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ABSTRACT:
Perceptual learning reflects experience-driven improvements in the ability to detect changes in stimulus characteris-

tics. The time course for perceptual learning overlaps with that for procedural learning (acquiring general skills and

strategies) and task learning (learning the perceptual judgment specific to the task), making it difficult to isolate their

individual effects. This study was conducted to examine the role of exposure to stimulus, procedure, and task infor-

mation on learning for auditory temporal-interval discrimination. Eighty-three listeners completed five online ses-

sions that required temporal-interval discrimination (target task). Before the initial session, listeners were

differentially exposed to information about the target task’s stimulus, procedure, or task characteristics. Learning

occurred across sessions, but an exposure effect was not observed. Given the significant learning across sessions and

variability within and across listeners, contributions from stimulus, procedure, and task exposure to overall learning

cannot be discounted. These findings clarify the influence of experience on temporal perceptual learning and could

inform designs of training paradigms that optimize perceptual improvements. VC 2023 Acoustical Society of America.
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I. INTRODUCTION

Perceptual learning reflects experience-driven improve-

ments in the ability to detect changes in stimulus features,

such as the amount of time separating a pair of sounds

(Bratzke et al., 2012; Delhommeau et al., 2002; Hawkey

et al., 2004; Hussain et al., 2012; Ortiz and Wright, 2009,

2010; Wright et al., 1997). Demonstrations of perceptual

learning often involve repetitive training with stimulus fea-

tures, such as duration or frequency. In contrast, procedural

learning reflects the process of acquiring general skills and

strategies integral to the training experience and can include

factors such as the experimental setting, user interface, and

method of response (Delhommeau et al., 2002; Hawkey

et al., 2004; Ortiz and Wright, 2009; Xu et al., 2021). Task

learning reflects mastering of the judgment specific to a

task, such as discrimination of duration or frequency

(Ahissar and Hochstein, 1997; Jeter et al., 2009; Ortiz and

Wright, 2009; Xu et al., 2021).

Training protocols used to induce perceptual learning

typically require repetitive, attention-directed practice with

the feature of interest over many trials and sometimes across

many days (Wright and Sabin, 2007; Wright and Zhang,

2009). Also, brief, single-session training protocols have

been used to induce perceptual learning (Amitay et al.,
2006; Ortiz and Wright, 2009). Traditionally, perceptual

learning is measured as the change in sensitivity to the

feature of interest following a period of training (Wright and

Zhang, 2009). In most instances, learning does not typically

transfer to untrained stimuli (Karmarkar and Buonomano,

2003; Wright and Zhang, 2009), although some studies have

demonstrated limited, asymmetric transfer of learning from

trained to untrained stimuli (Amitay et al., 2012; Bratzke

et al., 2012).

Many studies of perceptual learning have included pre-

training to minimize the influences of procedural and task

learning (Delhommeau et al., 2002; Wright and Fitzgerald,

2001). This approach relies on general assumptions about

the time courses of each type of learning. Steep gains early

during learning are thought to denote procedural and task

learning, whereas gradual improvements later in time reflect

perceptual learning (Hawkey et al., 2004; Hussain et al.,
2012; Ortiz and Wright, 2010; Wright and Fitzgerald, 2001;

Wright and Sabin, 2007). However, these generalities lack

specificity and may not correspond to all instances of sen-

sory learning. In the time perception literature, the system-

atic investigation of these three types of learning are few,

including in studies of auditory temporal-interval discrimi-

nation across multiple sessions. An alternative approach to

isolating the different components of overall learning

requires differentially exposing listeners to information

about a target task of interest (Hawkey et al., 2004; Ortiz

and Wright, 2009, 2010). For example, Hawkey et al.
(2004) measured procedural learning as the difference in

performance on a frequency discrimination task (i.e., their

target task) between groups that did and did not have prior

training with the procedural aspects of their target task.

Furthermore, perceptual learning was measured as the dif-

ference in frequency selectivity between groups that did and
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did not have prior training with the perceptual task. Of note,

the perceptual learning in Hawkey et al. (2004) is a combi-

nation of the perceptual and task learning in this study. This

approach to isolate the different aspects of overall learning

circumvents assumptions about the time courses of each

type of learning.

A. Stimulus experience and learning

Exposure to a stimulus can improve sensitivity to that

stimulus. Many studies support a hypothetical threshold that

related neural processes involved in learning must surpass

for perceptual learning to occur (Seitz and Dinse, 2007;

Szpiro et al., 2014; Wiggs and Martin, 1998; Wright et al.,
2010; Wright and Sabin, 2007). Active practice-related

stimulus exposures foster permissive signals that drive

learning on the target perceptual task. Further stimulation

enables these related neural processes to surpass the hypo-

thetical threshold of learning. For example, Wright et al.
(2010) observed enhanced perceptual learning for a fre-

quency discrimination task when blocks were interleaved

with blocks of auditory temporal-interval discrimination

compared to frequency discrimination training alone.

Follow-up experiments revealed that this enhancement to

frequency perceptual learning was observed regardless of

whether the interval task exclusively preceded or succeeded

training on the target frequency discrimination task.

Enhancements to frequency discrimination performance at

the posttest were attributed to additional trials of stimulus

exposures that were interleaved with the frequency discrimi-

nation task. They postulated that target frequency discrimi-

nation performance fostered permissive signals that placed

related neural processes involved in learning in a highly

malleable, sensitized state. The trials of stimulus exposures

encountered outside of the target frequency discrimination

performance provided the additional stimulation needed to

surpass the hypothetical threshold for perceptual learning.

Notably, perceptual enhancements were observed even

when additional sensory stimulation encountered indepen-

dent of the target frequency discrimination performance was

behaviorally irrelevant to the trained nontarget interval task.

This has interesting implications for attention, which has

been traditionally regarded as requisite for perceptual learn-

ing. Given that enhancements to frequency discrimination

were observed even though listeners were instructed to

attend to duration, not frequency, during the interval task,

findings suggest that attention might have played a mediat-

ing role for perceptual learning.

