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Revealing proteome-level functional
redundancy in the human gut microbiome
using ultra-deep metaproteomics

Leyuan Li 1,2,7, Tong Wang3,7, Zhibin Ning2, Xu Zhang 2, James Butcher 4,
JoeselleM. Serrana2, CaitlinM.A. Simopoulos 2, JaniceMayne2, AlainStintzi 4,
David R. Mack5, Yang-Yu Liu 3,6 & Daniel Figeys 2

Functional redundancy is a key ecosystem property representing the fact
that different taxa contribute to an ecosystem in similar ways through the
expression of redundant functions. The redundancy of potential functions
(or genome-level functional redundancy FRg) of human microbiomes has
been recently quantified using metagenomics data. Yet, the redundancy of
expressed functions in the humanmicrobiome has never been quantitatively
explored. Here, we present an approach to quantify the proteome-level
functional redundancy FRp in the human gut microbiome using metapro-
teomics. Ultra-deep metaproteomics reveals high proteome-level functional
redundancy and high nestedness in the human gut proteomic content net-
works (i.e., the bipartite graphs connecting taxa to functions). We find that
the nested topology of proteomic content networks and relatively small
functional distances between proteomes of certain pairs of taxa together
contribute to high FRp in the human gut microbiome. As a metric compre-
hensively incorporating the factors of presence/absence of each function,
protein abundances of each function and biomass of each taxon, FRp out-
competes diversity indices in detecting significant microbiome responses to
environmental factors, including individuality, biogeography, xenobiotics,
and disease. We show that gut inflammation and exposure to specific
xenobiotics can significantly diminish the FRp with no significant change in
taxonomic diversity.

The human gut microbiome is a complex ecosystem harboring tril-
lions of microorganisms. Its taxonomic composition, functional
activity and ecosystem processes have important consequences on
human health and disease. It is crucial to study the human gut

microbiome in the context of ecological communities1. The most
frequently applied ecosystem measures of the gut microbiome have
been taxonomic diversity calculators2, which are not sufficiently
informative in assessing the functional states of the gut microbial
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ecosystem. Moreover, diversity indices have widely varied between
studies with some studies reporting lower diversity indices in disease
microbiomes than in healthy controls3, while other studies reported
higher diversity indices in disease versus controls4,5. Numerous
examples including those two are raising the concern of correlating
diversity values to health and disease status6. Indeed, in a microbial
ecosystem, diversity is just one of the properties which does not
necessarily correlate with its functionality. Much more valuable and
informative insight should be gained by considering the microbiome
from a functional perspective.

Functional redundancy (FR) is a key property of ecosystems7. FR
describes the ability of multiple taxonomically distinct organisms to
contribute in similar ways to an ecosystem through having redundant
functional traits8–10. A high level of FR implies that members in a
community may be substitutable with little impact on the overall
ecosystem functionality8. In the human gut microbiome, it has been
found that FR is a common event. For example, dietary carbohydrates
can be processed by either Prevotella (from the phylumBacteroidetes)
or Ruminococcus (from the phylum Firmicutes), and short-chain fatty
acids can be produced by multiple predominant genera: Phasco-
larctobacterium, Roseburia, Bacteroides, Blautia, Faecalibacterium,
Clostridium, Subdoligranulum, Ruminococcus and Coprococcus. More-
over, large-scale, consortium-drivenmetagenomicprojects such as the
Human Microbiome Project (HMP) have found that, regardless of the
body site, within a healthy population the carriage of microbial taxa
varies tremendously, while the gene compositions or functional pro-
files remain remarkably stable2. This is a strong signal of FR in the
human microbiomes.

We emphasize that most of the previous studies on FR of human
microbiomes are very conceptual, rather than quantitative. Recently, a
computational pipeline was developed to quantify the genome-level
FR of microbiome samples from whole-metagenome shotgun
sequencing data11. This pipeline was based on the genomic content
network (GCN), a bipartite graph in which taxa are connected to the
genes in their genomes. Importantly, this GCN-based FR calculation
wasderivedwithout any regard forwhether these genes are expressed.
In other words, the FR calculated from the GCN only represents the
redundancy of potential functions of a microbiome sample (i.e., the
genome-level FR), rather than the redundancy of expressed functions
(e.g., the proteome-level FR).

In this work, we present a pipeline to quantify the proteome-
level FR of microbiome samples from deep metaproteomics data.
Metaproteomics is a powerful tool that measures expressed pro-
teins in a microbiome based on liquid chromatography-tandem
mass spectrometry (LC-MS/MS) techniques12–14. Our pipeline is
based on the construction of the proteomic content network (PCN)
for each microbiome sample by linking the taxa to their proteins.
For each PCN, its proteome-level FR (FRp) is defined as the part of its
taxonomic diversity that cannot be explained by its functional
diversity. FRp is an informative metric carrying contributions from
the presence/absence of the functions, protein abundances of the
functions and biomasses of the proteomes. We demonstrate that
FRp sensitively responds to environmental factors affecting the
microbiome.

Results
Constructionof proteomic content networks fromanultra-deep
metaproteomic approach
We define the proteomic content network (PCN) of a microbiome
sample as a bipartite graph connecting each microbial taxon to all
expressed functions from the taxon’s proteome. In order to gain the
deepest possible understanding of sample-specific PCN of the human
gut microbiome, we first developed an ultra-deep metaproteomics
approach based on high-pH reversed-phase fractionation15 and high-

resolution LC-MS/MS analysis (Fig. 1a–e and Methods). Briefly, ali-
quots from gut microbiome samples were subjected to protein
extraction and digestion, followed by being separated into 48 frac-
tions at a 1min interval and pooled at an interval of 12 wells. Using
this workflow, we analyzed samples from four individuals’ ascending
colons (Supplementary Table S1). Database searches of the resulting
12 LC-MS/MS RAW files of each individual microbiome sample were
performed using the MetaPro-IQ approach16. We first used the Inte-
grated Gene Catalog (IGC) database of the human gut microbiome17

to perform the database search. On average, 69,280 unique peptides
were identified, and 30,686 protein groups were quantified per
microbiome sample. Using a “protein-peptide bridge”method (Fig. 1f
and Supplementary Note S1), functions that were annotated by
protein groups and taxonomy that were identified by unique pep-
tides were linked to constructing the sample-specific PCN (Fig. 1g, h).
Since some proteins or peptide sequences are shared between two or
more organisms in complex microbial communities, as a trade-off
between taxonomic resolution and protein coverage, we computed
the PCN on the genus level. Protein-level biomass contributions of
each genus is represented by its summed unique peptide abun-
dances (Fig. 1i). In terms of functional annotations, the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database has been widely
used in functional metrics such as the genomic-level functional
redundancy11. However, it is common in metaproteomic studies that
a certain proportion of proteins does not have a KEGG annotation.
Indeed, in this dataset, there were a total of 50,216 protein groups
identified, among which, 46,095 (91.7%) were successfully annotated
with clusters of orthologous groups (COGs), while only 37,795
(75.3%) were annotated with KEGG KOs. Therefore, we com-
plemented the KEGG annotations with COG to achieve better cov-
erage (denoted as KEGG-COG annotation; see Supplementary
Note S2 for more comparisons). This annotation will be applicable to
metaproteomic-based functional redundancy computations without
the need for the samples’ metagenomes.

In addition, to facilitate direct comparisons of redundancy or
network metrics between the GCN and the PCN, we further used the
samples’ paired metagenomes to generate Prodigal-predicted protein
sequences as the database to perform another metaproteomic data-
base search. An average of 65,541 unique peptides and 29,392 protein
groups per sample were obtained from the search. The Prodigal
sequences were blasted against the UHGP database for taxonomic
matches. In addition, KEGG-COG annotations were performed. GCNs
or PCNs were then computed by summing read counts or protein
intensities at each taxon-function incidence (see Methods).

