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ABSTRACT:
The Hearing-Aid Speech Perception Index version 2 (HASPI v2) is a speech intelligibility metric derived by fitting

subject responses scored as the proportion of complete sentences correct. This paper presents an extension of HASPI

v2, denoted by HASPI w2, which predicts proportion keywords correct for the same datasets used to derive HASPI

v2. The results show that the accuracy of HASPI w2 is nearly identical to that of HASPI v2. The values produced by

HASPI w2 and HASPI v2 also allow the comparison of proportion words correct and sentences correct for the same

stimuli. Using simulation values for speech in additive noise, a model of context effects for words combined into

sentences is developed and accounts for the loss of intelligibility inherent in the impaired auditory periphery. In addi-

tion, HASPI w2 and HASPI v2 have a small bias term at poor signal-to-noise ratios; the model for context effects

shows that the residual bias is reduced in converting from proportion keywords to sentences correct but is greatly

magnified when considering the reverse transformation. VC 2023 Acoustical Society of America.
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I. INTRODUCTION

The design and evaluation of speech intelligibility met-

rics depends on the stimuli and subject scores to which the

metrics are fit. Metrics have been fit to a variety of stimulus

types, including sentences (Ma and Loizou, 2011; Jørgensen

and Dau, 2011; Biberger and Ewert, 2016; Kates and

Arehart, 2021), words (Christiansen et al., 2010; Taal et al.,
2011; Van Kuyk et al., 2018), and phonemes (Steeneken

and Houtgast, 2002; Elhilali et al., 2003; Moncada-Torres

et al., 2017). Metrics based on speech envelope modulation

(Elhilali et al., 2003; Taal et al., 2011; Jørgensen and Dau,

2011; Biberger and Ewert, 2016; Van Kuyk et al., 2018;

Kates and Arehart, 2021) will also depend on the length of

the speech segments as estimates of low-rate envelope mod-

ulation will be less accurate for short segments (e.g., pho-

nemes or isolated words) than for longer segments (e.g.,

words embedded in sentences or complete sentences) due to

the loss of spectral resolution (Payton et al., 2002; Payton

and Shrestha, 2013). Furthermore, even for longer stimuli,

such as sentences, a model trained on word recognition will

differ from one trained on complete sentences resulting

from the number of words combined in the sentences and

the influence of linguistic context (Boothroyd and Nittrouer,

1988; Bronkhorst et al., 2002). Thus, comparing different

metrics requires knowledge of the stimulus type, stimulus

duration, context, and how the subject results have been

scored.

Many of the metrics cited above have been trained on

words embedded in sentences or complete sentences correct,

and a procedure for converting from one set of results to the

other would lead to more accurate comparisons of metric

predictions. In particular, several sentence-level corpora

used for intelligibility testing, such as the Institute of

Electrical and Electronics Engineers (IEEE) sentences

(Rothauser, 1969), Hearing-in-Noise Test (HINT) sentences

(Nilsson et al., 1994), the German sentence test (Kollmeier

and Wesselkamp, 1997), and the Danish sentence intelligi-

bility test (Nielsen and Dau, 2009), can be scored in terms

of keywords correct or complete sentences correct. In a

research setting, testing a metric trained on data scored one

way (e.g., keywords correct) and then comparing its accu-

racy to a metric trained using a different scoring procedure

(e.g., sentences correct) will lead to invalid results because

the modeled psychometric functions are dependent on the

data used to train the metrics. For potential clinical applica-

tions, adjusting a hearing aid to achieve a targeted speech

recognition threshold based on one scoring approach (e.g.,

keywords correct) may lead to different settings than if the

recognition threshold is based on a different scoring

approach (e.g., sentences correct).

The Hearing-Aid Speech Perception Index version 2

(HASPI v2; Kates and Arehart, 2021, 2022) considered in

this paper fits the outputs of an auditory model to proportion

sentences correct data from five separate datasets compris-

ing (1) additive noise and nonlinear distortion, (2) frequency

shifting, (3) noise suppression using an ideal binary mask

(IBM) algorithm, (4) speech in reverberation, and (5) noise

vocoded speech. The original datasets were also scored in

terms of keywords correct. This paper presents a retrospec-

tive analysis in which the constituent components of HASPI

v2 are, instead, fit to the proportion keywords correct froma)Electronic mail: James.Kates@colorado.edu
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the five experiments. The new analysis gives HASPI w2,

where the “w2” represents version 2 modified for words cor-

rect. It extends the range of experimental results for which

the HASPI metric is valid and provides an accurate proce-

dure for comparing predictions for words correct with sen-

tences correct.

HASPI w2 and HASPI v2 are intrusive metrics that

compare the output of an auditory model having a clean ref-

erence signal as its input to the output of an auditory model

having the degraded signal being evaluated as its input. The

auditory model for the reference signal reproduces the char-

acteristics of a normal periphery, whereas the model for the

degraded signal reproduces the behavior of the impaired

periphery associated with the simulated listener’s hearing

loss. After passing the reference and degraded signals

through the associated peripheral models, the HASPI calcu-

lation extracts the time-frequency envelope modulation

from the peripheral model outputs. The envelope modula-

tion is passed through a modulation-rate filterbank and then

fit to the listeners’ intelligibility scores using an ensemble of

neural networks. The accuracy of HASPI w2 is compared to

the original keyword data and HASPI v2, and the equivalent

psychometric functions are presented for speech in additive

speech-shaped noise.