Indeed, many studies observed that exposure to a task-

irrelevant feature during training can enhance performance

on a subsequent target task that evaluates the same feature,

and this perceptual learning can occur even without atten-

tion and awareness (Meuwese et al., 2013; Seitz and Dinse,

2007; Seitz et al., 2009; Seitz et al., 2010; Seitz and

Watanabe, 2003, 2005, 2009; Vlahou et al., 2012; Watanabe

et al., 2001). This phenomenon has been coined task-
irrelevant perceptual learning. One of the earliest demon-

strations of task-irrelevant perceptual learning comes from

Watanabe et al. (2001), who exposed participants to a back-

ground that contained subthreshold levels of visual coherent

motion while they actively trained on a letter identification

task. The background coherent motion was deemed task-

irrelevant as it was irrelevant to the letter identification task

that participants were asked to complete. Exposure to this

subthreshold coherent motion improved subsequent perfor-

mance on suprathreshold direction indication, coherent

motion detection, and direction discrimination tasks for the

exposed motion direction. They proposed that frequency,

not salience, of stimulus exposure sensitized the perceptual

system to that feature. In audition, corroborating evidence

for this hypothesis comes from findings that training with at

least 360 trials per day on auditory temporal-interval dis-

crimination is required to elicit perceptual learning (Wright

and Sabin, 2007).

Follow-up investigations suggest that task-irrelevant

perceptual learning is conditional on attention-based

requirements of the trained task (Ahissar and Hochstein,

1993; Bruns and Watanabe, 2019; Leclercq and Seitz, 2012;

Seitz and Watanabe, 2008). Namely, the perceptual system’s

interaction with task-irrelevant stimuli is enhanced when the

task-irrelevant stimuli are presented during behaviorally rel-

evant events (Seitz and Watanabe, 2003, 2009; Leclercq and

Seitz, 2012). For example, Seitz and Watanabe (2003)

observed enhanced performance on a suprathreshold

random-dot motion detection task following exposure to

background motion direction in a letter identification task

when the motion direction was paired with the task’s targets

but not for other background motion directions paired with

distractors. They conjectured that the perceptual system

reinforced an internal reward signal on recognizing the pair-

ing of the motion direction and task’s targets. This internal

reward signal then gated learning on the target random-dot

motion detection task for the paired direction (Roelfsema

et al., 2010; Seitz and Dinse, 2007; Seitz et al., 2009; Seitz

and Watanabe, 2005; Watanabe and Sasaki, 2015). This

learning signal is thought to diffusely enhance representa-

tions for any stimuli, task-relevant or task-irrelevant, that

are systematically and temporally paired with the task tar-

gets (Seitz et al., 2005).

Although findings of robust task-irrelevant perceptual

learning typically use paradigms where the task-irrelevant

stimuli are presented at subthreshold or perithreshold levels

(see Leclercq and Seitz, 2012, for a demonstration of task-

irrelevant perceptual learning using suprathreshold stimuli),

many studies adopting gamified training approaches

reported learning of task-irrelevant stimuli presented at

suprathreshold levels (Amitay et al., 2006; Lim and Holt,

2011; Gabay et al., 2015; Vlahou et al., 2012; Vlahou et al.,
2019; Wade and Holt, 2005; Wiener et al., 2019). For exam-

ple, Wade and Holt (2005) trained participants to play a 30-

min videogame that involved capturing two friendly “alien”

characters and destroying two enemy aliens. Suprathreshold,

nonspeech exemplars drawn from one of four categories

were consistently and temporally paired with the same alien

character, each of which had unique shapes, colors, and

1824 J. Acoust. Soc. Am. 153 (3), March 2023 Leslie Q. Zhen and Sheila R. Pratt

https://doi.org/10.1121/10.0017548

https://doi.org/10.1121/10.0017548


movement trajectories. Learning the nonspeech categories

became increasingly beneficial for game performance as

difficulty progressed across levels (e.g., blocks), although

no information was provided about the existence and

behavioral relevance of the categories. Posttest accuracy

was significantly above chance on an explicit categoriza-

tion task requiring identification of alien characters based

on trained and novel sound exemplars. Further, posttest

categorization accuracy was positively correlated with sev-

eral metrics of in-game performance (e.g., mean high score

attained, mean high level reached, mean line-of-sight dis-

tance). Wade and Holt (2005) concluded that the audio-

visual correlation patterns imparted through gameplay pro-

moted learning of the nonspeech categories following inci-

dental exposure to category exemplars, although this

learning was observed only for categories characterized by

structured onset variability patterns in higher dimensional

acoustic space that consisted of onset trajectory and

steady-state frequency cues (see Fig. 4 in Wade and Holt,

2005). Further, the information acquired differed between

incidental and explicit training procedures. Specifically,

unlike incidental training via gameplay, training on an

explicit, unsupervised categorization task produced catego-

rization patterns that reflected greater difficulty for catego-

ries defined by dynamic spectrotemporal changes of the

second spectral peak at stimulus onset than those defined

by these changes at the offset. The videogame used in

Wade and Holt (2005) has been adapted to demonstrate

incidental learning of nonnative speech categories (Lim

and Holt, 2011).

The incidental auditory category learning demonstrated

in Wade and Holt (2005) and Lim and Holt (2011) might

not be entirely passive because auditory categories consis-

tently predicted visual location and the associated motor

response. Thus, category learning might require learning

these associations beyond passive exposure alone. Gabay

et al. (2015) evaluated the possible drivers of incidental cat-

egory learning using a simplified task. Participants trained

on five blocks of visual target location detection. During

every trial, five repetitions of auditory exemplars identical

to those used in Wade and Holt (2005) predicted visual tar-

get location and the associated motor response. Certain

aspects of the exemplar-to-location mappings used for

blocks 1–3 were modified in block 4 and restored in block 5.

Disrupting the structured category-to-location mappings in

block 4 slowed responses to target detection, suggesting

incidental learning of auditory categories. Target detection

responses were not slowed when trained exemplars were

replaced with novel category-consistent exemplars during

block 4, which otherwise maintained the exemplar-to-loca-

tion mappings from blocks 1–3, proposing incidental learn-

ing of auditory categories and learning transfer to novel

exemplars. In a different condition, detection responses

were not slowed when the exemplar-to-location mappings

from blocks 1–3 were replaced with novel mappings that

disregarded category structure (e.g., arbitrary exemplar-to-

location mappings) during block 4, suggesting that simple

memorization of sound-to-location associations were not the

primary driver of incidental category learning. The amount

of exemplar exposures was identical between the condition

with arbitrary exemplar-to-location mappings and the condi-

tion with structured category-to-location mappings. Despite

this, posttest accuracy on a surprise overt category labelling

task was at chance for the former condition and significantly

above chance for the latter, recommending that passive

exposure alone cannot account for incidental auditory cate-

gory learning. Gabay et al. (2015) proposed that the consis-

tent pairings of visual (e.g., visual target) and motor (e.g.,

task-related motor response) events with auditory exemplars

drove learning of auditory categories. This explanation is

reminiscent of the reinforcement learning accounts used to

explain task-irrelevant perceptual learning (Seitz and

Watanabe, 2003, 2009).