Computation of within-sample proteome-level functional
redundancy
We define proteome-level functional redundancy (FRp) of a micro-
biome sample as the part of the alpha diversity of taxonomic protein
biomass contributions (TDp) that cannot be explained by the alpha
functional diversity (FDp) (Supplementary Fig. S1a):

FRp � TDp � FDp =
XS
i = 1

XS
j≠i

1� dij

� �
pipj ð1Þ

where S is the number of taxa in the sample, and pi is the proportion
of protein-level biomass of taxon i within the sample. The protein-
level biomass in the PCN can be approximated by summing up the
intensities of unique peptides in each taxon, which has been
previously shown to be a good representation of microbiome
diversity18. dij denotes the functional distance between taxa i and j
measured by the weighted Jaccard distance between their proteomic
contents (seeMethods), TDp =

PS
i = 1

PS
j≠i pipj = 1�

PS
i= 1p

2
i is the alpha

taxonomic diversity measured by the Gini-Simpson index, and
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FDp =
PS

i= 1

PS
j≠i dijpipj is the alpha functional diversity measured by

Rao’s quadratic entropy. Notably, in contrast to computing a
genome-level functional redundancy for which the dij values can be
computed from a reference GCN of all samples in the dataset, for

PCN, since protein expression levels can sensitively respond to
environmental changes, within-sample proteomes should be used.
We illustrate why it is impossible to construct and use a reference
PCN in Supplementary Fig. S2.
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Fig. 1 | Computation of within-sample proteomic-content network and func-
tional, taxonomic profiles using an ultra-deep metaproteomics approach.
a Each individual’s gut microbiome sample was subjected to protein extraction.
Then, purified proteins were digested by trypsin. b The resulting peptides were
fractionated using a high-pH reversed-phase approach. c 48 micro-fractions were
combined into 12 samples prior to LC-MS/MS analysis. d In this study, LC-MS/MS
analysis was performed using Exploris 480 with a 1 h gradient for each fraction.
e The LC-MS/MS *.RAW files were searched against a protein database using
MetaPro-IQ workflow and MetaLab. f When matched metagenomes are available,

taxonomic and functional annotations of the metagenomes can be used for PCN
generation. Alternatively, a protein-peptide bridge approach can be used for gen-
erating the PCNs from MetaLab result tables (see details in Methods and Supple-
mentary Notes 1) without the need of matched metagenomes. g The sample-
specific PCN is a bipartite plot linking taxon to their expressed functions, with the
links weighed by protein abundances of each taxon. h The PCN can also be con-
verted as functional profiles of each taxon. i The taxon-specific protein biomass
contributions (percentage) were calculated from the taxonomy table based on
summing up unique peptides of each taxon.
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By normalizing the FRp with the microbiome’s alpha taxonomic
diversity, we have:

nFRp =
FRp

TDp
ð2Þ

We highlight that FRp and nFRp are complex metrics that are derived
from several key components and properties, i.e., functional abun-
dances, taxonomic proteome-level biomass, network topology, and
functional distances between different taxa. Using simple conceptual
communities, we showed that whenmembers of a community express
the same list and abundances of functions, nFRp equals to 1
(Supplementary Fig. S1b); while when members of a community have
totally different list of functions, nFRp equals to 0 (Supplementary
Fig. S1c). Other than the two extreme cases, the value nFRp falls
between 0 and 1 (Supplementary Fig. S1d). We emphasize that nFRp of
a microbiome sample can be interpreted as the average functional
similarity (or overlap) of two randomly chosenmembers in the sample.

We demonstrate the sensitivity of FRp and nFRp using in silico
communities generated with genomes and proteomes of single bac-
terial strains (i.e., Phocaeicola (Bacteroides) vulgatus ATCC 8482, Bac-
teroides ovatus ATCC 8483, Bacteroides uniformis ATCC 8492, Blautia
hydrogenotrophica DSM 10507, Escherichia coli DSM 101114). Pro-
teomes of these strains cultured in four differentmedia (basalmedium
with or without added glucose, sucrose or kestose) were obtained
from our previous study19 (Supplementary Fig. S3a). We first used the
genomes and proteomes (in basal media) to generate different three-
member communities in silico (Supplementary Fig. S3b and S3c).
When all three members belong to Bacteroides or Phocaeicola genera,
the community’s genome- and proteome-level functional redundancy
were both higher compared with the other combinations. The redun-
dancies decreased as the community becomes more diverse on the
genus level. In Supplementary Fig. S3b and S3c, despite genome-level
functional redundancy may seem predictive of the proteome-level
functional redundancy, we emphasize that, in principle, genome-level
functional redundancy only responds to the change of microbial
abundances. When we further replaced the proteomes of strains with
the ones cultured in the presence of different sugars (and maintained
microbial abundances), the levels of FRp andnFRp showedfluctuations
(Supplementary Fig. S3d). This suggests that FRp and nFRp are sensi-
tive to a community’s functional responses, even induced solely by
proteome alterations while microbial abundances are unchanged.

Exploration of PCN topology and its ecological implication
We investigated the topological properties of these PCNs, and com-
pared them with their corresponding GCNs obtained from shotgun
metagenomics. The PCNs of metagenome and IGC databases-based
search yielded similar depth, both achieved reasonable depths com-
pared with each individual’s respective GCNs (Supplementary Fig. S4).
Figure 2a shows a tripartite plot connecting microbial phyla and
functional categories annotated according to genes and proteins from
one individual microbiome (HM454, IGC database-based search with
COG annotations). This demonstrated that while some functional
categories (e.g., energy production and conversion (C), carbohydrate
metabolism and transport (G) etc.) showed expression from predicted
functions in most phyla, some genes linked to functions such as RNA
processing and modification (A) and mobilome (X) that were rarely
expressed from the genes. Similar results were found for other sam-
ples (Supplementary Figs. S5–7). We wondered what is the ecological
implication of such selective functional expression from the GCN to
the PCN. To investigate this, we explored the community assembly
results in silico through a model framework20 that incorporates cross-
feeding interactions into the classical MacArthur’s Consumer-
Resource Model21 (see Methods and Fig. 2b–d). We hypothesized that
the topological property of theGCNandPCNsuchas connectance (i.e.,

the number of links divided by the number of maximal possible links)
strongly influence the assembly results. Therefore, wemodeled system
dynamics under variable environmental conditions and investigated
how the difference in the connectance between the GCN (0.22 ± 0.02;
Mean± SD, N = 4) and the PCN (0.05 ±0.02; Mean ± SD, N = 4; meta-
genome database-based search) affects the richness of assembled
communities. Simulations of system dynamics show that the model’s
resource consumption matrix C following the PCN’s connectance
always maintains higher microbiome richness and survival of more
diverse species than following the GCN’s connectance, despite varia-
tions in dilution rates (Fig. 2e–g), byproduct fractions (Supplementary
Fig. S8a–c), and externally supplied nutrient diversity (Supplementary
Fig. S8d–f), as well as different ratios between initial species abun-
dances and initial metabolite/resource concentrations (Supplemen-
tary Fig. S9).

The intuitive relationship between biodiversity and functional
redundancy in a community has been difficult to be quantified22. We
sought to explore this relationship by examining the network topol-
ogy. By visualizing incidence matrices of these PCNs, we observe
highly nested structures (Fig. 3a and Supplementary Fig. S10) and
found that theNestednessmetric basedonOverlap andDecreasing Fill
(NODF) were high in the PCNs (NODF =0.28 ±0.01; Mean± SD, N = 4,
metagenome database-based search), which are close to those of the
respective GCNs (NODF =0.36 ±0.05; Mean ± SD, N = 4). Similarly, the
PCNs based on IGC database-based search also resulted in high NODF
values (0.34 ± 0.01; Mean ± SD, N = 4). We then calculated the degree
distributions of genera and functions in the PCNs and the GCNs,
respectively. On the functional dimension, similar to previous obser-
vations in GCNs11, the degree distributions of functions in both the
GCN and PCN have fat tails, represented by some functions being
associated with a high number of taxa (Fig. 3b and Supplementary
Fig. S10). Similar nested topology and functional degree distributions
can be observed in the PCNs generated with the IGC-based search
(Supplementary Fig. S11). The high nestedness and fat-tail degree dis-
tribution of the PCN together suggests that specialist taxa are playing
functional roles that are a subset of active functions from generalist
taxa, which further indicates the existence of high redundancy of
expressed functions in the human gut microbiome.