Context effects (Boothroyd and Nittrouer, 1988; Olsen

et al., 1997; Bronkhorst et al., 2002; Smits and Zekveld,

2021) were also explored by comparing the HASPI metrics

because they are derived to match keyword (HASPI w2) and

sentence (HASPI v2) intelligibility scores from the same

experiments. The context model proposed by Boothroyd and

Nittrouer (1988) is considered in this paper. The model

treats context as having two aspects: the recognition of

speech components with and without context (e.g., words in

isolation as compared to words in a sentence) and the recog-

nition of the whole that is built from the constituent compo-

nents (e.g., complete sentences compared to the embedded

keywords). The datasets used to train HASPI do not include

words in isolation, precluding the evaluation of the first of

these aspects. However, having intelligibility scores for key-

words and complete sentences allows the evaluation of the

Boothroyd and Nittrouer (1988) model for the whole com-

pared to its component parts, and a modified version of the

Boothroyd and Nittrouer (1988) model is derived for the

transformation of keywords correct values into complete

sentence values. The transformation involves a conversion

factor that is similar to the proficiency factor applied to the

Speech Intelligibility Index (SII) in which the predicted

intelligibility is reduced to correct for the effects of hearing

loss (Pavlovic et al., 1986; Ching et al., 1998; Woods et al.,
2013).

The remainder of the paper begins with a summary of

the five datasets used to derive the HASPI v2 and HASPI

w2 intelligibility metrics. The constituent building blocks

that comprise the metrics are then described. The overall

accuracy of HASPI w2 in fitting keywords correct data is

presented and compared to the accuracy of HASPI v2 in fit-

ting complete sentences correct, and the predictions from

the two metrics are compared for speech in additive noise.

The transformation from keywords to complete sentences

correct is next derived using a modified version of the

Boothroyd and Nittrouer (1988) approach that accounts for

the effects of a simulated hearing loss, and the behavior of

the transformation is explored in Sec. V.

II. INTELLIGIBILITY DATA

HASPI w2 and HASPI v2 (Kates and Arehart, 2021,

2022) are fit to five datasets comprising (1) additive noise

and nonlinear distortion, (2) frequency shifting, (3) noise

suppression using an IBM algorithm, (4) speech in reverber-

ation, and (5) noise vocoded speech. The datasets are

described in Kates and Arehart (2021) and are summarized

below. The speech intelligibility in these experiments was

scored as keywords correct and complete sentences correct.

HASPI v2 is fit to the sentences correct data, whereas in this

paper, HASPI w2 is fit to keywords correct. For all of the

experiments, the stimuli were presented monaurally over

headphones. The sentences for the normal-hearing (NH) lis-

teners were presented at 65 dB sound pressure level (SPL)

except for the reverberation stimuli at 70 dB SPL. The sen-

tences for hearing-impaired (HI) listeners were amplified

using the National Acoustics Laboratories Revised (NAL-R)

linear gain rule (Byrne and Dillon, 1986).

A. Additive noise and distortion

The additive noise and nonlinear distortion dataset is

described in Kates and Arehart (2005). Taking part in the

experiment were 13 NH listeners and 9 HI listeners. The

stimuli were the HINT materials (Nilsson et al., 1994) as

spoken by a male talker. Each sentence was combined with

the additive long-term average speech spectrum (LTASS)

noise provided with the HINT materials or processed using

symmetric peak clipping or symmetric center clipping. The

eight signal-to-noise ratio (SNR) values for the additive noise

ranged from 30 to �5 dB plus speech in quiet. The clipping

thresholds were determined from the cumulative magnitude

histograms of the signal samples for each sentence at the

22.5-kHz sampling rate. Eight peak-clipping thresholds were

used, ranging from no clipping to infinite clipping, and eight

center-clipping thresholds were used, ranging from no clip-

ping to 98% of the cumulative histogram level.

B. Frequency shifting

The frequency shifting dataset is described in Souza

et al. (2013) and Arehart et al. (2013). Taking part in the

experiment were 14 NH listeners and 26 HI listeners. The

stimuli were IEEE sentences (Rothauser, 1969) spoken by a

female talker. The sentences were combined with multi-

talker babble at SNRs ranging from �10 to 10 dB or used

without any interference after which the noise-free or noisy

speech was processed using frequency shifting.

Frequency shifting was applied to the speech using a

sinusoidal modeling approach (McAulay and Quatieri,

1986). The signal was first passed through a pair of
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complementary five-pole Butterworth infinite impulse

response (IIR) lowpass and highpass filters. The low-

frequency band was used without any further processing to

reduce audible distortion while the high-frequency band was

shifted downward in frequency using sinusoidal modeling.

For the modeling, the amplitude, phase, and frequency of

the ten highest peaks in the high-frequency band were

extracted from the signal using 50% overlapped 6-ms von

Hann windows followed by a 24-ms fast Fourier transform

(FFT). The high-frequency peaks were then resynthesized

using the measured amplitude and phase values while the

frequencies were reassigned to the desired lower values

(Aguilera Mu~noz et al., 1999). The processing output was

the unmodified low-frequency band combined with the

sinusoids, representing the shifted high-frequency peaks.

The frequency shifting used cutoff frequencies of 1, 1.5, or

2 kHz combined with frequency compression ratios of 1.5:1,

2:1, or 3:1. A control condition having no frequency shifting

was also included in the experiment.

C. Ideal binary mask noise suppression

The IBM noise suppression dataset is described in

Arehart et al. (2015). Taking part in the experiment were

7 NH listeners and 30 HI listeners. The stimuli were IEEE

sentences (Rothauser, 1969) spoken by a female talker.