Despite the evidence against passive exposure-based

accounts of learning task-irrelevant, suprathreshold stimuli

in the auditory category learning literature, there has been

demonstrations of passive learning of task-irrelevant audi-

tory stimuli. Amitay et al. (2006) observed enhanced fre-

quency discrimination after playing a visuospatial Tetris

game (SodaCan, http://sivut.koti.soon.fi/sodacan) while pas-

sively listening to playback of �400 trials of another partici-

pant’s frequency discrimination performance adaptively

tracking 75% correct. Of note, participants were instructed

to ignore the auditory stimuli, which were behaviorally irrel-

evant to the Tetris game. Enhancements were greater than

that observed for another group of participants that played

the Tetris game in silence, although both groups demon-

strated significantly greater learning than those without any

training. Improvements in frequency discrimination were

thought to reflect stimulus-driven enhancements for those

who passively listened to auditory stimuli and procedure-

driven enhancements for those who played Tetris silently.

Overall, these findings provide evidence that subthresh-

old and suprathreshold stimulus exposures encountered out-

side of the target task can enhance learning. Attention does

not appear to be requisite to contribute to perceptual

enhancements in some instances. These stimulus exposure

approaches were leveraged to enhance perceptual learning

during this study’s target task.

B. Procedure experience and learning

Experience with a task’s procedures may enhance per-

formance on perceptual tasks with the same or similar proce-

dures. Although few studies have formally investigated the

role of procedural learning for temporal information, some

suggest that learning does not culminate solely from feature

learning (Ahissar and Hochstein, 2004; Ahissar et al., 2009;

Cohen et al., 2013; Hochstein and Ahissar, 2002; Xu et al.,
2021). For example, Ortiz and Wright (2009) demonstrated

that exposure to an interaural timing difference discrimina-

tion task’s stimulus and procedures contributed to overall

learning of the task. It is unknown whether these results

extend to temporal perceptual learning.
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Task structure, which includes factors or strategies that

influence the decision-making process, has been found to

affect temporal perceptual learning (Cohen et al., 2013; Xu

et al., 2021). One interesting demonstration comes from Xu

et al. (2021), where they provided evidence that temporal per-

ceptual learning is influenced by the trained stimulus features

and task structure. Although Xu et al. (2021) did not distin-

guish between the procedure- and task-related aspects of tem-

poral learning, their use of task structure is a combination of

this study’s definitions of procedural and task learning. In

their experiments, participants trained on an auditory

temporal-interval discrimination task that consisted of either

a fixed set of eight possible comparison intervals (fixed-inter-

val group) or comparison intervals that were randomly

selected from a Gaussian distribution (random-interval

group). They observed significant reductions (improvements)

in duration thresholds in the fixed-interval group but no gains

in the random-interval group after five training sessions. This

difference was attributed to the fact that the fixed-interval

group, unlike the random-interval group, had access to com-

parison intervals that were more predictable, which enhanced

strategy learning related to the statistical regularity of the

comparison intervals, and contributed to overall learning.

In the same experiment, Xu et al. (2021) provided evi-

dence for task learning. The interval task used during the

five training sessions was a bisection task in which the par-

ticipant indicated whether comparison intervals were longer

or shorter than a standard interval that was presented once at

the start of each session. Prior to and after the bisection task,

participants completed a different variation of temporal-

interval discrimination that was a two-interval comparison

task during which the participant indicated which of two

intervals was shorter. Although learning was observed for

the fixed-interval group on the trained bisection task, this

learning did not transfer to the comparison task during the

testing phase. The task specificity of learning was attributed

to learning response strategies during the trained bisection

task that differed from the response strategies needed for the

transfer comparison task.

C. Task experience and learning

As demonstrated in Xu et al. (2021) and by others,

experience with a task may influence later performance on

the same task. For example, studies of temporal-interval dis-

crimination have demonstrated learning transfer across fre-

quencies (Karmarkar and Buonomano, 2003; Wright et al.,
1997) and modalities from audition to vision (Bratzke et al.,
2012; Bratzke et al., 2014; McGovern et al., 2016). Key to

these findings is that most demonstrate learning transfer

from a trained task to the same task but not an untrained

task, indicating that something about the acquired information

is specific to the trained task. Indeed, a characteristic observa-

tion of repetitive training protocols is that improvements on

trained tasks fail to transfer to untrained tasks even when the

target stimulus is identical between tasks (Amitay et al., 2006;

Delhommeau et al., 2002; Liu and Weinshall, 2000; Xu et al.,

2021). Thus, learning transfer of task information is expected

only across identical tasks.

Ortiz and Wright (2009) suggested that procedural and

perceptual learning but not task learning contributes to the

learning process. In their study, listeners trained on one of

three discrimination tasks (temporal-interval, interaural

level difference, and interaural timing difference) one day

before training on a target interaural timing difference dis-

crimination task. Listeners who trained on interaural level

difference were exposed to the target task’s procedure and

lateralization task. These listeners performed similarly to

interval-trained listeners who were exposed only to the tar-

get task’s procedure despite the fact that both groups per-

formed better than controls naive to the target task. They

concluded that task learning did not contribute toward over-

all learning for interaural timing difference discrimination

but procedural learning did in that the interval-trained listen-

ers performed better than untrained, naive controls.

Similarly, listeners who trained on the interaural timing dif-

ference were exposed to the target task’s stimulus, proce-

dure, and task. These listeners performed better than those

who trained on interaural level difference, suggesting that

perceptual learning contributed toward overall learning. It is

unknown whether these results extend to temporal-interval

discrimination.

II. RESEARCH QUESTIONS AND HYPOTHESES

The goal of this study was to assess the extent to which

exposure to the stimulus, procedure, and/or task of an audi-

tory temporal-interval discrimination task (target task) influ-

ences learning on the target task. Before training on the

target task, participants trained on one of three exposure

tasks: (a) auditory temporal-interval discrimination (interval

exposure-trained), (b) frequency discrimination with timing

information [(FDT)-trained], and (c) frequency discrimina-

tion without timing information [(FD)-trained]. Control par-

ticipants naive to the target task also were recruited.

