting the intrinsic rejection of false detections. Figure 5(d) (top row) shows a false 

detection related to the connector end of the electrode, which nominally has 12 terminals, 

but were truncated to capture only 4 in the image. Figure 5(d) (bottom row) shows a failure 

mode in which 4 threads of a screw were identified as electrodes. Such false detections are 

typically not consistent between radiographic views and are therefore automatically rejected 

via 3D correspondence. The small number of correspondence failures were cases for which 

detections were narrowly separated in the z direction (i.e. when multiple detections lie on the 

epipolar plane). Since such instances can be automatically detected, a third projection view 

can be used to resolve the registration (which improved correspondence recall and precision 

to 100%).
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As illustrated in figures 5(e)–(f), detection of electrodes with PDE = 3.7 ± 2.3mm resulted in 

TRE = 1.4 ± 1.0mm 3.4mmCI95 %  after 3D correspondence—well within the expected capture 

range of the subsequent 3D-2D registration stage. Note that the relation between the 2D 

PDE and 3D TRE was governed both by the system magnification factor (1.8 for the 

O‐arm TM imaging system) as well as the rejection of false detections.

3.3. Deformable 3D-2D registration for guiding electrode placement

The geometric accuracy of KC-Reg was first evaluated in a cadaver specimen, using pairs 

of radiographs separated by Δθ = 90∘. The random perturbation of component parameters 

λ  gave initial TRE = 2.7 ± 0.3mm. As shown in figure 6(a), KC-Regachieved TRE 

= 0.2 ± 0.1mm 0.3mmCI95 % . The higher-resolution imaging protocol 2 × 2 detector pixel 

binning) gave modest improvement in mean TRE 0.29mm for 2 × 4 binning, compared to 

0.17mm for 2 × 2 binning) and resolved an additional 2 % 8/392  of outliers. The dependence 

of TRE on angular view separation shown in figure 6(c) was consistent with results in 

previous

studies, (Uneri et al 2014) showing that Δθ = 10∘ − 15∘ provided median TRE similar to that 

for Δθ = 90∘, and higher angular separation (e.g. Δθ = 25∘ − 30∘) ensured TRE ⩽ 0.5mm with 

95 % confidence.

Figure 6(d) shows the end-to-end performance of the detection, correspondence, and 

deformable 3D-2D registration approach on images from the clinical study. With the robust 

initialization provided by the CNN-based detection and correspondence stage (initial TRE 

= 1.4 ± 1.0mm), deformable KC-Reg achieved TRE = 0.6 ± 0.3mm CI95 % = 1.0mm .

3.4. KC-MAR for verifying neuroelectrode placement

Axial and coronal slices in figures 7(a)–(b) show the reduction in metal artifacts achieved 

with KC-MAR in phantom studies. The registered 3D component model is overlaid in 

yellow. Artifact magnitude was reduced from 58 ± 36HU without correction to 16 ± 5HU
following KC-MAR, approaching the level of variation in the un-instrumented reference 

image (13 ± 1HU, attributable to quantum noise).

Evaluation of KC-MAR in clinical images is summarized in figure 8. Although artifacts 

from the electrode were the dominant source of information loss in the region of target 

anatomy central to the cranial vault, the images suffered from a number of other artifacts not 

addressed in the current work (including truncation, scatter, beam hardening, and other metal 

instruments—e.g. the Leksell-frame and robotic arm). Despite these additional confounding 

factors, KC-MAR reduced the magnitude of metal artifact within the region of interest about 

the electrode from 206 ± 105HU to 83 ± 39HU 60 % reduction) across all 9 cases.

4. Discussion

This work presented an approach for image-based guidance and verification of 

neuroelectrode placement in functional neurosurgery, consisting of three main elements: 

(1) deep-learning-based detection of neuroelectrodes in biplane fluoroscopy; (2) deformable 
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3D-2D registration according to a physical model of the neuroelectrodes; and (3) MAR 

in CBCT. The detection method (1) provided fast, robust initialization of the registration 

method (2), which in turn provided accurate device segmentation for the MAR method 

(3). The approach is novel in its combination of the strengths of deep learning for object 

detection with physically principled approaches to registration and image reconstruction, 

which helps circumvent common problems such as model generalization in deep learning 

and slow runtimes for conventional approaches.