The sentences were combined with multi-talker babble at

SNRs ranging from �18 to 12 dB in steps of 6 dB or used

without any interference. The noise-free or noisy speech

was then processed through the noise-suppression

algorithm.

The IBM noise suppression (Kjems et al., 2009; Ng

et al., 2013) used a 64-band gammatone auditory filterbank

(Patterson et al., 1995). Time frames having a 20-ms dura-

tion with a 50% overlap were used for the processing in

each frequency band. The local SNR was then computed for

each time-frequency cell, where a cell is defined as one time

frame in one frequency band, and the SNR was computed

using the separate speech and noise powers. If the local

SNR was 0 dB or greater, the cell was assigned a mask deci-

sion of one, otherwise, the cell was assigned a decision of

zero. Errors were also introduced into the mask by randomly

flipping a percentage (0%, 10%, or 30%) of the decisions

from zero to one or from one to zero. The binary mask pat-

tern was next transformed into gain values with a mask set

to one given a gain of zero dB and a mask set to zero given

a gain of either �10 or �100 dB. The signal, after being

multiplied by the gain assigned in each cell, was returned to

the time domain using a time-reversed gammatone filter-

bank followed by summation across the 64 frequency bands.

D. Reverberation

The reverberation dataset is described in Muralimanohar

(2018). Ten NH listeners and nine HI listeners took part in the

experiment. The stimuli were IEEE sentences (Rothauser,

1969) spoken by three male and three female talkers. The sen-

tences were combined with reverberation from four rooms

having T60 reverberation times ranging from 627 ms to 3 s

after which the reverberant speech was passed through a nine-

band linear-phase auditory filterbank. The speech envelope in

each band was then extracted using the Hilbert transform fol-

lowed by a linear-phase lowpass filter having a cutoff of

30 Hz.

Several processing conditions were compared. These

conditions included clean speech having no reverberation

and speech with reverberation for the four rooms. The clean

and reverberant speech was also noise vocoded. Additional

modifications included the following: raising the reverberant

speech envelope to a power of either 1.2 or two in all nine

bands, raising the envelope to a power in each band chosen

to minimize the mean-squared error (MMSE) match

between the envelope of the reverberant speech and the

clean speech, and restoring the envelope in each band to

match that of the clean speech. The speech was then passed

through the filterbank a second time to remove out-of-band

modulation distortion products, and the output signal was

formed by summing the signals across the nine frequency

bands.

E. Noise vocoder

The noise vocoder dataset is described in Anderson

(2010). Ten NH listeners and ten HI listeners took part in

the experiment. The stimuli were IEEE sentences

(Rothauser, 1969) spoken by a male and a female talker.

The sentences were used without interference or combined

with multi-talker babble at SNRs of 18 and 12 dB. The

speech without or with babble was passed through a 32-

band linear-phase auditory filterbank, and varying numbers

of contiguous high-frequency bands were vocoded while the

remaining bands at lower frequencies were presented as

unmodified noisy speech.

For the vocoding, the envelope of the speech (without

or with babble) was extracted using the Hilbert transform

followed by a 300-Hz lowpass filter. The vocoder used

either Gaussian noise in each frequency band or low-noise

noise (Kohlrausch et al., 1997) in which the envelope fluctu-

ations were reduced by dividing the Gaussian noise in each

frequency band by its own envelope. The noise vocoding

was applied starting with the highest-frequency bands and

working lower in frequency two bands at a time. The

vocoded signals went from no bands vocoded to the upper

16 bands vocoded with this latter case corresponding to a

vocoder highpass frequency of 1.6 kHz. The vocoded speech

was then passed through the filterbank a second time to

remove out-of-band modulation distortion products, and the

root mean squared (RMS) level of the processed output sig-

nal in each frequency band was matched to that of the input

speech. The signals were next summed across the frequency

bands to produce the output signal.

The noise vocoder modifies the speech temporal fine

structure (TFS) while preserving the envelope and causes

only a small reduction in intelligibility. The vocoder dataset

was included in the HASPI training to ensure a degree of
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immunity in the metrics to TFS modifications that do not

impact intelligibility.

III. INTELLIGIBILITY METRIC

Aside from the change in training data from sentences

to keywords, the processing components used to create

HASPI w2 are identical to those used for HASPI v2 (Kates

and Arehart, 2021, 2022). Both metrics are intrusive; they

compare the output of a model of impaired hearing having a

degraded signal as its input to the output of an auditory

model of normal hearing having a clean reference signal as

its input. There are three processing stages: (1) model of the

auditory periphery, (2) extraction of time-frequency enve-

lope modulation from the peripheral outputs, and (3) fitting

the envelope modulation to the subject intelligibility scores

via an ensemble of neural networks.

A. Peripheral model

The processing block diagram for the peripheral model

is presented in Fig. 1. The model operates at a 24-kHz sam-

pling rate. Temporal alignment of the degraded and refer-

ence signals is provided initially for the broadband signal

and subsequently for the signals in each auditory band. The

peripheral model includes a middle ear filter (Kates, 1991)

followed by a 32-band gammatone filterbank (Cooke, 1993;

Patterson et al., 1995) that spans center frequencies from 80

to 8000 Hz. The auditory filter bandwidths are increased for

hearing loss (Moore and Glasberg, 1983) and signals above

50 dB SPL in each auditory band (Baker and Rosen, 2002,

2006). Dynamic-range compression corresponding to outer

hair-cell (OHC) motion (Ruggero et al., 1997) is applied to

the outputs of the auditory filters; hearing loss ascribed to

OHC damage elevates the compression threshold and

reduces the compression ratio. After the OHC compression,

the signals in each band are converted to dB re: auditory

threshold with sounds below threshold set to a lower limit of

0 dB sensation level (SL). Hearing loss ascribed to inner

hair-cell (IHC) damage is represented as additional signal

attenuation. IHC firing-rate adaptation (Harris and Dallos,

1979) is then applied using a rapid adaptation time

constant of 2 ms and short-time adaptation time constant of

60 ms. The last processing step is compensation for the rela-

tive time delays associated with the gammatone filters

(Wojtczak et al., 2012).