Hereafter, we use interval exposure task to refer to the one

session of temporal-interval discrimination completed dur-

ing the exposure phase and interval target task to refer to

the five sessions completed throughout the training phase

(see Fig. 1).

Table I shows the shared elements between the exposure

and target tasks. For interval exposure-trained participants,

gains on interval target task performance beyond those for

FDT-trained participants denote task learning. For FDT-

trained participants, improvements in interval target task per-

formance beyond those for FD-trained participants imply

perceptual learning. Last, for FD-trained participants, gains

on interval target task performance beyond those for naive

controls suggest procedural learning. Ortiz and Wright

(2009) reported that perceptual and procedural learning but

not task learning contributes to overall learning for the inter-

aural timing difference. If the learning patterns for temporal-

interval discrimination are consistent with those for interaural

timing difference, we expected that the FDT-trained listeners
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would improve more than the FD-trained listeners, the FD-

trained listeners would improve more than the naive control

group, and the interval exposure- and FDT-trained listeners

would perform similarly on the interval target task. That said,

consistent with evidence that task learning contributes to

overall temporal learning (Xu et al., 2021), interval

exposure-trained listeners were expected to improve more

than the FDT-trained listeners on the interval target task.

III. METHODS AND PROCEDURES

A. Participants

Eighty-three participants (60 female, 23 male) aged 18

to 30 years old [M¼ 23.4, standard deviation (SD)¼ 3.0]

qualified for the study. The G*Power version 3.1.9.2 (Faul

et al., 2007) software was used to estimate the minimum

sample size required to test an exposure-by-session interac-

tion. A sample size of n¼ 48 was required to achieve 80%

power for detecting an effect of 0.2 at a significance crite-

rion of a ¼ 0.05 and correlation among repeated measures

of 0.5 for a 4� 5 (group � session) mixed design analysis

of variance (ANOVA). After considering the entirely online

procedure of this study, an effect size of 0.2 was selected to

be a slightly more conservative estimate than those reported

in relevant studies of auditory perceptual learning conducted

in controlled laboratory settings (Ortiz and Wright, 2009,

2010; Xu et al., 2021). A correlation among repeated mea-

sures of 0.5 was selected as it is a relatively moderate esti-

mate for multisession auditory perceptual learning and

given the trajectories reported in relevant studies (Bratzke

et al., 2012; Bratzke et al., 2014; Cohen et al., 2013;

Karmarkar and Buonomano, 2003; Wright et al., 1997; Xu

et al., 2021). The nonsphericity correction coefficient was

set to one to assume sphericity.

Given an expected completion rate of 70%, the minimum

recruitment target was set to n¼ 72 (48/0.70, rounded up to

the nearest whole number divisible by the number of groups)

with n¼ 18 participants in each group. Complications related

to the entirely online (necessitated by the COVID-19 pan-

demic) and longitudinal nature of this study resulted in more

data loss than expected, and several participants performed

aberrantly (see Sec. III E), hence, additional participants were

enrolled.

Table II summarizes the demographic information for

all of the qualified participants. The participants had normal

or near-normal hearing, normal or corrected-to-normal

vision for both eyes, and reported no speech, language,

attention, and neurological impairments. All of the partici-

pants were naive to this and similar psychophysical experi-

ments. Participants were recruited through the PittþMe

research registry at the University of Pittsburgh and various

Facebook (Meta Platforms, Inc., Menlo Park, CA) groups

frequented by the target population and compensated for

their time. All of the procedures were approved by the

University of Pittsburgh’s Institutional Review Board and

informed consent was obtained from all of the participants.

B. Screening tasks

Hearing thresholds were screened using an online test-

ing application.1 Calibration was achieved following the

site’s level matching procedure (see Sec. 1 of the online test-

ing application1), which required participants to adjust their

computer’s audio output level to match the levels of sounds

of hands rubbing together, which were produced binaurally

from the headphones and by the participants themselves

after having removed the headphones from their ears.

Hearing thresholds were determined using warble tones

FIG. 1. Study design. Interval exposure task ¼ interval target task ¼ audi-

tory temporal-interval discrimination and control ¼ no exposure.

TABLE I. Shared elements between the exposure and target tasks. Interval

exposure ¼ auditory temporal-interval discrimination and control ¼ no

exposure.

Interval target task elements

Exposure tasks Stimulus Procedure Task

Interval exposure Yes Yes Yes

FDT Yes Yes No

FD No Yes No

Control No No No

TABLE II. Participant demographics.

Exposure

Factor Interval FDT FD Control

N 23 18 22 20

Sex Female 12 15 16 15

Male 11 3 6 5

Educationa <High school 1 0 0 0

High school 8 7 7 7

Associates 0 0 1 0

Bachelors 11 8 12 10

Masters 3 2 2 3

Doctoral 0 1 0 0

M (SD)

Age 22.8 (2.7) 23.9 (3.7) 23.3 (2.7) 23.6 (2.8)

4-WTAb Right ear 14.0 (6.6) 13.7 (6.8) 14.1 (8.1) 13.2 (7.7)

Left ear 13.9 (7.0) 11.7 (6.6) 14.3 (8.2) 11.8 (8.3)

aHighest level of education completed.
bWarble tone average, calculated as the mean of 0.5, 1.0, 2.0, and 4.0 kHz

dB hearing level (HL).
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rather than conventional pure tones to minimize resonance

from the participant’s headphones and environment. Each ear

was tested separately. Normal hearing was defined as hearing

thresholds of �35 dB HL for 0.25, 0.5, 1, 2, 3, 4, 6, and

8 kHz (American Speech-Language-Hearing Association,

2005) in both ears.

Visual acuity was evaluated online with the application

available.2 The participants were instructed to indicate the

direction of the letter E, which got progressively smaller

when viewed from a constant distance. Each eye was tested

separately.

Demographic and other eligibility information were

screened using a questionnaire, andinformation collected

included history of speech, language, hearing, attention, and

neurological impairments. Also, the participants were asked

to describe past participation in research studies if there was

any.

