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The genome engineering revolution of the past decade has
been fueled by the development of several computational
tools for the design of experiments mediated by the CRISPR/
Cas9 endonuclease (Dimauro et al. 2022). A crucial step in
the design phase is the selection of a guide RNA (gRNA)
matching a specific target on the DNA to be cleaved. The tar-
get must be upstream of a short sequence motif, named PAM
(Jinek et al. 2012). To predict the editing efficiency for a
gRNA, machine and deep learning models have been trained
on datasets of cleavage efficiency measured as indel frequency
at endogenous or surrogate targets, or as loss of function
readouts of the proteins encoded by the targeted genes
(Doench et al. 2014, Chari et al. 2015, Xu et al. 2015,
Doench et al. 2016, Haeussler et al. 2016, Kim et al. 2019,
Wang et al. 2019, Xiang et al. 2021, Anthon et al. 2022).
Measuring cleavage efficiency at surrogate targets by high-
throughput sequencing allows efficient production of datasets
much larger than those obtained from endogenous cleavage
or functional knockouts. Hence, deep learning models for
gRNA efficiency prediction use surrogate-based efficiency
data for training (Kim et al. 2019, Wang et al. 2019, Xiang
et al. 2021, Anthon et al. 2022). However, since the genomic
context at surrogate targets is different from that of endoge-
nous ones, variation in efficiency is observed between the two
measurements, which nevertheless correlate well (Spearman’s
R � 0.7) (Kim et al. 2019, Wang et al. 2019, Xiang et al.
2021). Functional knockouts are an indirect measure of cleav-
age efficiency as not all indels resulting from cleavage events
cause loss of function (e.g. knockout efficiency depends on
the cleavage position and/or on the presence of specific
domains (Shi et al. 2015, Doench et al. 2016)). Predicting
functional knockout efficiency thus requires prediction of
both target cleavage efficiency and of the effect of potential
indels on the protein encoded by the targeted gene.

In the article “DeepCRISTL: deep transfer learning to pre-
dict CRISPR/Cas9 functional and endogenous on-target

editing efficiency” published June 27th in Bioinformatics, 38,
2022, i161–i168 as part of the ISMB 2022 Proceedings,
Elkayam and Orenstein applied transfer learning (TL) to im-
prove Cas9 gRNA efficiency predictions at endogenous sites
and for functional knockout tasks. After training an improved
multi-task version of the DeepHF model, originally developed
by Wang et al. (2019), on a large-scale dataset, Elkayam and
Orenstein applied TL on each of 10 smaller datasets of endog-
enous cleavage and functional knockout data. The purpose
was to improve the predictions of data originating from en-
dogenous sites and functional knockouts. Different TL techni-
ques were meticulously tested using the surrogate-based
dataset of Wang et al. as the “source” dataset for pre-training
and one of the 10 smaller endogenous or functional knockout
datasets as the “target” for refining the TL model. By testing
the refined models on held-out portions of the target datasets,
the authors claim improved prediction ability compared to
other available models, including our deep learning-based
model, CRISPRon (Xiang et al. 2021).

Because a held-out portion of the data used for TL-based
training was used for testing, we question if TL did in fact im-
prove the prediction for endogenous cleavage or functional
knockout or if, instead, it adjusted the predictions to fit a spe-
cific dataset. Hence, we were curious to see how a model re-
fined on one target dataset “A” performs on another target
dataset “B”, rather than on the held-out portion of A. It is
our opinion that such comparison better reflects the generali-
zation ability of model A and the actual performance that
users will experience when relying on the predictions for their
endogenous or knock-out experiments, as no re-fitting for the
specific user’s methods and applications is possible without
additional refinement on a dedicated target dataset.

The code for the DeepCRISTL models and the target data-
sets used for TL were downloaded via https://github.com/
OrensteinLab/DeepCRISTL (29 June 2022), while the trained
models where at the time provided directly by the authors
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Figure 1. Comparison between DeepCRISTL and CRISPRon. (a–j) The Spearman’s correlation between the experimentally determined and the predicted

efficiencies (DeepCRISTL, grey and CRISPRon, black) is displayed with vertical bars, one for each test dataset (x-axis). The name of the DeepCRISTL

model used in each comparison is reported on top of the corresponding barplot. The number of gRNAs in each test dataset, after removing the overlap

with the datasets used for training, is shown in parenthesis. Two-sided Steiger’s test P-values are reported for each comparison. The datasets and model

names have been shortened for visualization purposes; the correspondence with the original the dataset and model names is displayed in the legend.
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upon request (10 models were received while one model,
Leenay, was not provided). The 10 datasets used as targets
for these models were collected by Haeussler et al. (Haeussler
et al. 2016) from publicly available data (Doench et al. 2014,
Chari et al. 2015, Hart et al. 2015, Xu et al. 2015, Doench
et al. 2016). For each dataset, Elkayam and Orenstein trained
10 models with different random initializations of the
weights. The average output of these 10 models makes up the
final DeepCRISTL model output for the given dataset. The
performances presented by Elkayam and Orenstein were aver-
aged over 5 repetitions in which a different held-out portion
of the data was used as test set each time. However, only the
models from one of these repetitions (“set_0”) were provided
to us and therefore used here. Furthermore, for the
xu2015TrainKbm7-dataset, model 5 was missing, hence we
used model 0 twice.