Human gut microbiome has high protein-level FR
Since a potential function of any member in the GCN of the micro-
biome sample may or may not be expressed under a certain environ-
mental condition, we anticipate that the proteome-level FR (i.e., FRp or
nFRp) of any microbiome sample should be no greater than its
genome-level FR (i.e., FRg or nFRg). Indeed, as shown in Fig. 4a, b, for
the four individual microbiomes, we found that FRp(or nFRp) pre-
served a high level of the FRg (or nFRg ; no significant difference by
paired t test) as a result of maintenance of the difference between the
corresponding TD and FD values (Fig. 4c, d).

How does the topology of the PCN contribute to the observed
functional redundancy? To answer this question, we created four null
networks by randomizing natural PCNs to change the network’s
inherent structural properties such as degree and nestedness. Con-
sidering the fact that PCNs are expressed from the GCNs, we rando-
mized the PCNs under the background of each corresponding GCN
(i.e., all edges on a randomizedPCNareonly selected from the edgesof
the sample’s GCN). For the four null PCNs, Null-1 PCN is a completely
randomized network under the GCN background, Null-2 PCN pre-
serves the taxon degrees, Null-3 PCN preserves the function degrees,
and Null-4 PCN preserves both taxon and function degrees (Fig. 4e).
Each of the four null networks was randomized 10 times to validate the
reproducibility of the results. We show that all four null networks had
significantly lower FRp and nFRp compared to those of the natural
PCNs (Fig. 4f). Figure 4f also suggests that both taxon and function
degrees contributed to FR, as for each individual, there’s an increasing
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pattern of FR andnFR values fromNull-1 toNull-4 PCNs.However, both
taxon and function degrees are the same as the natural PCN in Null-4
PCN. Notably, there was a 18% decrease of nestedness in Null-4 PCNs
(NODFNull-4 = 0.23 ± 0.03; Mean± SD, N = 40) in comparison to the
natural PCN; in contrast, the corresponding decrease of FRp was
55%± 11% (Mean± SD, N = 4), indicating that the network topology
component of FRp does not fully explain the high functional redun-
dancy. The functional relationships between specific pairs of taxa are
also an important factor that shapes the high FRp in human gut
microbiomes. We observed that all four null PCNs had altered dis-
tribution of dij values from the natural PCNs (Fig. 4g).

Protein-level FR outcompetes diversity indices in detecting
microbiome responses to environmental factors
We next examined whether different metaproteomic approaches
could affect the network properties of gut microbiomes’ PCNs and
values of FRp. Routine metaproteomic analyses are often performed
without fractionation. In addition, samples are analyzed with different
analytical protocols, different parameters and using different models
of LC-MS/MS platforms, etc. Therefore, we evaluated four previously
published datasets, briefly referred to as SISPROT23, RapidAIM24,

Berberine25 and IBD26 datasets, which vary considerably in the experi-
mental protocol/platform and in the types of environmental factors
(xenobiotics, biogeography, diseases status etc.) being interrogated
(see details in Supplementary Tables S1–S3). It was notable that iden-
tification depths of these four datasets vary markedly, from 5612
protein groups and 4345 peptides per sample (Berberine) to 20,558
protein groups and 44,955 unique peptides per sample (SISPROT)
(Supplementary Table S4). We found that PCNs in all the four datasets
displayed highly similar topological structures with our new deep
metaproteomics dataset, i.e., highly nested structure, and hetero-
geneous degree distributions of both taxa and functions (Supple-
mentary Figs. S11 versus S12).

Given that topological structures of PCN appeared to be universal
across platforms, we believe that FRp is applicable to different meta-
proteomic datasets. Indeed, we found that nFRp of the four datasets
were comparable to our four ultra-deep metaproteomics samples
(Fig. 5a, b, f–h versus Fig. 4b). In patients diagnosed with inflammatory
bowel disease (IBD), nFRp levels were significantly lower than that of
the non-IBD control individuals. There was no significant difference
between the two different IBD subtypes Crohn’s disease (CD) and
ulcerative colitis (UC) (Fig. 5a). A significant decrease in nFRp was
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Fig. 2 | Topology of proteomic content networks (PCNs) implies high richness.
a A tripartite plot derived from GCN and PCN in microbiome HM454. Letters
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taxon-i in consuming resource α. d Byproduct generation matrix Pαβ describing
conversion of a resource to a byproduct. Columns are consumed resources and
rows are byproducts. e–g Effect of the variation of dilution rate on microbiome
richness was simulated with consumption matrices with the same connectance as

the GCN (CGCN) or PCN (CPCN). The one pair of simulations (for GCN and PCN) in (e)
were shown as (f, g). The default is dilution rate D =0:2hour�1, byproduct fraction
l =0.5, and when 20 out of 100 nutrients are externally supplied (ρ=0:2). Para-
meters for all panels are as follows: (e) l =0.5 and ρ =0.2; (f, g) D = 0:2hour�1,
l =0.5, and ρ =0.2. Scattered dots and lines linking pairs of dots in (e) indicate each
simulation paired betweenCGCN andCPCN.Middlewhite dot in the box plot denotes
median, the lower and upper hinges correspond to the first and third quartiles, the
black line ranges from the 1.5 × (interquartile range) below the lower hinge to
1.5 × IQR above the upper hinge, and whiskers represent the maximum and mini-
mum, excluding outliers. **** indicate statistical significance at the p <0.0001 levels
by two-sided Mann–Whitney-Wilcoxon U Test with Bonferroni correction. N = 100
times of independent simulations. More simulations by altering other factors are
shown in Supplementary Figs. S8–9.
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found in inflamed regions from the terminal ileum (Fig. 5b), the diag-
nosis factor, as well as the inflammation factor whichwas nested in the
biogeography factor significantly contributed to variance in nFRp

(Supplementary Table S5). We next selected to compare the TI region
between CD and the control microbiomes, as inflammation is likely to
develop in the terminal ileum of CD patients27. nFRp significantly dif-
ferentiated between inflamed and uninflamed regions (Fig. 5c, Wil-
coxon rank-sum test, p < 0.0001), while TDp showed no significant
difference between the two classes (Fig. 5d), and FDp showed sig-
nificant difference but at the p < 0.01 level (Fig. 5e).

Inter-individual differences in nFRp levels were observed in the
SISPROT, RapidAIM and Berberine datasets (Fig. 5f–h). Similarly, we
detected significant differences in TDp and FDp between individual
microbiomes (Wilcoxon rank-sum test; Fig. 5i, j). In the RapidAIM
and Berberine datasets, a few xenobiotic compounds reduced nFRp

levels (Fig. 5k and Supplementary Fig. S13a). Among these, the
antibiotic rifaximin showed the most impact on the individual
microbiomes with nFRp values decreased by 21.2 ± 10.7% (Mean ± SD,
N = 5). Two-way ANOVA suggested that both the inter-individual
variation and effect of compounds significantly contributed to nFRp

variance (Supplementary Tables S6–S7). In contrast, TDp and FDp

values were not as sensitive in detecting significant responses to
drug treatments (Fig. 5l,m and Supplementary Fig. S13b,c). These
together suggest that nFRp outcompetes diversity indices TDp and
FDp in sensitively detectingmicrobiome responses to environmental
factors.

Similar to the nFRp results, significant differences in NODF values
were observed (Supplementary Fig. S14) in agreement with the within-
sample nFRp, which further suggests that a nested topological struc-
ture contributes to the values of nFRp in a microbiome sample.