C. Apparatus

The study was conducted online in the participants’ nat-

ural environment because of restrictions related to the

COVID-19 pandemic. The participants were required to

have access to a computer, smartphone with Apple’s iOS

(Apple Inc., Cupertino, CA) or Google’s Android (Alphabet

Inc., Mountain View, CA) operating systems, wired circum-

aural headphones, and a webcam. Stimuli were presented

using Pavlovia version 2020.2, which did not require an

internet connection during experimental testing (Peirce

et al., 2019).

1. Stimuli

The stimuli consisted of an empty acoustic interval

bounded by pairs of identical 15 ms, 1 kHz tones with 5 ms

raised-cosine rise/fall ramps. The tone pairs were presented

sequentially with a fixed 100 ms standard intertone interval

between the first pair of tones and 1000 ms separation between

the first and second pairs. The intertone interval for the second

pair was variable. The stimuli were presented binaurally via

circumaural headphones at a comfortable and audible level,

which was estimated at the beginning of each session using

white noise [10 s duration, 0.9–1.1 kHz passband, 44.1 kHz

sampling rate, root mean square (RMS) ¼ –20.3 dB] calibra-

tion to 70 dBZ employing either the NIOSH Sound Level

Meter application for iOS (NIOSH, 2020) or the Decibel

X–dB Sound Level Meter, Noise Detector application for

Google’s Android (SkyPaw Co., Ltd., 2021) and verified

through verbal confirmation from the participant.

2. Interval target task

The interval target task was an auditory temporal-

interval discrimination task adapted from Bratzke et al.
(2012). The participants were instructed to indicate whether

the second of two pairs of tones was separated by a shorter

or longer duration than the first pair by using the left and

right arrow keys on their keyboard. Figure 2 illustrates one

trial of the interval target task. As indicated above, the

intertone interval for the first pair of tones was fixed at

100 ms (the standard interval). The intertone interval for the

second pair of tones varied across trials and included one of

eight possible durations: 79, 85, 91, 97, 103, 109, 115, and

121 ms (the comparison interval). The standard was always

presented first, and the comparison interval was selected

randomly with replacement until each of the 8 possible dura-

tions was presented 20 times per block. The interval separat-

ing each trial was selected randomly from one of four

possible durations: 800, 900, 1000, and 1100 ms.

3. Frequency discrimination with timing information

A FDT task required participants to indicate whether the

second pair of tones was lower or higher in frequency than the

first pair. Trials were identical to those for the interval target

task (see Fig. 2), except that the second pair of tones varied by

frequency across trials. Tones in the same pair were equal in

frequency. The standard frequency was fixed at 1000 Hz. The

comparison frequency was one of eight possible frequencies:

979, 985, 991, 997, 1003, 1009, 1015, and 1021 Hz. Each

comparison frequency always co-occurred with the same

intertone comparison interval. For example, a stimulus pair

with a 979 Hz comparison frequency always had a 79 ms

intertone interval and a 985 Hz pair had an 85 ms interval.

Although coupling frequencies with durations may provide a

temporal cue that enhances FDT performance beyond that for

FD alone, cue-related improvements to frequency discrimina-

tion were orthogonal to our intent to use the FDT and FD tasks

to expose participants to elements of the interval target task

and not to evaluate frequency selectivity.

4. Frequency discrimination without timing
information

The FD task was identical to the FDT task except that

the intertone comparison interval was fixed at 100 ms.

D. Procedure

Figure 1 illustrates the study design. The experiment

consisted of five sessions. On session (day) 1, participants

were assigned randomly to train on an interval, FDT task, or

FD task immediately prior to interval target task training. A

control group did not receive any training before starting the

FIG. 2. One trial of the auditory tasks. A trial consisted of four auditory

events and three primary intervals of silence. For the auditory temporal-

interval discrimination task, each of the four events on the line represented

a 1 kHz tone pip that was 15 ms in duration with 5 ms raised-cosine rise/fall

ramps. s is the standard interval, which was fixed at 100 ms; c is the com-

parison interval, which was one of eight possible durations: 79, 85, 91, 97,

103, 109, 115, and 121 ms. Trials for the two variants of the frequency dis-

crimination tasks shared the same format, except that the second pair of

tone pips varied in frequency across trials based on one of eight possible

frequencies: 979, 985, 991, 997, 1003, 1009, 1015, and 1021 Hz. Also, c
was fixed at 100 ms for the frequency discrimination task without timing

information.
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interval target task. After this exposure phase, all of the par-

ticipants completed one session of interval target task train-

ing. During sessions 2–5, participants trained only on the

interval target task. For all of the tasks, each session con-

sisted of 4 blocks of 160 trials. Visual feedback was pro-

vided after each trial. The maximum time between sessions

was limited to 3 days.

E. Statistical analyses

The primary outcome was the number of long responses

for each of the eight comparison intervals for the interval

target task. Logistic curves were fitted to data of the eight

comparison intervals as a function of probability of respond-

ing long using maximum likelihood for each participant and

session without bootstrapping while estimating psychophys-

ical thresholds. Psychometric functions were fit using the

QuickPsy package in R (see Fig. 3; Linares and L�opez-

Moliner, 2016). For each participant, group, and session, the

difference limen (DL) was estimated to be

DL ¼ x0:75 � x0:25

2
; (1)

where x0:25 and x0:75 indicate the durations when the partici-

pant responded long 25% or 75% of the time, respectively.

A mixed ANOVA was used to estimate the extent to which

exposure to elements of the interval target task affected

interval target task duration DLs across sessions. The same

analyses were repeated on the slopes of the fitted functions.

Prior to analyses, outliers were identified and removed

mirroring procedures used in relevant studies of auditory

perceptual learning (Bratzke et al., 2014; Ortiz and Wright,

2009, 2010; Xu et al., 2021). First, interval target task data

were prescreened to remove participants with completely

flat psychometric functions (interval¼ 3, FDT¼ 1, FD¼ 4,

and control¼ 2). Then, data were excluded for participants

with deviant duration DL estimates, defined as >1.5 times

the interquartile range and >25 ms. An upper cutoff of 25 ms

was selected because it was slightly larger than the upper

range of data from studies using similar interval tasks

(Bratzke et al., 2012; Bratzke et al., 2014; Xu et al., 2021)

and after considering the individual trajectories for partici-

pants to maximize conservativeness of outlier removal given

the large observed variances. Duration DLs from all of the

participants were pooled to determine session 1 interval tar-

get task outliers. Then, duration DLs were analyzed by group

to determine the outliersin sessions 2–5. In summary, data

exist for at least 1 interval target task training session for 20

of 23 interval exposure-trained, 17 of 18 FDT-trained, 18 of

22 FD-trained, and 18 of 20 naive control participants.

Incomplete data for one or more sessions resulted from attri-

tion (FDT¼ 1, FD¼ 1, and control¼ 2) and technological

difficulties (interval exposure¼ 4 and control¼ 2).

