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Abstract

Background: Mast cells (MCs) within the airway epithelium in asthma are closely related to 

airway dysfunction, but crosstalk between airway epithelial cells (AECs) and MCs in asthma 

remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma 

progression and AECs from individuals with asthma may have dysregulated anti-viral responses.

Objective: We utilize primary AECs in an ex vivo coculture model system to examine crosstalk 

between AECs and MCs following epithelial RV infection.

Methods: Primary AECs were obtained from children with asthma (n=11) and healthy children 

(n=10), differentiated at air-liquid interface, and cultured in the presence of laboratory of allergic 

diseases-2 (LAD2) MCs. AECs were infected with RV serogroup-A 16 (RV16) for 48 hours. RNA 
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isolated from both AECs and MCs underwent RNA-sequencing (RNAseq) analysis. Direct effects 

of epithelial-derived interferons on LAD2 MCs were examined by qPCR.

Results: MCs increased expression of pro-inflammatory and anti-viral genes in AECs. AECs 

demonstrated a robust antiviral response following RV16 infection that resulted in significant 

changes in MC gene expression, including upregulation of genes involved in anti-viral responses, 

leukocyte activation, and type-2 (T2) inflammation. Subsequent ex vivo modeling demonstrated 

that IFN-β induces MC T2 gene expression. The effects of AEC donor phenotype were small 

relative to the effects of viral infection and the presence of MCs.

Conclusions: There is significant crosstalk between AECs and MCs, which are present in the 

epithelium in asthma. Epithelial-derived interferons not only play a role in viral suppression, but 

further alter MC immune responses including specific T2 genes.

Capsule Summary:

Murphy et al study the bidirectional communication between primary airway epithelial cells and 

mast cells in the context of viral infection, identifying that epithelial viral infection induces diverse 

mast cell immune responses, including type-2 inflammation.
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INTRODUCTION

Airway inflammation in asthma is heterogenous and regulated in a time and context 

dependent manner by multiple cell types and numerous external stimuli, including inhaled 

allergens, pollutants, and respiratory viruses (1). We recently demonstrated that mast 

cells (MCs) shift from the subepithelial space to the airway epithelium in individuals 

with asthma and their presence is tightly correlated with T2 inflammation and airway 

hyperresponsiveness (AHR) (2). However, MCs have been implicated in both T2 and non-
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T2 mechanisms of airway inflammation and there is emerging evidence that bidirectional 

communication between MCs and the epithelium plays a key role in regulating airway 

inflammation in asthma (1, 3). We developed an ex vivo model with airway epithelial cells 

(AECs) differentiated at air-liquid interface (ALI) cocultured with laboratory of allergic 

diseases-2 (LAD2) MCs and found that AECs and MCs engage in a feedforward loop in 

which MCs stimulated with IL-33 increase T2 gene expression in MCs and concurrently 

promote epithelial expression of IL33. This feedforward loop was accentuated in asthmatic 

AECs suggesting that there are additional alterations in the airway epithelium in asthma 

essential in modulating interactions between these cell types (2).

Human rhinovirus (RV) infection is a common trigger for acute exacerbations and 

persistence of asthma in both pediatric and adult populations (4, 5). There are several 

RV serogroups with RV-A serogroup 16 (RV16) being the most common cause of lower 

respiratory tract infections in adults and a common cause of upper and lower respiratory 

tract infections in children. RV16 gains cell entry by binding to intercellular adhesion 

molecule-1 (ICAM-1), which is expressed on multiple cell types, but typically initiates 

disease through infection of upper and lower AECs. Viral infection of AECs generates 

increased expression and production of epithelial-derived interferons (IFNs), which serve 

as important regulators of the host innate immune response. However, there have been 

conflicting results on differences in primary AEC responses from individuals with asthma 

with some studies demonstrating increased viral replication and reduced IFN responses (6) 

while others have found no significant differences (7–9). In vivo studies have demonstrated 

increased levels of T2 cytokines and eosinophilic inflammation following RV infection and 

have implicated IL-33 as a central regulator of this response (10, 11). Although CD4+ T 

cells and type-2 innate lymphoid cells (ILC2s) have been implicated as the key sources of 

T2 cytokines following RV infection, the role of MCs in regulating the T2 inflammatory 

response in this context has received less attention.

Here we examine communication between AECs and MCs both at baseline and in the 

context of acute viral infection. We utilized our coculture model system with primary AECs 

isolated from atopic children with well-defined asthma and from non-atopic healthy children 

that were differentiated at ALI, and cultured in the presence or absence of LAD2 MCs in 

the basolateral compartment. We then infected AECs with RV16 for 48 hours and performed 

bulk RNA-sequencing (RNAseq) of both AECs and MCs to further examine the effects of 

asthma and MCs in this system. Based on our analysis of transcriptomics data, we examined 

the effects of epithelial-derived IFNs on MC gene expression.