Alteration of between-proteome functional distances in disease
and compound-treated microbiomes
To further find out the contribution of functional distances behind the
response of within-sample nFRp to environmental factors, we

examined the functional distance dij between proteomes in each
individual microbiome sample of the datasets. For the IBD dataset,
PERMANOVA test showed that dij values differed significantly between
diagnosed patients (especially inflamed regions) and the non-IBD
controls (Supplementary Table S8). Overall, the dij distributions in
both UC and CD samples showed a rightward shift from the control
samples (Fig. 6a). Moreover, there was a rightward shift of the dij dis-
tribution from healthy to inflamed gut regions (Fig. 6b). The volcano
plot further showed that most of the dij values were increased in the
presence of inflammation (Fig. 6c), suggesting a significant contribu-
tion of between-proteome functional distance increase to the overall
decrease of nFRp in IBD samples. We visualized the dij values of genus
pairs that significantly (at the p <0.001 level by Wilcoxon rank-sum
test) altered in inflammation using a heatmap coupled with hier-
archical clustering (Supplementary Fig. S15a). Cluster 1 samples, which
were mostly from inflamed regions of patients diagnosed with UC or
CD, showed an overall increase of dij values between proteome pairs.
We showed thatCluster 1 was significantly higher in nFRp, despite both
its TD and FD were significantly lower than those in Cluster 2 (Sup-
plementary Fig. S15b).

In contrast to the disease-induced alteration of dij distributions,
we also visualized the response of dij values to xenobiotics and dis-
covered that overall the dij values have strong individual signatures
and were significantly affected by the xenobiotic factor (Fig. 6d and
Supplementary Table S9). We quantified the Jensen-Shannon (J-S)
divergence of dijdistributions betweendrug treatments and theDMSO
control (Fig. 6e). These results showed that ciprofloxacin, berberine,
rifaximin, FOS, metronidazole, isoniazid, diclofenac and flucytosine
significantly increased J-S divergence with the DMSO when compared
to most other compounds (Fig. 6f). This was in agreement with our
previous findings that these compounds (except flucytosine) resulted
in global alterations in individual microbiome functionality24. Inter-
estingly, consistent rightward shifts of dij values were observed in
response to a subset of compounds (Supplementary Fig. S16), which
was similar to the pattern observed in the subset of IBD samples.

Fig. 3 | Topologyofproteomiccontentnetworks (PCNs) implieshigh functional
redundancy. a Taxon-function incidence matrix of the PCN (metagenome-based
search) at the genus level in the four individualmicrobiome samples. Herewe used
the classical Nestedness metric based on Overlap and Decreasing Fill (NODF) to
characterize and visualize the nested structures of the bipartite taxon-function
network, as described previously. The presencesof genus-function connections are

shown in yellow points. b The unweighted degree distribution of functions in the
PCN (upper left panel), thatof genera in the PCN (lower left panel), thatof functions
in the GCN (upper right panel), and that of genera in the GCN (lower right panel) in
microbiome HM454. Similar results of the other three individual microbiomes are
shown in Supplementary Fig. S10. Source data are provided as a Source Data file.
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Similar results were observed in the Berberine dataset (Supplementary
Fig. S17 and Supplementary Table S10).

Discussion
A systems-oriented approach to understanding microbial ecosystems
can be employed by constructing networks11,28,29. Nevertheless, there
has been a substantial gap between interpretating networks con-
structed from metagenomics and understanding microbiomes’ active
functionalities. Recently, metaproteomics has experienced exponen-
tial growth in its identification coverage23, providing invaluable deep
insights into the expressed functions ofmicrobiomes. In this study, we

demonstrated a method to use metaproteomics dataset to gain a
system-level understanding of microbiomes’ functionality by com-
puting the functional redundancy of the proteomic content networks.

Using an ultra-deep metaproteomics approach, we showed that
the humangutmicrobiome’s taxon-function network on the proteome
level is highly nested. In amicrobiome PCN, the high nestedness of the
network implies that specialist taxa tend to play functional roles that
are a subset of active functions fromgeneralist taxa30,31 Such functional
network structures have been frequently found in macro-ecosystem
networks of mutualistic interactions (food-webs)32. We found that the
within-sample FR profiles differed markedly between expressed
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Fig. 4 | Naturally occurring proteomic-content networks contribute to high
functional redundancy in human gut microbiomes. a Within-sample functional
redundancy (FR) in the metagenomes versus in the metaproteomes of the indivi-
dual microbiomes. bWithin-sample FR normalized by taxonomic diversity (nFR) in
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upper hinges correspond to the first and third quartiles, thick line in the box cor-
responds to the median, and whiskers represent the maximum and minimum,
excludingoutliers.gDistributionof dij values innatural PCNs andNull-1 ~ 4 PCNs. dij
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shown. Source data are provided as a Source Data file.
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protein functions and genomic functional capacities. Using an ecolo-
gical model for microbial communities, we demonstrated that such a
selective functional expression and the resulting PCN topology favor
high richness during community assembly. In the meantime, PCN still
maintains high nestedness which contributes to high functional
redundancy.

We found that PCNs built by different metaproteomics platforms
showed universal properties: datasets generated by shallower analysis
approaches still capture the highly nested topology of PCN. This
allowed us to make use of routinely generated metaproteomics data-
sets to observe the effects of multiple environmental factors, such as
inter-individual variation, xenobiotics, disease, and biogeography on
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the FRp of the gut microbiome. We first showed that compounds with
pharmacological activity can affect the redundancy of expressed
functions in individual microbiomes. Overall distributions of func-
tional distances between genera pairs were changed in response to
some compounds, which was related to changes in a subset of
between-genera functional distances. This suggests that xenobiotic
compounds may affect FRp by partially modifying the functional
interrelationship (dij) between proteomes.

Interestingly, in contrast to a partial modification of dij between
proteomes, there was a global shift of FRp and dij in a subset of the IBD
microbiomes. This finding may support the hypothesis of alternative
stable states (bi-stability or multi-stability) in the gut ecosystem33,34.
One frequently discussed mechanism behind these alternative states
has been the continuous exposure of the microbiome to an altered
environmental parameter35. An inflamed area in the gut will have a
reducedmucus layer36 and elevatedhost defense responses26. Thehost
mucus layer is a nutritional source of cross-feeding in the gut
microbiome37–39. Loss of this layer decreases the number of available
nutrients in the gut environment. We show with our population
dynamics model that in agreement with classical ecology40, the
reduction in the number of available environmental nutrients
decreases the richness of the microbiome. This could be a factor that
contributes to the alteration of functional states. In addition, host
defense responses attenuate microbial oxidative stress responses
(Pacheco, Osborne and Segrè, 2021), which have been associated with
microbiome dysfunction41. A decrease in within-sample FR has been
associated with impaired microbiome stability and resilience42. Resi-
lient microbiota resists external pressures (e.g., antibiotics/dietary
shifts) and returns to their original state. Being non-resilient, a
microbiome is likely to shift its composition permanently and stay in
an altered new state instead of restoring to its original state of
equilibrium43,44. Collectively, we disassembled the FRp into one-to-one
comparisons of between-taxa functional activities, and found that a
global shift in functional roles of microbes toward a more hetero-
geneous patternwas a factor driving the decrease of FRp and alteration
of states in inflamed areas in IBD patients.

A current limitation of our work is the use of genus-level pro-
teomes. This is because many identified protein groups are shared
between different species due to insufficient coverage of species-
unique peptide sequences. Future development in the increase of
sequence coverage and bioinformatics are warranted. Techniques
such as matrix/tensor decomposition45 or machine learning46 may
support species-level proteome-resolvedmetaproteomics for a deeper
insight into microbiome FRp. Nevertheless, based on the current
resolution, we argue that our approach still provides invaluable
information on how selective functional expression among taxa
shapes the redundancy of expressed functions in a human gut
microbiome, and how this redundancy can be affected by the

environment. Future work can focus on revealing the relationship
between FRp and the resilience of a microbiome, so as to gain deeper
mechanistic insight for the development of ecological recovery stra-
tegies for human gut microbiomes to combat diseases.