For the exposure tasks, outlier detection was performed

for each group separately but otherwise followed the same

procedure as outlined above. The exposure task results

reported reflect data from 18 interval exposure-trained, 15

FDT-trained, and 16 FD-trained listeners.

The script for analysis and de-identified datasets are

available online.3

IV. RESULTS

A. Effect of interval exposure on the interval target
task

Figures 4 and 5 show the changes in duration DLs and

slopes across sessions for each group and participant,

respectively. A mixed ANOVA was used to investigate the

effect of exposure on duration DLs across the five training

sessions. The duration DLs were submitted to a 4� 5 mixed

ANOVA with group (interval, FDT, FD, and control) as the

between-subjects factor and session (1, 2, 3, 4, and 5) as the

within-subjects factor. The interaction between group and

session was not statistically significant, F(12,212)¼ 0.447,

FIG. 3. Change in psychometric func-

tions from initial to final sessions of target

temporal-interval discrimination training.

Interval exposure ¼ auditory temporal-

interval discrimination (nsessions1,5 ¼ 18,

18); FDT (nsessions1,5 ¼ 14,16); FD

(nsessions1,5 ¼ 16,17); control ¼ no expo-

sure (nsessions1,5 ¼ 15,17). For clarity,

only sessions 1 and 5 are plotted.
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p¼ 0.942, and g2
p ¼ 0.025. No between group differences

were observed, F(3,53)¼ 0.159, p¼ 0.923, and g2
p ¼ 0.009.

Despite this, duration DLs decreased across sessions,

F(4,212)¼ 14.013, p¼ 3.67� 10�10, and g2
p ¼ 0.209, sug-

gesting significant learning over time. Analysis on the slopes

returned identical conclusions, where there was no interaction

effect, F(12,212)¼ 0.710, p¼ 0.741, and g2
p ¼ 0.039; no

effect of group, F(3,53)¼ 1.181, p¼ 0.326, g2
p ¼ 0.063; but

a statistically significant steepening of slopes across sessions,

F(4,212)¼ 21.776, p¼ 4.55� 10�15, and g2
p ¼ 0.291.

Figure 6 shows additional analyses of the duration DLs

and slopes that consider the maximal improvement in temporal-

interval discrimination for each group. These analyses were

motivated by the possibility that factors such as fatigue, inatten-

tion, and lack of motivation coupled with the entirely online

administration might have contributed to the large observed

variances (see Fig. 4) that masked possible exposure effects. A

mixed ANOVA comparing the duration DLs from the initial to

best sessions revealed a significant effect of session, F(1,57)

¼ 102.530, p¼ 2.37� 10�14, g2
p ¼ 0.643, but not group,

F(3,57)¼ 0.438, p¼ 0.727, g2
p ¼ 0.023. The interaction was

not significant, F(3,57)¼ 0.119, p¼ 0.949, g2
p ¼ 0.006.

Comparisons of the duration DLs from the initial to final ses-

sions revealed a significant effect of session, F(1,54)¼ 23.131,

p¼ 1.25� 10�5, g2
p ¼ 0.300, but not group, F(3,54)¼ 0.424,

p¼ 0.737, g2
p ¼ 0.023, and interaction, F(3,54)¼ 0.143,

FIG. 4. (Color online) Change in (A)

mean DLs and (B) slopes for temporal-

interval discrimination across sessions.

Interval exposure ¼ auditory temporal-

interval discrimination (ntotal ¼ 20);

FDT (ntotal ¼ 17); FD (ntotal ¼ 18);

control ¼ no exposure (ntotal ¼ 18).

The vertical dashed line separates

interval-training during exposure from

interval target task training. The error

bars represent SD.

FIG. 5. (Color online) Subject level changes in (A) DLs and (B) slopes for temporal-interval discrimination across sessions. C, complete data; O/T/W, mis-

sing�1 session due to deviant performance, technical error, or withdrawal; same, same participant in group. Interval exposure ¼ auditory temporal-interval

discrimination (ntotal ¼ 20); FDT (ntotal ¼ 17); FD (ntotal ¼ 18); control ¼ no exposure (ntotal ¼ 18). The bold solid lines represent group means. The vertical

dashed line separates interval-training during exposure from interval target task training.
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p¼ 0.934, g2
p ¼ 0.008. Most groups exhibited best duration

DLs at session 5. Half of the participants in the FDT group and

most participants in the FD group exhibited best duration DLs

at sessions 3 and 4, respectively.

Analyses of the slopes returned identical conclusions. A

mixed ANOVA comparing the slopes from the initial to best

sessions revealed a significant effect of session, F(1,57)

¼ 130.806, p¼ 2.18� 10�16, g2
p ¼ 0.696, but not group,

F(3,57)¼ 1.550, p¼ 0.212, g2
p ¼ 0.075. The interaction

was not significant, F(3,57)¼ 0.346, p¼ 0.792, g2
p ¼ 0.018.

Comparisons of the slopes from the initial to final sessions

revealed a significant effect of session, F(1,54)¼ 44.090,

p¼ 1.58� 10�8, g2
p ¼ 0.449, but not group, F(3,54)

¼ 2.042, p¼ 0.119, g2
p ¼ 0.102, and interaction, F(3,54)

¼ 0.354, p¼ 0.786, g2
p ¼ 0.019.

Figure 7 visualizes the change in performance on the

target interval task. Difference scores between the initial

and final sessions were calculated for duration DLs

FIG. 6. (A) DLs and (B) slopes for the initial, best, and final sessions. Interval ¼ auditory temporal-interval discrimination (ninitial,best,final ¼ 18,20,17); FDT

(ninitial,best,final ¼ 14,16,16); FD (ninitial,best,final ¼ 16,17,17); control ¼ no exposure (ninitial,best,final ¼ 15,18,17). The error bars represent SD. (C) The count of best

performance at each session per group. This single plot represents best performance as defined by DLs and slopes, both of which produced identical counts.