B. Envelope modulation analysis

The envelope modulation analysis (Kates and Arehart,

2021, 2022) starts with the dB SL envelopes in each audi-

tory band produced by the peripheral models. The analysis

compares the modulation of the degraded signal passed

through the impaired periphery to that of the reference sig-

nal passed through the normal periphery. The envelopes in

each band are first lowpass filtered at 320 Hz and sub-

sampled at 2560 Hz. At each subsampled time interval, the

envelope values over the 32 auditory bands give the log

spectrum on an auditory frequency scale. The short-time

spectrum is fit with five basis functions ranging 1=2 cycle of a

cosine to 21=2 cycles, spanning the spectrum from 80 to

8000 Hz. These basis functions applied to the log spectrum

correspond to mel-frequency cepstral coefficients (Mitra

et al., 2012) and are also related to the principal components

for short-time speech spectra (Zahorian and Rothenberg,

1981).

At this point in the analysis, we have five cepstral coef-

ficient sequences, that is, sequences over time of each of the

five basis functions fit to the short-time spectra. The five

sequences are each passed through a set of ten modulation-

rate filters. The filters have center frequencies ranging from

2 to 256 Hz and Q values of 1.5 (Dau et al., 1997; Ewert and

Dau, 2000; Ewert et al., 2002). Each of the 50 filtered ceps-

tral coefficient sequences for the degraded speech is com-

pared with the corresponding sequence for the reference

speech using normalized cross-covariance. The cross-

covariances for the five basis functions at each modulation

rate are similar to each other (Kates and Arehart, 2015),

therefore, the cross-covariance values are averaged over the

basis functions to provide a set of ten averaged outputs, one

at each modulation rate.

C. Neural network ensemble

The final stage in the HASPI calculation is fitting the

cepstral coefficient cross-covariances to the subject intelligi-

bility data. For HASPI w2, these data are the proportion

keywords correct while for HASPI v2, they were the propor-

tion sentences correct; in either case, the target values span

[0,1].

An ensemble of ten neural networks was used to fit

HASPI w2. Each network had ten inputs, which are the

averaged covariances from the modulation filters used in the

FIG. 1. The block diagram illustrating

the processing stages used in HASPI w2

and HASPI v2 to compare the processed

speech signal to the clean reference.
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time-frequency envelope modulation analysis. One hidden

layer with four neurons was used, and the output layer com-

prised a single neuron. A sigmoid activation function was

used for all of the layers, which provided a bound between

zero and one to match the range of the listener intelligibility

scores. Training for the neural networks used basic backpro-

pagation with a mean-squared error loss function

(Rumelhart et al., 1986; Werbos, 1990), and each neural net-

work was initialized to an independent set of random

weights.

Each of the five datasets was assigned comparable

importance in fitting the metric to the intelligibility scores.

The NH and HI test conditions and associated scores were

replicated an integral number of times to give approximately

the same number of data points for each listener group for

each experiment. A total of 72 116 sample vectors was cre-

ated using this procedure, and 50 iterations of the data were

used to train each of the neural networks.

The outputs of the ten neural networks were combined

using bootstrap aggregation (“bagging”) (Breiman, 1996).

Each of the neural networks was trained using a subset of

the data selected with replacement (Efron and Gong, 1983;

Breiman, 1996), where the final predicted value is the aver-

age of the outputs produced by the ten separate networks.

The bagging approach reduces the estimator error variance

(Kittler, 1998) and provides improved immunity to overfit-

ting (Krogh and Sollich, 1997; Maclin and Opitz, 1997).

The average of ten neural networks is sufficient to provide

the main benefits of bagging in reducing overfitting (Hansen

and Salamon, 1990; Breiman, 1996; Opitz and Maclin,

1999).

IV. RESULTS

A. HASPI w2 intelligibility predictions

Scatterplots for the proportion keywords correct predic-

tions are presented in Fig. 2. Each intelligibility experiment

is represented by a separate scatterplot, identified by the plot

title, and each data point represents one processing condi-

tion for that experiment averaged over repetitions and sub-

jects. The HASPI w2 keyword prediction is plotted along

the x axis, and the averaged listener proportion keywords

correct is plotted along the y axis. The NH listener group is

indicated by the open circles, and the HI group is indicated

by the filled squares. The diagonal line represents perfect

agreement of the predictions with the listener scores; points

above the line indicate predicted intelligibility that is lower

than the average listener score, and points below the line

indicate predicted intelligibility that is higher than the aver-

age listener score. A low RMS error will produce points

close to the diagonal line, and a high Pearson correlation

coefficient will give points lying tightly along a line even if

that line is not coincident with the diagonal.

The scatterplot for the noise and distortion dataset

shows similar numbers of points above and below the diago-

nal for the NH and HI listeners, indicating minimal net bias

in the predictions for both groups. The NH data, however,

show two potential outliers at low predicted intelligibility.