Methods
Protein extraction and digestion
The sample collection was approved by the Research Ethics Board of
the Children’s Hospital of EasternOntario (CHEO), Ottawa, ON, Canada.
Written informed consent form was obtained from their parents.
Aspirates of the proximal ascending colon were obtained by colono-
scopy, with more details described by Zhang et al.16. Protein extraction
and digestion of the individual gut aspirate samples were performed as
described previously47, with minor modifications. Frozen aliquots of
aspirate samples HM454, HM455, HM466 andHM503 were thawed and
subjected to differential centrifugation for microbial cell purification:
the samples were first centrifuged at 300 g, 4 °C for 5min to remove
debris; the resulting supernatantwas centrifuged at 14,000 g for 20min
to pellet microbial cells; the pellets were then washed three times by
resuspending in cold phosphate-buffered saline (PBS) and centrifuging
at 14,000 g, 4 °C for 20min.Next, thewashedmicrobial cell pelletswere
resuspended in a cell lysis buffer containing 4% sodium dodecyl sulfate
(w/v), 8M urea, 50mM Tris-HCl (pH=8.0), and one Roche cOmplete™
mini tablet per 10mLbuffer, followedbyultra-sonication (30 s on, 1min
off, amplitude of 25%, two rounds) using a Q125 Sonicator (Qsonica,
LLC). Cell debris was then removed by a centrifugation at 16,000 g, 4 °C
for 10min.

Each of the protein extract was then precipitated in five times its
volume of precipitation solution (acetone: ethanol: acetic acid = 49.5:
49.5: 1, v-v:v) at −20 °C overnight. The precipitated proteins were pel-
leted by centrifuging at 16,000 g, 4 °C for 20min, followed by being
washedwith ice-cold acetone for three times to remove excess SDS that
may affect trypsin activity. Next, thewashedproteinswere resuspended
in a buffer containing 6M urea and 1M Tris-HCl (pH=8.0). Protein
concentrationwas determined by theDC™ assay (Bio-Rad Laboratories,
Canada) following the manufacturer’s manual.

Finally, proteinswere subjected to an in-solution trypticdigestion.
The samples were reduced in 10mM dithiothreitol (DTT) at 56 °C for
30min, then were alkylated by 20mM iodoacetamide (IAA) at room
temperature in dark for 40min. The samples were then diluted 10
times with 1MTris-HCl buffer (pH = 8.0), followed by trypsin digestion
(at a concentration of 1μg trypsin per 50μg proteins) at 37 °C for 24 h.
The digests were then acidified to pH = 3 using 10% formic acid, fol-
lowed by a desalting step using Sep-Pak C18 Cartridge (Waters, Mil-
ford, MA, USA). The cartridges were first activated using 100%
acetonitrile, and then equilibrated using 0.1% formic acid (v/v) before
passing samples through the columns for three times. Samples bonded
to the cartridges were then washed using 0.1% formic acid (v/v), and

Fig. 5 | Functional redundancy, taxonomic and functional diversity compar-
isons in differentmetaproteomics datasets. a nFRp values by diagnosis in the IBD
dataset, N numbers: N(UC) = 52, N(CD) = 61, N(Control) = 63 samples. b nFRp values by
inflammation and gut region in the IBDdataset, N numbers: N(Ascendingcolon, inflamed) = 23,
N(Descending colon, inflamed) = 28, N(Terminal ileum, inflamed) = 16, N(Ascending colon, non-inflamed) = 39,
N(Descending colon, non-inflamed) = 30, N(Terminal ileum, non-inflamed) = 40 independent metaproteomic
analyses. c Comparison of nFRp values between inflamed and not inflamed regions
in TI of CD and control individuals. d Comparison of TDp values between inflamed
and not inflamed regions in TI of CD and control individuals. e Comparison of FDp

values between inflamed and not inflamed regions in TI of CD and control indivi-
duals. N numbers for C–E: N(inflamed) = 16, N(non-inflamed) = 24 independent metapro-
teomic analyses. f nFRp values by individual microbiomes in the SISPROT dataset.
g nFRp values by individual microbiomes in the Berberine dataset, N numbers:
N(V20) = N(V21) = N(V24) = 17, N(V9) = N(V22) = N(V23) = N(V25) = 18 compound treated or con-
trol microbiomes. h nFRp values by individual microbiomes in the RapidAIM
dataset. i TDα values by individual microbiomes in the RapidAIM dataset. j FDp

values by individualmicrobiomes in the RapidAIM dataset. k Log2-fold change (FC)
of nFRp values in comparison to DMSO control samples of each individual (Rapi-
dAIM dataset). N numbers, (h–j): N(V1) = N(V20) = N(V22) = N(V24) = 44, N(V23) = 43 com-
pound treated/control microbiomes per individual. l Log2-FC of TDp values in
comparison to DMSO control samples of each individual (RapidAIM dataset).
m Log2-FC of FDp values in comparison toDMSOcontrol samplesof each individual
(RapidAIM dataset). N numbers, (k–m): N = 5 (with exception N(NBTY) = 4) biologi-
cally independent microbiomes. Significance of differences between-groups were
examinedbyWilcoxon rank-sum test (two-sided); *, **, *** and **** indicate statistical
significance at the FDR-adjusted p <0.05, 0.01, 0.001 and 0.0001 levels, respec-
tively. In the box plots, each individual point represents a metaproteomic sample;
lower and upper hinges correspond to the first and third quartiles, thick line in the
box corresponds to the median, and whiskers represent the maximum and mini-
mum, excluding outliers. In (k–m), Kruskall–Wallis test was also performed to
detect whether there were significantly variations across all treatment/control
groups. Source data are provided as a Source Data file.
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finally the samples were eluted from the cartridges using the elution
solution containing 80% acetonitrile and 0.1% formic acid (v/v).

High-pH reversed-phase fractionation
Eluted samples were evaporated in a SAVANT SPD1010 SpeedVac
Concentrator (Thermo Fisher Scientific, USA), and resuspended in

0.1% formic acid (v/v) to a concentration of 1μg/μL for high-pH
reversed-phase fractionation following a previous workflow15, with
minor adaptations: 30μL sample were loaded to a ZORBAX Bonus-RP
column (with 3.5 µm C18 resins, ID 2.1mm, length 50mm; Agilent
Technologies, USA), and fractionatedwith anAgilent 1200 series HPLC
System (Agilent Technologies,Germany). A 60min gradient consisting
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Fig. 6 | Between-proteome functional distances in IBD and drug-treated
microbiomes. a Distribution of dij values by diagnosis. b Distribution of dij values
by inflammation. c Volcano plot showing altered dij values between inflamed and
non-inflamed sampling sites. The results were based onmicrobial genera of the top
95%overall protein biomass in the dataset.Wilcoxon rank-sum test (two-sided) was
performed and p <0.05 was selected as the threshold. d Principal component
analysis based on between-genera functional distances in individual metapro-
teomes. e Scheme diagram of comparing the dij distribution between drug-treated
microbiome and the DMSO control. f J-S divergence between the dij distribution in
the control (DMSO) and that of the other compounds (lower and upper hinges

correspond to the first and third quartiles, thick line in the box corresponds to the
median, and whiskers represent the maximum and minimum, excluding outliers),
N = 5 (with exception N(NBTY) = 4) biologically independent microbiomes.
Kruskal–Wallis test result indicates that overall the compounds had heterogeneous
levels of J-S divergencewith the DMSO. Between-compound comparisons of the J-S
divergence values were performed by a Pairwise Wilcoxon Rank-Sum Tests, *
indicates statistical significance at the FDR-adjusted p <0.05 level. The results were
based on microbial genera of the top 95% overall protein biomass in the dataset.
Source data are provided as a Source Data file.
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of 5–35% buffer B (v/v) in 1–42min, and 35–50% buffer B in 42–45min
at a flow rate of 100μL/min was used for the fractionation. Here,
10mM ammonium formate was used as buffer A, and 10mM ammo-
nium formate with 90% acetonitrile (v/v) was used as buffer B.
Ammoniumhydroxidewas used to adjust the pHof both buffers A and
B to 10. Sample fractions were continuously collected into 96 well
plates by an Agilent 1100 Series Micro-FC G1364D micro fraction col-
lector (Agilent Technologies, Germany). For each sample, 48 fractions
were collected into different wells at 1min intervals over the first
48min. The samples were then pooled by combining four fractions at
an interval of 12 wells, resulting in 12 fractionated samples per indivi-
dual microbiome (Fig. 1a).