To compare the performances of CRISPRon and a specific
DeepCRISTL model on each of the 10 held-out test datasets, we
first removed gRNAs that were similar to gRNAs used in the
training of either of the two models. Here, gRNAs are consid-
ered similar if their sequences (21 nt each, including 20 nt of
gRNA and the first nucleotide in the NGG PAM) differ at less
than 4 positions. For each of the similarity-reduced held-out
datasets we compared the specific DeepCRISTL model with
CRISPRon (Fig. 1), which gives 10 comparisons for each of the
10 models. Of the in total 100 comparisons, we notice that there
is no significant difference in performance for most of them.
However, there are notable differences. The two DeepCRISTL
models trained on the data from HartHct and HartHela1
(Fig. 1e–f) surpass CRISPRon in five of six comparisons when
tested on the datasets HartHela1, HartHela2 and HartHct, all
of which are from the same provider. These 5 out of 100
comparisons are the only ones where a DeepCRISTL model
significantly surpasses CRISPRon. In contrast, CRISPRon out-
performs DeepCRISTL in 32 of the 100 comparisons. Notably,
the two DeepCRISTL models trained on HartHela2 and
HartRpe (Fig. 1g–h) do not outperform CRISPRon on any of
the datasets from Hart et al., while CRISPRon do surpass these
two models on other datasets. It is also worth noticing that
CRISPRon outperforms the DeepCRISTL model trained on the
dataset of Chari et al. on seven of the test datasets (Fig. 1a).

Removing the overlap between training and test data sub-
stantially reduces the size of the test datasets, and this impacts
the evaluation of the differences between models. For in-
stance, the predictions of the DeepCRISTL model trained on
the Doench14Hs data have higher correlation (Spearman’s
R¼ 0.58) compared to CRISPRon (R¼ 0.29) to the efficien-
cies in the Doench14Hs test set which, however, only contains
24 gRNAs (Fig. 1b). Thus, the difference between these two
correlations (R¼ 0.67 between the model’s predictions) is not
significant by our significance cutoff of 0.05 (P¼ .054).
Despite the loss of data, filtering the test set for overlap with
the training sequences remains a necessary procedure for a re-
alistic and fair performance evaluation.

Because of the overlaps between the different datasets, it
was not possible to make a single comparison with sufficient
test data that included all the DeepCRISTL models to inspect
their prediction performances. However, because some data-
sets do not overlap, or overlap minimally, with others, we can
still observe part of the variability between the DeepCRISTL
models. For instance, the prediction performance of the

DeepCRISTL models on the dataset of Chari et al. varies be-
tween 0.40 and 0.46. Similarly, on the Doench16 dataset,
DeepCRISTL models’ performance varies from 0.40 to 0.44.
The variation in performance implies differences in the predic-
tions provided by the DeepCRISTL models and suggests that
the models are not interchangeable to predict, e.g. protein loss
of function. Part of this variability could be overcome by inte-
grating together multiple datasets; however, this task is chal-
lenging as different techniques were applied in each study,
hence the efficiency values in the datasets are not directly
comparable.

In our opinion, it is essential to state why the data selected
for model testing can be deemed independent from the train-
ing data. In this respect we agree with the requirements cov-
ered by the bioinformatics instructions for authors and more
recently by the DOME (Data, Optimization, Model,
Evaluation) recommendations for supervised machine learn-
ing validation in biology (Walsh et al. 2021). The application
of TL further complicates the assessment of train-test data in-
dependence as there may be factors, such as lab techniques or
evaluation methods, which make a dataset “unique”, thus
allowing dataset-specific fitting during TL which may not
generalize to otherwise similar datasets. Most of these factors
are not used as model features nor considered during train-
test splitting because it would be unfeasible to systematically
test the impact of their full range of options (e.g. the cell line
used, the timing of each activity in the process). Therefore, to
substantiate how the performance improvement given by TL
generalizes, it is necessary to use external test data that does
not come from the same data source as the one used for re-
finement in the training.

We acknowledge the potential of applying TL to improve
gRNA efficiency predictions at endogenous sites and for func-
tional knockout tasks. However, our analysis emphasizes the
importance of using external test datasets for performance
evaluation. We find that (i) DeepCRISTL only gains perfor-
mance over CRISPRon in 5 of 100 comparisons and that all
of these are on held-out data from the same provider of the
dataset used for training, (ii) CRISPRon outperforms the
DeepCRISTL models in 32 comparisons, all involving data
unrelated to the CRISPRon training set, and (iii) there are no
differences in 63 comparisons. We conclude that TL did not
lead to an improved performance on external datasets and
that CRISPRon is the overall best performing model.
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