FIG. 7. Change in DLs (A) and slopes (B) at the initial and final sessions of the interval target task. Interval exposure ¼ auditory temporal-interval discrimi-

nation (ninitial,final ¼ 18,17); FDT (ninitial,final ¼ 14,16); FD (ninitial,final ¼ 16,17); control ¼ no exposure (ninitial,final ¼ 15,17). The error bars represent SD.

J. Acoust. Soc. Am. 153 (3), March 2023 Leslie Q. Zhen and Sheila R. Pratt 1831

https://doi.org/10.1121/10.0017548

https://doi.org/10.1121/10.0017548


[Fig. 7(A)] and slopes [Fig. 7(B)]. Difference scores for

duration DLs and slopes revealed that the interval and FDT

groups improved the most across sessions, whereas the FD

and control groups improved the least across sessions.

B. Effect of task-irrelevant temporal information
on frequency discrimination

Although this study was not intended to evaluate fre-

quency selectivity, we were interested in whether exposure to

temporal-intervals during the FDT task enhanced frequency

discrimination. A Welch two-samples t-test was used to

compare frequency DLs (in Hz) between FDT-trained

(M¼ 15.804, SD¼ 7.565) and FD-trained (M¼ 18.787,

SD¼ 10.441) listeners. Although the FDT-trained listeners

had lower frequency DLs than those for the FD-trained listen-

ers, this difference was not statistically significant,

t(27.3)¼ 0.915, p¼ 0.368, g2
p ¼ 0.030. Furthermore, the

FDT-trained listeners (M¼ 0.085, SD¼ 0.038) had steeper

slopes than those for the FD-trained listeners (M¼ 0.079,

SD¼ 0.046), but this difference was not statistically signifi-

cant, t(28.7)¼ 0.442, p¼ 0.662, g2
p ¼ 0.007.

V. DISCUSSION

Experience can enhance performance on tasks of tem-

poral processing (Bratzke et al., 2012; Bratzke et al., 2014;

Karmarkar and Buonomano, 2003; McGovern et al., 2016;

Wright et al., 2010; Wright and Sabin, 2007; Xu et al.,
2021). Difficulty with isolating the individual effects of

stimulus, procedure, and task experience has been a persis-

tent limitation of the perceptual learning literature. Many

studies of perceptual learning implement pre/posttest

designs or some form of pretraining (Delhommeau et al.,
2002; Karmarkar and Buonomano, 2003; Lapid et al., 2009;

McGovern et al., 2016) that could mask the contributions of

procedural and task learning. The present study used an

exposure design to investigate the role of perceptual, proce-

dural, and task learning on temporal learning. Overall,

temporal-interval discrimination improved, but an exposure

(group) effect was not found when examined across sessions.

The findings of this study do not appear to be consistent

with those from Ortiz and Wright (2009), who suggested

that stimulus and procedure, but not task, experience con-

tributes to overall learning. Several differences between the

present study and that by Ortiz and Wright (2009) might

explain the inconsistent findings. For one, the latter study’s

target task was an interaural timing difference task, which

might involve different learning patterns than those needed

for temporal-interval discrimination. Furthermore, their

study estimated DLs using a two-alternative forced choice

method, which has been found to produce DL estimates that

are approximately 50% larger than those obtained from the

method of constant stimuli applied in the present study

(Ulrich, 2010). Inconsistencies in findings between the two

studies might reflect differences in sensitivities to each of

the two DL estimation methods. Last, their study design

resulted in interpretations of perceptual, procedural, and

task learning that differed from those in the present study.

For example, during their exposure phase, a group of listen-

ers was trained on the same task as their target task to impart

information about the target task’s stimulus, procedure, and

task. The difference between this group’s target task perfor-

mance and that for another group that was exposed to only

the target task’s procedure and task was interpreted as per-

ceptual learning. If there are unobserved factors beyond

stimulus, procedure, and task that contributed to learning,

the group exposed to the same task as the target task will

likely perform best, which can lead to overestimating per-

ceptual learning. The same limitation applies to the task

learning in the present study, which was interpreted as the

difference in improvement between the interval exposure-

and FDT-trained listeners (see Table I). Future research is

needed to identify these unobserved factors and the extent to

which they contribute to temporal learning.

Also, the findings from the current study do not appear

to be consistent with those from Xu et al. (2021), who found

perceptual, procedural, and task contributions to overall

learning on temporal-interval discrimination. These incon-

sistencies might stem from differences in study design. For

example, their procedural learning was assessed through

manipulating the statistical regularity of comparison inter-

vals, whereas the present study manipulated listeners’ expe-

riences to the interval target task’s procedures using an

exposure phase. Further, the methods that Xu et al. (2021)

used to estimate DLs varied from their trained bisection task

(which used the method of constant stimuli) to their transfer

comparison task (which used an adaptive staircase).

Differences in sensitivities to each of the two DL estimation

procedures could have biased their conclusions on task spe-

cificity to their trained bisection task. Last, the comparison

task used in Xu et al. (2021) is more time-consuming to

administer than their bisection task because it requires pre-

senting the standard interval in every trial as opposed to

only once at the start of each session. Consequently, partici-

pants might have been more fatigued during the comparison

task than the bisection task, which could have masked possi-

ble effects of learning transfer and contributed to the

observed task specificity.

Fatigue, boredom, and other factors might have contrib-

uted to the significant effect of time but not group in the cur-

rent study. A recent study from Zhao et al. (2022) examined

the role of fatigue, motivation, apathy, and confidence on

several classic psychophysical tests calibrated using a stable

and robust volume (i.e., level) setting procedure for online

testing. They reported moderate, positive correlations

between self-reported fatigue ratings and tone detection in

noise. Self-ratings of confidence and metrics of apathy and

motivation obtained using the Apathy Motivation Index ques-

tionnaire did not influence tone-in-noise thresholds. Further,

high motivation, but not low fatigue, predicted an increased

probe-signal effect (an accuracy advantage in detecting fre-

quent 1000 Hz tones over infrequent, non-1000 Hz tones).

The present study was designed such that interval target

task training immediately followed exposure to elements of
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the interval target task. Although the intent was to minimize

the decay of acquired information between the exposure and

training phases (Wright et al., 2010), this required the three

exposure groups to complete 1280 trials (640 from the expo-

sure phase and 640 from the interval target task) in one sit-

ting. Therefore, the three exposure groups could have

become bored and inattentive and/or fatigued, especially

after having to forgo in-laboratory administration for an

entirely online format. These factors might have masked

possible transfer of learning to the interval target task. This

account is especially likely for the FDT and FD groups,

which demonstrated best performance before the final ses-

sion [see Fig. 6(C)]. An interesting line of future research

could investigate the influences of information decay on

learning transfer between exposure and interval target tasks

and whether specific learning processes are more susceptible

to this decay. This approach of research could contribute to

study designs that minimize information decay between ses-

sions while mitigating fatigue.