One point corresponds to additive multi-talker babble at a

SNR of �5 dB, where the metric predicts intelligibility

much lower than reported by the listeners, and the other

point corresponds to center-clipping distortion with a 95%

threshold (i.e., most of the speech has been replaced by

zeros), where the metric predicts higher intelligibility than

observed in the experiment. Corresponding outliers, how-

ever, do not appear in the HI data.

The scatterplot for the frequency compression dataset

shows more points above the diagonal for the NH listeners

and more points below the diagonal for the HI group,

whereas the scatterplot for the IBM noise suppression shows

the majority of points for NH and HI participants below the

diagonal. Potential outliers for the NH listeners in the IBM

dataset are at SNRs of �12 and �18 dB, thus, HASPI w2

may overestimate the keyword intelligibility for NH listen-

ers at large amounts of signal degradation. The scatterplot

for the reverberation dataset does not show the same pattern

of outliers, although there is a preponderance of NH points

above and HI points below the diagonal.

The noise vocoder scatterplot uses a reduced x axis and

y axis range compared to the other plots because the key-

word intelligibility is very high. This dataset was included

to provide situations where the speech TFS was corrupted

but the envelope was preserved. The NH and HI results

show very high keyword intelligibility for these data, and

the HASPI w2 predictions are consistent with the listener

data.

B. Accuracy of HASPI w2 compared to HASPI v2

Overall, the accuracy of the HASPI w2 keyword intel-

ligibility predictions is very close to that of the HASPI v2

sentence intelligibility predictions. The performance of the

two metrics was compared using bootstrapping (Efron,

1983; Efron and Gong, 1983: Zio, 2006) implemented

using custom versions of MATLAB functions available online

(Rousselet, 2017). A total of 10 000 bootstrap replications

with replacement were used to estimate the probability dis-

tributions from which means, standard deviations, and con-

fidence intervals were extracted. Comparisons between the

metrics and listener responses comprise the RMS error,

Pearson correlation coefficient, Spearman rank-order cor-

relation coefficient, and Kendall’s tau for pair-wise

comparisons.

The keyword results for HASPI w2 are presented in

Table I for the five datasets. For the noise and distortion

data, the RMS error for the NH listeners is higher than that

for the HI group while the correlations are lower, reflecting

the impact of the NH outliers identified in the associated

scatterplot in Fig. 2. The RMS error for the noise vocoder

dataset is much lower than that for the other four datasets

because the listener responses are clustered at the high end

of the intelligibility range. The correlation coefficients are

much lower for vocoding than for the other datasets as

HASPI w2 is unable to model the residual intersubject
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variability, although the Spearman correlation is relatively

high for the combined NH þ HI data.

The sentence RMS error and correlations for HASPI v2

are presented in Table II for the same datasets. The values

for HASPI v2 are quite similar to those for HASPI w2. The

bootstrapping procedure was then used to identify signifi-

cant differences between the HASPI w2 and HASPI v2

accuracy for the same test conditions. The effect sizes

(Cohen’s d; Sullivan and Feinn, 2012) are presented in

Table III. Differences significant at the 5% level are indi-

cated by one asterisk while differences significant at the 1%

level have two asterisks. The differences in the means and

the standard deviations were computed from the bootstrap

distributions used for Tables I and II, and Cohen’s d was

FIG. 2. Scatterplots for HASPI w2. Each point represents the model prediction compared to the listener keyword correct intelligibility scores for a process-

ing condition averaged over all of the listeners and stimulus repetitions for that condition. Data for NH listeners are plotted using the open circles and data

for HI listeners are plotted using filled squares. The different experiments are identified in the plot titles.
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calculated as the difference in the means divided by the

pooled standard deviation. An effect size of 0.2 is consid-

ered to be small, 0.5 is considered to be medium, 0.8 is con-

sidered to be large, and 1.3 is considered to be very large.

Based on this classification, all of the statistically significant

differences are very large or greater. Almost all of the sig-

nificant differences are for the noise vocoder dataset, which,

as shown in Fig. 2 for keywords correct, is clustered at

higher values than the corresponding sentence-correct val-

ues shown in Fig. 5 of Kates and Arehart (2021). Thus, the

RMS error for keywords correct is significantly lower than

that for sentences at the 1% level as a result of the stronger

ceiling effect. Also, note that even though HASPI w2

appeared to have outliers for the NH group for the noise and

distortion dataset, there are no significant differences in the

accuracy of the predictions between HASPI w2 and HASPI

v2 for this group for any of the accuracy criteria.

C. HASPI w2 and HASPI v2 for additive noise

Plots of the HASPI w2 and HASPI v2 predictions are

shown in Fig. 3 for IEEE sentences (Rothauser, 1969) in

additive LTASS noise. The speech used to compute the

HASPI values consisted of 20 concatenated sentences

(Kates, 2017) with 10 sentences spoken by a male talker and

10 sentences spoken by a female talker. Each sentence was

equalized to the same RMS level prior to being joined with

the others. The set of 20 sentences was then combined with

additive Gaussian noise having a long-term spectrum

matched to that of the 20-sentence sequence. The SNR of

the noisy sentences ranged from �15 to þ25 dB in steps of

5 dB.