1. Mask R-CNN trained on images with simulated electrodes provided accurate 

detection with no false negatives (100% recall) in a clinical test dataset. The 

method for establishing correspondence among electrodes successfully rejected 

false detections, achieving 98.8% recall and precision from 2 fluoroscopic 

views (and 100% with 3 views). The method provided 3D localization 

with TRE = 1.4 ± 1.0mm, providing good initialization for the subsequent 

deformable registration. The detection runtime for a single image was 0.11s, 
and correspondence from a pair of images took 12ms. Using a broad variety 

of component models in simulating the training dataset was key to obtaining 

the large, labeled dataset necessary for supervised learning. Generalization of 

the trained model to real images was consistent with other efforts in literature 

(Gherardini et al 2020). While similar methods commonly use a segmentation 

approach (e.g. a U-Net architecture) (Ambrosini et al 2017), keypoint detection 

provided direct localization of relevant features (electrodes) without additional 

post-processing. The parametric model employed (and therefore the CNN) is 

expected to generalize well to a number of existing 4-electrode device models 

from various vendors. The method can be easily adapted to detect other/new 

electrode designs (e.g. > 4-electrode leads) by extending the parametric model 

and retraining the network. For such cases, the number of classes could also be 

increased > 2  to differentiate between designs. For such cases, the number of 

classes could also be increased > 2  to differentiate between designs.

2. Deformable 3D-2D registration informed by a physical model of the 

neuroelectrode achieved TRE = 0.2mm in cadaver and 0.6mm in clinical studies 

CI95 % = 1.0mm . The high level of registration accuracy was attributable to: (i) 

excellent initialization provided by the CNN-based detection and correspondence 

method; (ii) relative simplicity of the instrument (i.e. simple cylindrical shapes

—see, pedicle screws) (Uneri et al 2015); and (iii) use of a relatively high-

resolution detector readout mode (2 × 2 detector pixel binning). Automated 

initialization via CNN-based detection improved runtime by an order of 

magnitude compared to earlier implementations using multi-resolution pyramids 

(1–3 min) (Goerres et al 2017) and reduced the total number of iterations—e.g. 

an average of 36 iterations required with 0.15s/ iteration, resulting in a mean 

runtime of 5.2 ± 2.4s. The runtime is consistent with the time required to tilt the 

C-arm gantry and acquire two views, and should be kept at a minimum to avoid 

a delay after the second view. While the current runtime does not qualify as 
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real-time, it permits rapid spot-checks of 3D implant poses and trajectories as 

electrodes are advanced toward targets.

3. Using the deformable registration results as input to the KC-MAR algorithm 

demonstrated MAR of 60%–72% in phantom and clinical studies, supporting 

intraoperative 3D verification of implant placement. While KC-MAR 

consistently improved image quality in regions local to the electrode, other 

artifacts limited overall CBCT image quality (e.g. scatter, truncation, and other 

metal objects) and are the subject of other work. Example work underway 

includes sinogram+image domain networks for MAR (Ketcha et al 2021) as 

well as more complete approaches that target soft tissue contrast resolution in the 

brain (Wu et al 2021).

A key benefit of this approach is the reduction in radiation exposure, since solving 

registrations from two radiographs amounts to ∼ 1/200 th the dose of a CBCT scan. While 

the registered implants can be visualized in the context of a preoperative scan (e.g. CT), the 

robustness of the solution is subject to the multiple stages of detection and registration. The 

risk of registration error can be mitigated via successive shots as the implants are advanced 

towards the target, taking advantage of low-dose and rapid acquisition of fluoroscopic 

frames. 3D CBCT imaging provides definitive visualization of the implants and surrounding 

structures and can potentially obviate the need for a postoperative scan at 1/3 − 1/2 the dose 

of a CT. Detecting and determining the pose of implants is simpler in 3D images, and the 

conventional challenges of reconstructing structures around metal implants can be avoided 

by the proposed method. Considering these benefits and tradeoffs, the decision for 2D versus 

3D imaging (and when to use each) ultimately falls to the operator to weigh the benefits 

of guidance via rapid, low-dose fluoroscopy compared to decisive verification using 3D 

imaging at the cost of time and dose.

The approach assumes that the acquired radiographs capture pertinent features of the 

electrode implants. These requirements are consistent with current clinical practice in which 

the surgeons acquire lateral views of the electrodes to judge depth with respect to other 

anatomical features. In DBS surgery, the electrodes are implanted with a superior approach 

and are therefore approximately aligned with the C-arm rotation gantry, which allows clear 

delineation of individual electrodes. Oblique gantry tilts or electrode arrays with severe 

deformations may lead to radiographs with an ‘end-on’ view of the implant, in which 

individual electrodes may be superimposed. While the detection stage is robust to a certain 

level of error (e.g. missing keypoints), such views are prone to failures and may necessitate 

a third view to provide the missing features for detection and registration. The method 

also relies on prior calibration of the imaging system geometry to identify corresponding 

detections. While this information is commonly available for CBCT-capable C-arms, simpler 

C-arms for conventional fluoroscopy may not support a reliable calibration (i.e. gantry 

motion may not be repeatable). Previous work included a method for self-calibration of the 

geometry that may be used for this purpose (Ouadah et al 2016). More recent approaches 

include application of a CNN that directly localizes instruments from multiple 2D views, 

(Schaffert et al 2020a, 2020b, Wu et al 2020) assuming a fixed relation between the views 

(e.g. consistently using AP and LAT views).
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Data from the ongoing clinical study will be used in future work to increase training dataset 

size to better handle variations in anatomy and imaging protocols. Alternative electrode 

designs will also be considered, including sEEG arrays with variable number of electrodes 

and DBS electrodes with novel designs. Work is also underway to extend the 3D component 

model to support detection and registration of electrodes with radio-opaque markers near the 

electrode tip to help resolve the 3D orientation of the electrode array.