HPLC-ESI-MS/MS analysis
After evaporation and resuspension in 0.1% formic acid, each fraction
was analyzed by HPLC-ESI-MS/MS consisting of an UltiMate 3000
RSLCnano system (Thermo Fisher Scientific, USA) and an Orbitrap
Exploris 480 mass spectrometer (Thermo Fisher Scientific, USA). A
60min gradient of 5– 35% (v/v) buffer B at a 300μL/min flow rate was
used to separate the peptides on a tip column (75μm inner dia-
meter × 10 cm) packedwith reverse phase beads (3μm/120Å ReproSil-
Pur C18 resin, Dr. Maisch GmbH, Ammerbuch, Germany). Here, 0.1%
formic acid (v/v) was used as buffer A, and 0.1% formic acid with 80%
acetonitrile (v/v) was used as buffer B. The MS full scan ranging from
350 to 1400m/z was recorded in profile mode with the resolution of
60,000. Data-dependentMS/MS scanwas performed with the 12most
intense ions with the resolution of 15,000. Dynamic exclusion was
enabled for a duration of 30 s with a repeat count of one. Rawdata was
collected using Thermo Fisher Scientific Xcalibur™ Software
(version 4.4).

Database search
Database search for the fractionated metaproteomics samples was
performed based on the MetaPro-IQ workflow16. Briefly, a two-step
database search was first performed using X!Tandem (version
2015.12.15.2). All sample fractions were searched against the IGC
database of human gut microbiome (http://meta.genomics.cn/)17 to
generate a reduced database, then a classical target-decoy database
search was performed using the reduced database to generate con-
fidently identified peptide and protein lists based on a strict filtering
criteria of FDR =0.01. The protein lists for all sample fractions were
then combined, and duplicated proteins were removed to generate a
combined non-redundant FASTA database using an in-house PERL
script. Next, MaxQuant (version 1.5.2.8) was used to generate quanti-
fied protein groups and peptides in each sample using the combined
non-redundant FASTA database. Carbamidomethylation of cysteine
was set as afixedmodification, oxidationofmethionine andN-terminal
acetylation were set as potential modifications. The maximummissed
cleavages of trypsin was set as two. The resulting peptide and protein
group lists from MaxQuant were then inputted to MetaLab (version
1.2.0) for taxonomic analysis and functional annotation48. For the
taxonomic analysis, identified peptides were mapped to taxonomic
lineages based on a built-in pep2tax database in MetaLab. Functional
annotation to COG49 was performed usingDiamond (version0.8.35). In
addition, KEGGKOs were annotated using GhostKOALA50. The dataset
was deposited to the ProteomeXchange Consortium (http://www.
proteomexchange.org) via the PRIDE partner repository with the
dataset identifier PXD027297.

For the metagenomics analysis, matched metagenome data of
samples HM454, HM455, HM466 and HM503 were obtained from the
previous MetaPro-IQ study16, accessible from the NCBI sequence read
archive (SRA) under the accession of SRP068619. To enable the com-
parison between GCN and PCN, we used the metagenomics data to
generate a protein database for another database search. Briefly, the
raw reads were processed using MOCAT for trimming and quality

filtering, and for human reads removal as previously described16. Next,
reads were assembled by MEGAHIT (https://github.com/voutcn/
megahit) into contigs. Gene prediction from the contigs were per-
formed using Prodigal (https://github.com/hyattpd/Prodigal) to gen-
erate FASTA files. Combined FASTA files were then used for
metaproteomic database search following the MetaPro-IQ pipeline.

Metaproteomic and metagenomic content networks
For the generation of proteomic content networks (PCNs), we devel-
oped a ‘peptide-protein bridge’ approach for the generation of IGC-
based PCNs (see details in Supplementary Notes 1).

For the ‘peptide-protein bridge’ approach, we matched functions
to taxa based on four database search output files, i.e., peptides,
protein groups, taxonomy and function. The protein groups table
(generated by MaxQuant) contains information on the identified pro-
teins, and identifiers of peptide sequence associated to each protein
group. The taxonomy table generated by MetaLab contains peptide
sequences and their corresponding lowest common ancestor (LCA)
taxa. The function table contains identified proteins and their corre-
sponding functional annotations. Proteins were first matched to KOs,
then for those that missed KO annotations, COG information were
supplemented. Therefore, at first, we matched the protein groups to
taxa through the peptides. Next, functions of the proteins were com-
bined to the list to generate a taxon-to-function table that was bridged
by the peptide-protein identification relationship. Protein group
intensity was used as the quantification information in PCNs.

To generate GCNs from the metagenomics result, the same
functional annotationmethodwasused to annotate identifiedproteins
to KEGG-COG.The taxonomic information of proteinswas obtained by
blasting the Prodigal-predicted sequences against the UHGP V2.0
database51. The count of raw reads corresponding to each protein was
used as the quantification information in GCNs. Metagenomics-
database search based PCNs were generated accordingly using the
taxonomic and functional annotation strategy as the GCN.

Next, a PCN of S taxa and F functions can then be represented by
an S × F incidence matrix P= ½Pia�, where Pia ≥0 is the total intensity of
proteins of function-a in taxon-i normalized by the total intensities of
functional proteins in taxon-i. Similarly, the GCN can then be repre-
sented as G= ½Gia�, where Gia ≥0 is the raw read counts of proteins of
function-a in taxon-i normalized by the total counts of raw reads in
taxon-i.

Calculation of functional distance and functional redundancy
Weighted Jaccard distance dij between metagenomic (or metapro-
teomic) contents of taxon-i and j can then be calculated with the GCN
and PCN profiles G and P, respectively, as described previously (Tian
et al.11,). For GCN, we have

dij = 1�
P

aminðGia,GjaÞP
amaxðGia,GjaÞ

, ð3Þ

and for PCN, we have

dij = 1�
P

aminðPia,PjaÞP
amaxðPia,PjaÞ

: ð4Þ

The relative abundance of taxon-i in each community was deno-
ted as pi. In each metagenomics sample, pi was quantified using
MetaPhlAn3 with default settings. In each metaproteomics sample, pi

was quantified using the total abundances of unique peptides corre-
sponding to taxon-i.

With the dij and pi values, within-sample FR of the metagenomic
and themetaproteomic profiles, denoted as FRg and FRp, respectively,
were then calculated according to Eq. (1) given in the Results section.
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Consumer-resource model with cross-feeding interactions
Consider a microbiome with a resource pool ofM nutrients and a pool
of S taxa to start the community assembly, each taxon-i consumes
resource-α with a consumption flux of Jiniα =CiαRα (Fig. 2b), whereCiα is
the resource consumption rate of taxon-i on resource-α (Fig. 2c), and
Rα represents the concentration of resource-α. Internal metabolic
process of taxon-i converts resource-α into two fractions, i.e., a frac-
tion l of consumed resources for byproduct generation, and the
remaining fraction ð1� lÞ contributes to the biomass increase of taxon-
i (Fig. 2b). Once resource-α is consumed, multiple byproducts (which
are also resources) are generated and this is encoded in the byproduct
generation matrix P, which describes whether resource-α can be
converted to a byproduct or resource-β (Fig. 2d). To conserve the total
amount of resources, we assumed that

P
β Pαβ = 1. Overall, the pro-

duction flux of resource-α by taxon-i is Joutiα = l
P

β Pαβ J
in
iβ which

sums over all byproduct generation activities from all consumed
resources. Resource-α is externally supplied with a supply rate hα . All
resources and microbes are diluted by the same dilution rate D.
Overall, the dynamics of the resource concentrations (Rα , α = 1, . . . ,M)
and taxa abundances (Ni, i= 1, . . . ,S) are given by a set of coupled
ordinary differential equations:

dRα

dt
=hα � DRα +

X
i

NiðJoutiα � JiniαÞ, ð5Þ

dNi

dt
=Ni Y ð1� lÞ

X
α

Jiniα � D

" #
: ð6Þ

Y is the resource yield. For simplicity, we assume Y is the same for
all resources across taxa. Note that the model in Marsland et al.20

considers two separate dilution rates for resources and microbes.
Here, under the assumption of the fed-batch culture, dilution rate D is
the same for both resources and microbes.