The four plots in Fig. 3 are for simulations of normal

hearing and three of the International Electrotechnical

Commission (IEC) standard audiograms (Bisgaard et al.,
2010). The N3 audiogram represents a moderate flat loss,

N5 represents a severe flat loss, and S2 represents a

mild steeply sloping loss. Linear amplification was

provided to compensate for each of the hearing losses using

the NAL-R gain formula (Byrne and Dillon, 1986), where

the RMS level of each concatenated set of sentences in noise

is set to 65 dB SPL prior to amplification. The solid black

line in each plot is the proportion keywords correct as

TABLE I. The RMS error and correlations between the model predictions

and listener responses for HASPI w2 (proportion keywords correct) fit to

the NH and HI data. The results are averaged over the listeners in each hear-

ing group. The RMS error and correlation values are the mean of 10 000

bootstrap replications of the model output.

Experiment

Subject

group

RMS

error Pearson Spearman Kendall

Noise and distortion NH 0.1013 0.9225 0.7036 0.5654

HI 0.0656 0.9766 0.9236 0.8144

NH þ HI 0.0865 0.9511 0.7935 0.6403

Frequency

compression

NH 0.1046 0.9712 0.9700 0.8794

HI 0.0700 0.9865 0.9765 0.8912

NH þ HI 0.0895 0.9726 0.9628 0.8441

IBM noise suppress NH 0.1251 0.9699 0.9570 0.8615

HI 0.1123 0.9861 0.9834 0.9241

NH þ HI 0.1198 0.9773 0.9735 0.8805

Noise vocoder NH 0.0112 0.2051 0.2429 0.1626

HI 0.0156 0.5872 0.5586 0.4125

NH þ HI 0.0136 0.7831 0.7831 0.5880

Reverb envelope

modify

NH 0.0935 0.9806 0.9661 0.8694

HI 0.0893 0.9824 0.9621 0.8711

NH þ HI 0.0917 0.9629 0.9610 0.8485

TABLE II. The RMS error and correlations between the model predictions

and listener responses for HASPI v2 (proportion complete sentences cor-

rect) fit to the NH and HI data. The results are averaged over the listeners in

each hearing group. The RMS error and correlation values are the mean of

10 000 bootstrap replications of the model output.

Experiment

Subject

group

RMS

error Pearson Spearman Kendall

Noise and distortion NH 0.1127 0.9385 0.8263 0.7073

HI 0.0764 0.9735 0.9018 0.7789

NH þ HI 0.0968 0.9558 0.8867 0.7377

Frequency

compression

NH 0.0986 0.9690 0.9724 0.8857

HI 0.0807 0.9810 0.9699 0.8769

NH þ HI 0.0906 0.9658 0.9638 0.8468

IBM noise suppress NH 0.1246 0.9657 0.9535 0.8462

HI 0.1166 0.9858 0.9726 0.8968

NH þ HI 0.1219 0.9732 0.9669 0.8676

Noise vocoder NH 0.0305 0.4376 0.4339 0.3192

HI 0.0413 0.5231 0.5125 0.3680

NH þ HI 0.0363 0.8395 0.8328 0.6428

Reverb envelope

modify

NH 0.0662 0.9851 0.9607 0.8568

HI 0.0932 0.9793 0.9639 0.8698

NH þ HI 0.0811 0.9721 0.9622 0.8541

TABLE III. Effect sizes (Cohen’s d) for the statistically significant differ-

ences between the HASPI w2 and HASPI v2 accuracy for scores averaged

over listeners and repetitions. The RMS error and correlation differences

are the average of 10 000 bootstrap replications of the differences in the

model outputs, and significance was computed from the bootstrapped confi-

dence intervals. Differences at the 5% level are indicated using one asterisk

while differences at the 1% level are indicated by two asterisks. The effect

sizes were computed from the bootstrapped means and standard deviations.

Experiment

Subject

group

RMS

error Pearson Spearman Kendall

Noise and distortion NH 0.4283 0.4184 0.9605 1.1230

HI 0.7144 0.1844 0.4384 0.5077

NH þ HI 0.6104 0.2361 1.4115** 1.3789*

Frequency

compression

NH 0.5410 0.2934 0.2551 0.2787

HI 0.8749 0.8440 0.7399 0.6399

NH þ HI 0.1337 1.0437 0.1356 0.1658

IBM noise suppress NH 0.0172 0.2587 0.2035 0.4527

HI 0.3307 0.0434 1.0789 1.1466

NHþHI 0.1390 0.4780 0.7839 0.6909

Noise vocoder NH 10.041** 2.0603* 1.4733* 1.6740*

HI 8.706** 0.6705 0.4081 0.5040

NH þ HI 12.091** 1.5311* 1.4922 1.5251

Reverb envelope

modify

NH 2.7374** 0.9848 0.3729 0.3893

HI 0.4432 0.6316 0.0987 0.0376

NH þ HI 1.5569 1.3915 0.1140 0.2410
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predicted by HASPI w2 and the dashed red line is the pro-

portion complete sentences correct as predicted by HASPI

v2. The dotted blue line is for a model transforming the key-

words score into the sentence score that is considered in

Sec. IV D.

In all of the plots, the keywords correct curve lies to the

left of the sentences correct curve by about a 5-dB shift in

SNR. The shift is consistent with previously reported data

for noisy speech comprising words in sentences compared

to complete sentences (Boothroyd and Nittrouer, 1988;

Nielsen and Dau, 2009). This behavior is also consistent

with the requirement that one must get all five keywords

correct to get the sentence correct, therefore, the probability

of a correct sentence at a given SNR is lower than that for a

single keyword (Boothroyd and Nittrouer, 1988). There are

also differences in the asymptotic behavior for HASPI v2

compared to that for HASPI w2 at high SNRs as the hearing

loss is increased. For the simulated NH and N3 listeners, the

keyword and sentence intelligibility reach asymptotes near

one for SNRs of 15 dB and higher. However, for the N5 and

S2 listeners, the predicted sentence intelligibility reaches an

asymptote of less than one at high SNRs.