That listeners improved in temporal-interval discrimi-

nation across sessions suggests that some learning had

occurred. A possible explanation for the lack of an exposure

effect is that stimulus exposures encountered during the

interval, FDT, and FD tasks simply had no true effect on tar-

get temporal-interval discrimination. This is unlikely

because all exposure groups demonstrated larger numeric

changes in slope from initial to final sessions than naive con-

trols without any prior experience. Another possibility is

that potential exposure effects were masked because partici-

pants were overtrained with 640 trials per session of

temporal-interval discrimination. Wright and Sabin (2007)

reported that training with 360 trials per day was sufficient

to induce perceptual learning on auditory temporal-interval

discrimination, and training with 900 trials per day did not

yield additional learning. However, the two-alternative

forced choice procedure used by Wright and Sabin (2007)

has been found to produce larger DL estimates than those

obtained using the method of constant stimuli, which

employed in this study (Ulrich, 2010). Further, the adaptive

staircase used in Wright and Sabin (2007) requires less trials

to estimate DLs than the method of constant stimuli.

Comparisons across the two studies are difficult given these

differences in DL estimation. The temporal-interval discrim-

ination task used in here was adapted from Bratzke et al.
(2012), who applied nearly identical procedures to demon-

strate substantial learning across sessions.

Several factors might substantiate the exposure-related

enhancements to temporal-interval discrimination. For one,

the interval exposure, FDT, FD, and interval target tasks

shared identical procedures, including but not limited to the

user interface, testing environment, the statistical regularity

of the percepts of interest, and DL estimation procedure

using the method of constant stimuli. For another, the FDT

task was designed such that the low comparison frequency

pairs (<1 kHz) always were copresented with short

temporal-intervals (<100 ms; see Sec. III) and the high com-

parison frequency pairs (>1 kHz) always were copresented

with long temporal-intervals (>100 ms). As such, temporal-

intervals always were consistently coupled with the FDT

task’s frequency targets (low versus high). Despite not being

statistically significant likely because of the large observed

variances, frequency DLs for the FDT group were approxi-

mately 3 Hz lower (better) than those for the FD group, sug-

gesting that at least some participants exploited the

frequency-time relationship to benefit frequency discrimina-

tion performance. Successful recognition of the frequency-

time associations might have promoted learning for the

temporal-intervals, even though FDT-trained listeners were

instructed to attend to frequency, not duration. This account

is reminiscent of others used to explain learning of task-

irrelevant information (Gabay et al., 2015; Lim and Holt,

2011; Seitz and Watanabe, 2003, 2009; Vlahou et al., 2012;

Vlahou et al., 2019; Wade and Holt, 2005; Wiener et al.,
2019), but the design of this study does not allow us to rule

out the possibility that the additional passive exposures to

temporal-intervals can enhance learning (Amitay et al.,
2006).

The entirely online format has several implications for

the role of procedural learning that might explain the large

observed variances (see Figs. 4–7). Despite that little is

known about the extent to which online testing affects pro-

cedural learning for perceptual tasks, some predictions are

possible. Compared to testing in controlled and presumably

unfamiliar laboratory settings, completing experiments in

familiar environments (e.g., the home) using familiar hard-

ware (e.g., keyboard layout and computer monitor size) is

expected to reduce the demand for procedural learning sim-

ply because there is less need to learn to interface with these

factors. Concomitantly, completing online experiments

imposes challenges on digital literacy and adaptability to

new software. Further, noise levels (e.g., from sirens and

vocalizations from other organisms) and the presence of

other distractors (e.g., power outages) could fluctuate within

and between sessions despite the measures taken to limit

variability of the environment. These factors are expected to

increase the demand for procedural learning.

A few listeners (n¼ 6) demonstrated worsening, defined

as having >5 ms net increase in DL, in temporal-interval

discrimination across sessions. This worsening effect has

been observed in other studies involving temporal-interval

discrimination (Wright et al., 1997; Wright et al., 2010; Xu

et al., 2021). In addition to boredom and fatigue, learning

decay related to the time between sessions might have con-

tributed to the worsening despite the measures taken to miti-

gate (see Sec. III). Still, the intent for using the multisession

design was to maximize the potential for temporal percep-

tual learning and account for differences between the three

learning processes later in time when perceptual learning is

traditionally thought to dominate over procedural and task

learning (Ortiz and Wright, 2010). Multisession designs pro-

vide numerous opportunities to retrieve acquired informa-

tion for rehearsal and reconsolidation, which is thought to

strengthen representations of the target precept through

additional trials of training (Lee, 2008). This line of thought
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resonates with the literature, suggesting that perceptual

learning can be enhanced after distributing and consolidat-

ing learning across time (Alain et al., 2015; Savion-

Lemieux and Penhune, 2005; Wright et al., 1997).

Specifically, distributing training-related exposure to stimu-

lus features over several hundreds of trials across days is

thought to facilitate neural plasticity in the sensory cortex,

enlarging cortical representation for the trained percepts

(Moore et al., 2003; Recanzone et al., 1992; Recanzone

et al., 1993. Sleep, which presumably occurred between ses-

sions, is thought to enhance this auditory learning consolida-

tion (Atienza et al., 2004; Chen et al., 2017; Gaab et al.,
2004; Gottselig et al., 2004).

Overall, stimulus, procedure, and task contributions to

temporal-interval discrimination appear to be negligible.

The large observed variances likely masked stimulus, proce-

dure, and task contributions toward overall temporal learn-

ing. Consequently, this study cannot rule out the notion that

multiple distinct processes are engaged to varying extents

during learning (Ahissar and Hochstein, 2004; Cohen et al.,
2013; Ortiz and Wright, 2009; Xu et al., 2021). Caution is

needed when designing studies of temporal perceptual learn-

ing to avoid biasing conclusions about changes to the per-

ceptual system related to feature training alone. Finally,

given the null results and large observed variances (see Fig.

4–7), this study does not discount contributions from factors

beyond stimulus, procedure, and task on temporal learning.
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