Simulations of the Consumer-Resource Model with cross-feeding
interactions were performed by considering dynamics of 100 micro-
bial taxa and 100 resources. To simulate functionalities represented by
theGCN and PCN, the consumptionmatrices that derive from theGCN
(CGCN) or the PCN (CPCN) are assumed tohave the sameconnectance as
the GCN and the PCN respectively. More specifically, we used a bino-
mial distribution with the probability equal to the connectance of the
GCN to determine the number of consumable resources for each
species and thus formed the incidence matrix of CGCN . The con-
sumptionmatrix CPCN is generated via a subsampling of the CGCN with
the subsampling probability to keep the connectance ofCPCN the same
as the connectance of the PCN. The consumption rates are drawn from
the uniform distribution U½0,1�. A universal byproduct generation
from consumed nutrients is assumed and its connectance is assumed
to be 50%. The entries of byproduct generationmatrix are drawn from
the uniform distribution between 0 and 1 and even eventually nor-
malized for each consumednutrient (i.e.,

P
β Pαβ = 1). Simulationswere

performed 100 times for each comparison of one pair in the violin
plots. For one pair of simulations linked by a thin gray line in the violin
plots, two simulations are performed using the same parameters (such
as the same byproduct generationmatrix) except for the consumption
matrix (i.e., CGCN and CPCN). The richness of the assembled commu-
nities is counted as the number of microbial taxa that have positive
abundances at the end of the simulation.

Statistical analysis and visualization
The statistical details of analysis can be found in the figure legends and
in the main texts, including the statistical tests used and significance
criteria. Computation of GCN, PCN and functional redundancy were
performed using in-house Python codes. NODF values were computed
using the R package RInSp. Jensen-Shannon divergence was calculated

using the R package textmineR. Two-wayANOVAwas performed using
R function aov(). PERMANOVA tests were performed using R packages
“vegan” and “BiodiversityR”. Kruskal–Wallis and Wilcoxon rank-sum
testswereperformedusingR functions kruskal.test() andwilcox.test(),
respectively. Network incidence matrices, degree distributions, bar
plots, box plots, and violin plots were visualized using the R package
ggplot2. Unipartite networks were visualized using the R package
igraph. Tripartite networks were visualized using the R package net-
workD3. Heatmaps were visualized using the R package pheatmap.
Volcano plot was analyzed by MetaboAnalyst (version 4.0) under non-
parametric test setting. The interactive webpage (https://shiny2.
imetalab.ca/shiny/rstudio/PCN_visualizer/) for visualization PCNs of
metaproteomic datasets analyzed in this paperwas created using theR
packages shiny and shinydashboard. The Consumer-Resource Model
model was implemented in Python 3.8 and Python packages Pandas,
Numpy, Seaborn, and matplotlib.pyplot were used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ultra-deep metaproteomics datasets were deposited to the Pro-
teomeXchange Consortium (http://www.proteomexchange.org) via
the PRIDE partner repository with the dataset identifier PXD027297.
Database search outputs from the SISPROT23, RapidAIM24, Berberine25

and IBD26 studies have been previously deposited to the Proteo-
meXchange Consortium with the dataset identifiers PXD005619,
PXD012724, PXD015934 and PXD007819, respectively. Proteomics
dataset of the cultured singles strain samples (Wang et al.19,) has been
previously deposited to the ProteomeXchange Consortium with the
dataset identifier PXD037923. The four metagenomic datasets
matching the ultra-deepmetaproteomics datasets were obtained from
the previous MetaPro-IQ study16, accessible from the NCBI sequence
read archive (SRA) under the accession of SRP068619. Source data are
provided with this paper.

Code availability
Custom codes for the construction of PCN and calculation
of FRp are available at GitHub: https://github.com/yvonnelee1988/
Metaproteome_FRp.

References
1. Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for

human microbiome research. Nat. Med. 25, 884–889 (2019).
2. The Human Microbiome Project Consortium. Structure, function

and diversity of the healthy human microbiome. Nature 486,
207–214 (2012).

3. Clooney, A. G. et al. Ranking microbiome variance in inflammatory
bowel disease: a large longitudinal intercontinental study. Gut 70,
499–510 (2021).

4. Wang, Z. et al. Altered diversity and composition of the gut
microbiome in patients with cervical cancer. AMB Express 9,
40 (2019).

5. Ren, Z. et al. Gut microbiome analysis as a tool towards targeted
non-invasive biomarkers for early hepatocellular carcinoma. Gut
68, 1014–1023 (2019).

6. Johnson, K. V.-A. & Burnet, P. W. J. Microbiome: Should we diversify
from diversity? Gut Microbes 7, 455–458 (2016).

7. Loreau, M. Does functional redundancy exist? Oikos 104,
606–611 (2004).

8. Root, R. B. The niche exploitation pattern of the blue-gray gnat-
catcher. Ecol. Monogr. 37, 317–350 (1967).

9. Louca, S. et al. Function and functional redundancy in microbial
systems. Nat. Ecol. Evol. 2, 936–943 (2018).

Article https://doi.org/10.1038/s41467-023-39149-2

Nature Communications |         (2023) 14:3428 12

https://shiny2.imetalab.ca/shiny/rstudio/PCN_visualizer/
https://shiny2.imetalab.ca/shiny/rstudio/PCN_visualizer/
http://www.proteomexchange.org
https://www.ebi.ac.uk/pride/archive/projects/PXD027297
https://www.ebi.ac.uk/pride/archive/projects/PXD005619
https://www.ebi.ac.uk/pride/archive/projects/PXD012724
https://www.ebi.ac.uk/pride/archive/projects/PXD015934
https://www.ebi.ac.uk/pride/archive/projects/PXD007819
https://www.ebi.ac.uk/pride/archive/projects/PXD037923
https://www.ncbi.nlm.nih.gov/sra/?term=SRP068619
https://github.com/yvonnelee1988/Metaproteome_FRp
https://github.com/yvonnelee1988/Metaproteome_FRp


10. Wu, G., Zhao, N., Zhang, C., Lam, Y. Y. & Zhao, L. Guild-based
analysis for understanding gut microbiome in human health and
diseases. Genome Med. 13, 22 (2021).

11. Tian, L. et al. Deciphering functional redundancy in the human
microbiome. Nat. Commun. 11, 6217 (2020).

12. Kleiner, M. Metaproteomics: much more than measuring gene
expression inmicrobial communities.mSystems4, e00115–19 (2019).

13. Li, L. & Figeys, D. Proteomics and metaproteomics add functional,
taxonomic and biomass dimensions to modeling the ecosystem at
the mucosal-luminal interface. Mol. Cell. Proteom. 19,
1409–1417 (2020).

14. Salvato, F., Hettich, R. L. & Kleiner, M. Five key aspects of meta-
proteomics as a tool to understand functional interactions in host-
associated microbiomes. PLOS Pathog. 17, e1009245 (2021).

15. Batth, T. S., Francavilla, C. & Olsen, J. V. Off-line high-ph reversed-
phase fractionation for in-depth phosphoproteomics. J. Proteome
Res. 13, 6176–6186 (2014).

16. Zhang, X. et al. MetaPro-IQ: a universalmetaproteomic approach to
studying human and mouse gut microbiota. Microbiome 4,
31 (2016).

17. Li, J. et al. An integrated catalog of reference genes in the human
gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

18. Kleiner, M. et al. Assessing species biomass contributions in
microbial communities via metaproteomics. Nat. Commun. 8,
1558 (2017).

19. Wang, T., Li, L., Figeys, D. & Liu, Y.-Y. Pairing metagenomics and
metaproteomics to pinpoint ecological niches and metabolic
essentiality of microbial communities. bioRxiv 2022.11.04.515228
https://doi.org/10.1101/2022.11.04.515228 (2022).

20. Marsland, R. III et al. Available energy fluxes drive a transition in the
diversity, stability, and functional structure of microbial commu-
nities. PLOS Comput. Biol. 15, e1006793 (2019).

21. MacArthur, R. Species packing and competitive equilibrium for
many species. Theor. Popul Biol. 1, 1–11 (1970).

22. Ulanowicz, R. E. Biodiversity, functional redundancy and system
stability: subtle connections. J. R. Soc. Interfac. 15,
20180367 (2018).