D. Context and the conversion of keywords
to sentences correct

Boothroyd and Nittrouer (1988) propose a model of

context effects in speech expressed as calculating the proba-

bility of recognizing a whole from the probabilities of recog-

nizing its constituent parts. In the present study, the whole is

the complete sentence correct, and the constituent parts are

the keywords. The relationship is given by

Ps ¼ Pj
w; (1)

where Ps is the probability of getting the complete sentence

correct, and Pj
w is the probability of getting a keyword cor-

rect, raised to the power j where 1� j�N and N is the num-

ber of parts (keywords) making up the whole (one

sentence). For IEEE sentences, there are five keywords per

sentence, giving N¼ 5. For the purposes of this paper, we

FIG. 3. (Color online) HASPI w2 values (solid black line with circles), HASPI v2 values (dashed red line with squares), and HASPI w2 values transformed

into the HASPI v2 values using Eq. (2) (dotted blue line with triangles) for IEEE sentences in additive LTASS noise as a function of SNR. The plots are for

NH and N3 (moderate flat loss), N5 (severe flat loss), and S2 (moderate sloping loss) IEC audiograms.
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can interpret the HASPI w2 and HASPI v2 proportion cor-

rect predictions as representing the probabilities of correctly

identifying keywords and sentences, respectively.

The model of Eq. (1) was used to convert the HASPI

w2 predicted proportion keywords correct into the HASPI

v2 proportion sentences correct for the concatenated IEEE

sentences presented in LTASS noise as described in Sec.

IV C. The fitting criterion was to minimize the RMS error

between the transformed HASPI w2 scores and HASPI v2

over the set of SNRs ranging from �15 to þ25 dB using the

model of Eq. (1). The resulting value of the fitting parame-

ter, j, was approximately three over the set of IEC audio-

grams. However, as shown in Table IV, this model cannot

account for the asymptotic differences between HASPI w2

and HASPI v2 for the higher hearing losses at high SNRs.

For audiograms having 2-kHz losses greater than 50 dB,

when the asymptotic HASPI w2 values are cubed, there is

still a difference between the transformed HASPI w2 values

and the computed HASPI v2 values.

The asymptotic behavior of HASPI v2 for high SNRs

combined with high losses can be represented using a modi-

fied version of Eq. (1) by adding a conversion factor, q, to

give

Ps ¼ qPj
w: (2)

The value of q matches the asymptotic value of the trans-

formed word score to that of the HASPI v2 sentence score,

where the asymptote is computed as the average at SNRs of

15, 20, and 25 dB. The use of the conversion factor in Eq.

(2) is similar to the proficiency factor proposed for the SII,

wherein the predicted intelligibility is reduced for HI listen-

ers (Pavlovic et al., 1986; Ching et al., 1998; Woods et al.,
2013). The optimal values of j and q found for each

IEC audiogram are presented in the last two columns of

Table IV; the values of j and q are interdependent

because they were determined using a joint optimization

procedure (MATLAB fmincon). The value of q is one for 2-

kHz losses of 50 dB or less but decreases for greater losses.

The average value of j for those audiograms having q¼ 1 is

3.35 and in the vicinity of three for all of the losses.

Examples of using Eq. (2) to transform keywords correct

into complete sentences correct are plotted for the four

audiograms of Fig. 3 as the dotted blue lines, where the fit-

ting parameters computed for the individual audiograms

provide an accurate conversion from proportion keywords to

sentences correct.

V. DISCUSSION

A. Asymptotes at high SNRs

As shown in Fig. 3, there are differences in the asymp-

totic behavior for HASPI v2 compared to that for HASPI w2

at high SNRs as the simulated hearing loss is increased. The

differences in the asymptotes can be explained by consider-

ing the effect of word errors on computing sentences cor-

rect. For example, assume a test with 20 IEEE sentences

and, therefore, 100 keywords. If one of the keywords is not

identified correctly, the proportion words correct is 0.99.

However, one keyword error means that 1 out of the 20 sen-

tences is incorrect; hence, the proportion sentences correct

becomes 0.95. For 2 keywords out of 100 incorrect, the pro-

portion keywords correct is 0.98 while the proportion sen-

tences correct is very close to 0.90. Thus, the asymptote for

HASPI v2 shows much larger effects for small numbers of

word errors than occurs for HASPI w2; the representation of

intelligibility using sentences correct amplifies the asymp-

totic differences between sentences and keywords at high

SNRs.

Furthermore, the errors in intelligibility will tend to

increase with the severity of the hearing loss even in the

absence of additive noise. Both versions of HASPI compare

the time-frequency envelope modulation of the reference

speech passed through a model of the normal periphery with

the degraded speech passed through a model of the impaired

periphery. The peripheral model (Kates, 2013) represents

impaired hearing as a shift in auditory threshold, reduced

auditory dynamic-range compression, broader auditory fil-

ters, and reduced two-tone suppression in comparison with

normal hearing. Thus, there will be differences between the

TABLE IV. Model parameters, j and q, for IEC standard audiograms to account for the context effects in transforming predicted proportion keywords cor-

rect into proportion complete sentences correct for IEEE sentences in LTASS noise. The asymptotic values are estimated as the predicted intelligibility aver-

aged over 25, 20, and 15 dB SNR. The conversion factor, q, compensates for the difference between the asymptotic values of the word and sentence

predictions.