5. Conclusions

Image-based guidance and verification of neuroelectrode placement was demonstrated in 

phantom, cadaver, and first clinical studies. Guidance using a novel joint deep learning 

and model-based deformable 3D-2D registration method achieved 0.2 ± 0.1mm accuracy 

in cadaver studies and 0.6 ± 0.3mm accuracy in clinical studies. The deep learning stage 

provided initialization of 3D-2D registration within 2mm, which facilitated end-to-end 

registration runtime within 10s. Verification of electrode placement in CBCT images, 

enabled by 3D-2D registration and MAR, demonstrated 72% artifact reduction in phantom 

studies and 60% reduction in first clinical studies. The deformable 3D-2D registration 

method could improve the accuracy and precision of image-guided neurosurgery, helping to 

minimize errors in geometric targeting and reduce variations in functional outcomes.
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Figure 1. 
Algorithm flowchart for 3D-2D registration of flexible DBS neuroelectrodes. (a) 

Fluoroscopic images are input to (b) keypoint detection based on Mask R-CNN. (c) 

Correspondence among multiple keypoint detections is established by backprojection, which 

in turn initializes the 3D component model. (d) 3D-2D registration is computed using the 

KC-Reg algorithm with a rigid motion model for the cranium and a deformable model of the 

neuroelectrode(s) therein.
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Figure 2. 
Neuroelectrode model and fluoroscopic projections. (a) Deformable B-spline component 

model of a 4-electrode array, showing the parameters (electrode diameter de , length le , 

separation δe , cable diameter dc , and B-spline control points αj ) defining the ‘known-

component’ (KC) model. (b)-(e) Example projections of various 4-electrode designs E A…D

acquired on an O-arm TM imaging system.
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Figure 3. 
Experimental setup. (a) The O-arm ™ imaging system (Medtronic, Littleton MA) used 

for phantom and cadaver studies. (b) Photograph of the water-filled phantom with 

neuroelectrode array and low-contrast intracranial inserts. (c) Example PA radiograph of 

a cadaver head with bilateral neuroelectrodes.
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Figure 4. 
Detection of neuroelectrodes in clinical studies. (a) Example images and (b) zoomed 

insets from the training dataset showing simulated electrodes superimposed on clinical 

radiographs. (c) Training and validation loss curves. Detection accuracy evaluated in terms 

of recall and precision (d) as a function of PDE threshold and (e) as a function of score 

threshold.
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Figure 5. 
3D correspondence of detected neuroelectrodes. (a) Example detections on patient images 

from the clinical study highlight the ability to detect the neuroelectrode arrays in the 

presence of other surgical instruments (e.g. surgical retractors and cables). (b) Zoomed 

insets show example keypoint (individual electrode) detections. (c)-(d) Example images 

highlighting false-positive detections; most failures are not consistent across all views 

and are thereby filtered via 3D correspondence. (e) 2D PDE of detected neuroelectrodes 

(distance in the projection domain) and (f) 3D TRE (registration error in the 3D 

backprojection domain of the patient CBCT image).
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Figure 6. 
Geometric accuracy of deformable 3D-2D registration. (a) Registration accuracy in 

cadaver experiments with randomly perturbed initializations. (b) The higher-resolution 

detector readout mode (2 × 2 binning) showed modest reduction in TRE and outliers. (c) 

Angular separation of fluoroscopic views with Δθ = 25∘ − 30∘ provided TRE < 0.5 mm 

with 95 % confidence. (d) Accuracy of deformable 3D-2D registration in the clinical study. 

‘Initialization’ refers to the TRE following CNN-based detection and correspondence, and 

‘Registered’ refers to the accuracy following 3D-2D registration.
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Figure 7. 
Metal artifact reduction in the phantom. Example CBCT axial and sagittal slices (a) without 

and (b) with KC-MAR. (c) Artifact magnitude measured in homogeneous regions adjacent 

to the electrodes, demonstrating 72% reduction using KC-MAR.
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Figure 8. 
Metal artifact reduction in the clinical study. (a) CBCT axial slice showing a number 

of artifacts attributable to scatter, truncation, and metal. Regions of interest about the 

neuroelectrodes are shown (b) without and (c) with KC-MAR. (d) Artifact magnitude 

measured in the region about the electrodes, demonstrating 60% reduction with KC-MAR.
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