23. Zhang, X. et al. Deep metaproteomics approach for the study of
human microbiomes. Anal. Chem. 89, 9407–9415 (2017).

24. Li, L. et al. RapidAIM: a culture- and metaproteomics-based Rapid
Assay of Individual Microbiome responses to drugs.Microbiome 8,
33 (2020b).

25. Li, L. et al. Berberine and its structural analogs have differing effects
on functional profiles of individual gut microbiomes. Gut Microbes
11, 1348–1361 (2020a).

26. Zhang, X. et al. Metaproteomics reveals associations between
microbiome and intestinal extracellular vesicle proteins in pediatric
inflammatory bowel disease. Nat. Commun. 9, 2873 (2018).

27. Park, I. et al. Characterization of terminal-ileal and colonic Crohn’s
disease in treatment-naïve paediatric patients based on tran-
scriptomic profile using logistic regression. J. Transl. Med. 19,
250 (2021).

28. Xiao, Y. et al. Mapping the ecological networks of microbial com-
munities. Nat. Commun. 8, 2042 (2017).

29. Angulo, M. T., Moog, C. H. & Liu, Y.-Y. A theoretical framework for
controlling complex microbial communities. Nat. Commun. 10,
1045 (2019).

30. Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested
assembly of plant–animal mutualistic networks. Proc. Natl. Acad.
Sci. U.S.A. 100, 9383–9387 (2003).

31. Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the
architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38,
567–593 (2007).

32. Kondoh,M., Kato, S. & Sakato, Y. Foodwebs are built upwith nested
subwebs. Ecology 91, 3123–3130 (2010).

33. Gonze, D., Lahti, L., Raes, J. & Faust, K. Multi-stability and the origin
of microbial community types. ISME J. 11, 2159–2166 (2017).

34. Van de Guchte, M. et al. Alternative stable states in the intestinal
ecosystem: proof of concept in a rat model and a perspective of
therapeutic implications. Microbiome 8, 153 (2020).

35. Stein, R. R. et al. Ecological modeling from time-series inference:
insight into dynamics and stability of intestinal microbiota. PLOS
Comput. Biol. 9, e1003388 (2013).

36. van der Post, S. et al. Structural weakening of the colonic mucus
barrier is an early event in ulcerative colitis pathogenesis. Gut 68,
2142 (2019).

37. Bunesova, V., Lacroix, C. & Schwab, C. Mucin cross-feeding of
infant Bifidobacteria and Eubacterium hallii. Microb. Ecol. 75,
228–238 (2018).

38. Schroeder, B. O. Fight themor feed them: how the intestinalmucus
layer manages the gut microbiota. Gastroenterol. Rep. 7,
3–12 (2019).

39. Kosciow, K. & Deppenmeier, U. Characterization of three novel β-
galactosidases from Akkermansia muciniphila involved in mucin
degradation. Int. J. Biol. Macromol. 149, 331–340 (2020).

40. Tilman, D. Resource competition and community structure. vol.
17 (1982).

41. Luca, M., Di Mauro, M., Di Mauro, M. & Luca, A. Gut microbiota in
Alzheimer’s disease, depression, and type 2 diabetes mellitus: the
role of oxidative stress. Oxid. Med. Cell. Longevity 2019,
4730539 (2019).

42. Moya, A. & Ferrer, M. Functional redundancy-induced stability of
gut microbiota subjected to disturbance. Trends Microbiol. 24,
402–413 (2016).

43. Folke, C. et al. Regime Shifts, Resilience, and Biodiversity in Eco-
system Management. Annu. Rev. Ecol. Evol. Syst. 35,
557–581 (2004).

44. Dogra, S., Doré, J. &Damak, S. GutMicrobiota Resilience: Definition,
Link to Health and Strategies for Intervention. Front. Microbiol. 11,
572921 (2020).

45. Hu, H. et al. StrainPanDA: Linked reconstruction of strain compo-
sition and gene content profiles via pangenome-based decom-
position of metagenomic data. iMeta 1, e41 (2022).

46. Liang, Q., Bible, P. W., Liu, Y., Zou, B. & Wei, L. DeepMicrobes:
taxonomic classification for metagenomics with deep learning.
NAR Genom. Bioinf. 2, lqaa009 (2020).

47. Zhang, X. et al. Assessing the impact of protein extractionmethods
for human gut metaproteomics. J. Proteom. 180, 120–127 (2018).

48. Cheng, K. et al. MetaLab: an automated pipeline formetaproteomic
data analysis. Microbiome 5, 157 (2017).

49. Galperin, M. Y. et al. COG database update: focus on microbial
diversity, model organisms, and widespread pathogens. Nucleic
Acids Res. 49, D274–D281 (2021).

50. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res. 28, 27–30 (2000).

51. Almeida, A. et al. A unified catalog of 204,938 reference genomes
from the human gut microbiome. Nat. Biotechnol. 39,
105–114 (2021).

Acknowledgements
This work was partially funded by the Government of Canada through
Genome Canada and the Ontario Genomics Institute (OGI-114 and OGI-
149) and the Ontario Ministry of Economic Development and Innovation
(Project 13440). Y.-Y.L. acknowledges grants from National Institutes of
Health (R01AI141529, R01HD093761, RF1AG067744, UH3OD023268,
U19AI095219 and U01HL089856). The shotgun metagenomic analysis
presentedherewas enabled in part byWestGrid () andComputeCanada
(www.computecanada.ca). D.R.M. is partially supported through Uni-
versity of Ottawa Faculty of Medicine Distinguished Clinical Research
Chair in Pediatric Inflammatory Bowel Disease. C.M.A.S.was fundedby a

Article https://doi.org/10.1038/s41467-023-39149-2

Nature Communications |         (2023) 14:3428 13

https://doi.org/10.1101/2022.11.04.515228
http://www.computecanada.ca


stipend from the NSERC CREATE in Technologies for Microbiome Sci-
ence and Engineering (TECHNOMISE) Program. The authors acknowl-
edge Ruth Singleton (Clinical Research Coordinator) for participant
recruitment and data collection.

Author contributions
Conceptualization, Y.-Y.L, D.F., L.L., and T.W.; Methodology, D.F., Y.-Y.L,
L.L., Z.N., and T.W.; Formal Analysis: L.L.; Investigation L.L., T.W., and
Z.N.; Resources, D.R.M., A.S., J.B., and J.M.; Data Curation: L.L., J.B., X.Z.,
Z.N., J.S., and C.M.A.S.; Writing–Original Draft, L.L., Y.-Y.L, and D.F.;
Writing–Review&Editing, J.B., J.M., A.S., C.M.A.S., D.R.M., X.Z., T.W., and
Z.N.; Visualization: L.L., T.W., and Z.N.; Supervision: D.F. and Y.-Y.L. The
authors declare that they follow principles of inclusion & ethics in global
research.

Competing interests
D.F., A.S., and D.R.M. have co-founded MedBiome, a clinical micro-
biomics company. All other authors declare no potential competing
interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39149-2.

Correspondence and requests for materials should be addressed to
Yang-Yu Liu or Daniel Figeys.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39149-2

Nature Communications |         (2023) 14:3428 14

https://doi.org/10.1038/s41467-023-39149-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Revealing proteome-level functional redundancy�in the human gut microbiome using ultra-deep metaproteomics
	Results
	Construction of proteomic content networks from an ultra-deep metaproteomic approach
	Computation of within-sample proteome-level functional redundancy
	Exploration of PCN topology and its ecological implication
	Human gut microbiome has high protein-level FR
	Protein-level FR outcompetes diversity indices in detecting microbiome responses to environmental factors
	Alteration of between-proteome functional distances in disease and compound-treated microbiomes

	Discussion
	Methods
	Protein extraction and digestion
	High-pH reversed-phase fractionation
	HPLC-ESI-MS/MS analysis
	Database search
	Metaproteomic and metagenomic content networks
	Calculation of functional distance and functional redundancy
	Consumer-resource model with cross-feeding interactions
	Statistical analysis and visualization
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