Audiogram Loss at 2 kHz (dB) HASPI w2 asymptote (HASPI w2 asymptote)3 HASPI v2 asymptote Exponent, j Conversion factor, q

NH 0 1.000 0.999 1.000 3.429 1.000

N1 15 0.999 0.998 0.999 3.311 1.000

N2 35 0.999 0.998 0.999 3.496 1.000

N3 50 0.999 0.996 0.992 3.617 1.000

N4 65 0.992 0.976 0.914 3.129 0.951

N5 80 0.989 0.966 0.912 3.472 0.968

N6 90 0.870 0.658 0.636 2.630 0.934

S1 15 0.999 0.997 0.997 2.952 1.000

S2 55 0.994 0.981 0.946 3.218 0.975

S3 75 0.983 0.948 0.849 2.910 0.909
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envelopes of the reference signal output by the normal

periphery and the output of the same noise-free signal

passed through the impaired periphery. Any differences

between the degraded and reference signal outputs are repre-

sented by HASPI as a reduction in intelligibility, and reduc-

tions in HASPI w2 will be mapped into larger reductions in

the HASPI v2 values because of the conversion of word

errors into sentence errors.

B. Interaction of amplification and hearing loss

The speech in noise data considered in Secs. IV C and

IV D used NAL-R (Byrne and Dillon, 1986) amplification to

compensate for the hearing loss. However, the HASPI w2

and HASPI v2 values depend on the audibility of the ampli-

fied speech as well as the envelope fidelity. The interaction of

the amplification and hearing loss is illustrated in Fig. 4 for

the same four audiograms that were used for Fig. 3. For the

NH and N3 audiograms, where the computed value of q¼ 1,

the amplified speech spectrum lies at or above the normal or

impaired auditory threshold. However, for the N5 and S2

audiograms, where the computed value of q< 1, portions of

the amplified speech lie below the impaired auditory thresh-

old. Audibility depends on the compensation used for the

hearing loss, and changing the amplification rule will change

the amount of speech that falls above the impaired auditory

threshold and could change the computed values of j and q
used to transform the word scores into sentence scores.

C. Low-SNR bias effects in converting sentences
to keywords

The negative SNR asymptotes of HASPI w2 and

HASPI v2 also exhibit a small bias effect. The neural net-

work approach used to fit the envelope modulation terms to

the listener keyword or sentence data is unconstrained and,

in particular, there is no constraint to produce a value of

zero at large negative SNRs. As a result, HASPI w2 returns

a value of approximately 0.007 for keywords embedded in

the concatenated sentences at large negative SNRs, and

HASPI v2 gives a value of approximately 0.004 for com-

plete sentences at large negative SNRs.

FIG. 4. (Color online) Long-term RMS average speech spectra for IEEE sentences in dB SPL for the indicated IEC standard audiograms, along with the

associated hearing losses in dB HL. NAL-R amplification for each of the IEC audiograms has been applied to the speech. The plots are for NH and N3 (mod-

erate flat loss), N5 (severe flat loss), and S2 (moderate sloping loss) IEC audiograms.
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These bias terms are small and do not have a meaning-

ful impact on the associated intelligibility predictions. The

effect of the HASPI w2 bias is even less when converting

from words correct to sentences correct. From Eq. (2) and

the values in Table IV, Ps is approximately proportional to

Pw
3, and cubing the bias term in HASPI w2 gives a bias in

the converted sentence predictions of 0.0073¼ 3.4� 10�7.

However, attempting to go in the opposite direction, from

sentences to keywords, will increase the bias problem. The

inverse of Eq. (2) gives Pw as approximately proportional to

Ps
1/3. Thus, the inverse conversion from predicted sentences

to words correct takes the cube root of the sentence bias,

giving a keyword bias of 0.0041/3¼ 0.16.

VI. CONCLUSIONS

The previously published version of HASPI v2 predicts

complete sentences correct. HASPI is extended in this paper

to predict keywords correct for the same sentence stimuli.

HASPI w2 for keywords correct uses the same peripheral

model, the same envelope modulation features, and the same

neural network data-fitting approach as was used for HASPI

v2; the only difference is the change in the training data to

which the metric is fitted. The accuracy of the keywords cor-

rect and sentences correct predictions are quite similar, and

the major differences are for the noise vocoder data, which

spans a narrower range for keywords correct than for senten-

ces correct. Therefore, one can choose the version of HASPI

that is most appropriate for the problem that is considered

without being concerned about differences in model accuracy.

When evaluated for speech in speech-shaped noise, HASPI

w2 and HASPI v2 show similar shapes for the predicted psycho-

metric functions with the curve for proportion keywords correct

lying about 5 dB to the left of the sentence curve. These curves

allow for the estimation of context effects for keywords correct

within sentences compared to complete sentences correct. The

power-law model of Boothroyd and Nittrouer (1988) for con-

verting proportion keywords correct into proportion sentences

correct was found to be valid for NH and the milder losses con-

sidered in this paper with an exponent of approximately

j¼ 3.35. However, for greater losses, the damaged periphery

introduces predicted errors even for speech in quiet, and a con-

version factor, q< 1, was needed to accurately model the trans-

formation of keyword errors into sentence errors. Finally, it was

observed that the neural network approach used to fit the key-

word and sentence data introduces a small residual bias term at

low SNRs; this term has a minimal effect when converting from

proportion keywords to proportion sentences correct, but it is

greatly amplified when moving in the opposite direction.

The MATLAB computer functions for HASPI w2 are

available from the author via email on request.
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