METHODS

Pediatric Study Subjects

Children ages 6–18 years undergoing an elective surgical procedure requiring endotracheal 

intubation and general anesthesia were recruited for this study and characterized for the 

presence or absence of asthma as previously described (12, 13). Parental informed consent 

and assent from the child were obtained prior to inclusion in the study, and the Seattle 

Children’s Hospital Institutional Review Board approved the study protocol.
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Pediatric Primary AEC Isolation, Proliferation, and Differentiation

During the elective surgery, AECs were obtained by blind bronchial brushings through 

an endotracheal tube then established in primary culture and cryopreserved as previously 

described (12). Using passage 2 or 3 cells, AECs were differentiated to an organotypic state 

at ALI for 3 weeks using methods previously described (14).

Pediatric Primary AEC-LAD2 MC Coculture Model with Epithelial RV16 Infection

AEC ALI organotypic cultures were differentiated in PneumaCult™-ALI Medium 

(Stemcell™ Technologies) on 12 mm 0.4 μm permeable polyester membrane transwell 

inserts (Corning®). LAD2 MCs at a concentration of 0.5 × 106 cells/mL were added to the 

basolateral chamber. Either 100 μl of RV16 at a MOI of 1:1 suspended in Hank’s Balanced 

Salt Solution (HBSS) (100 μg/ml) or 100 μl HBSS (vehicle control) were added to the apical 

surface of AECs for 48 hours. Following infection of AECs with RV16 for 48 hours, RNA 

was extracted from the AECs and LAD2 MCs using a RNAqueous™-Micro Total RNA 

Isolation Kit (ThermoFisher/Life Technologies) (Supplemental Figure 1).

AEC and LAD2 RNA Sequencing

Using 1 ug total RNA with a RNA integrity number (RIN) ≥8, polyadenylated RNA was 

selected and purified using oligo-dT conjugated magnetic beads followed by cDNA library 

construction using the TruSeq Stranded mRNA Sample Prep Kit (Illumina, #RS-122-2103). 

Full details regarding RNAseq methods are available in the online supplement. Genes with 

a raw count of at least 10 in one of the libraries went into further analysis, leaving 16,950 

unique genes from AECs and 15,842 unique genes from LAD2 MCs. RNAseq data have 

been deposited at the Gene Expression Omnibus repository (GSE206680).

Bioinformatics Analysis

Differential gene expression analysis was performed using the DESeq2 program in R (R 

Foundation for Statistical Computing, Vienna, Austria, www.R-project.org) (15). These 

analyses were performed independently to allow for direct comparisons between conditions 

rather than subset analyses within a larger model. The same techniques were used to 

determine differences based upon AEC phenotype. Details regarding individual analyses 

are available in the online supplement. Differentially expressed genes (DEGs) were 

defined as those with a false discovery rate (FDR) <0.05 using the Benjamini-Hochberg 

procedure. Functional associations and biological significance of DEGs were assessed 

using WebGestalt 2019 (WEB-based GEne SeT AnaLysis Toolkit) (16). Gene Ontology 

(GO) biologic process, molecular function, and cellular component, as well as canonical 

pathways from KEGG and Reactome were used as databases. Ingenuity Pathway Analysis 

(IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity) was performed on differentially 

expressed genes with a FDR <0.05 and used to identify enriched canonical pathways, 

construct regulatory networks, and identify upstream regulators (17).

Measuring RV16 Replication

We measured RV16 replication in AECs and MCs using the Genesig® Human Rhinovirus 

Subtype 16 PCR Kit (Primerdesign®) as previously described (18).
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LAD2 Mast Cell Stimulation

LAD2 MCs were stimulated with IFN-β (Abcam, Cambridge, UK) at 1 ng/mL. Blocking 

antibody studies were performed using an anti-IFNAR2 antibody at 5 μg/ml (clone 

MMHAR-2, PBL Assay Science, Piscataway, NJ) or IgG2A isotype control antibody at 5 

μg/ml (clone eBM2a, eBioscience, Thermo Fisher Scientific, Waltham, MA). qPCR analysis 

was conducted using TaqMan primer probe sets with quantification of IL4, IL5, and IL13 
genes relative to the endogenous control gene HPRT1 using the delta Ct method.

RV infection time course experiment

We performed a time course experiment to clarify the time course of changes in IL33, 

IFNB1, and IFNL1 following RV16 infection of human primary AECs at ALI obtained 

from 4 different pediatric, non-atopic, non-asthmatic donors (2). Either 100 μl of RV16 at 

a multiplicity of infection (MOI) of 1:1 suspended in HBSS (100 μg/ml) or 100 μl HBSS 

(vehicle control) were added to the apical surface of AECs. RNA was isolated at 4, 12, 24, 

48, and 72 hours following RV16 infection. qPCR analysis was conducted using TaqMan 

primer probe sets with quantification of IL33, IFNB1, and IFNL1 genes relative to the 

endogenous control gene HPRT1 using the delta Ct method.

Statistics

Statistical methods are explicitly discussed within individual figure legends and detailed in 

the online supplement.

RESULTS

Study Population Characteristics

The characteristics of pediatric AEC donors are presented in Table 1. There were no 

significant differences in the age, sex, baseline FEV1 % predicted, and fractional exhaled 

nitric oxide (FeNO) between the groups, but atopic children with asthma had more 

airflow obstruction measured by the FEV1/FVC ratio, significantly higher total serum 

immunoglobulin E (IgE) levels and higher number of positive allergen-specific IgE 

concentrations relative to non-atopic healthy children.

MCs upregulate AEC expression of pro-inflammatory genes

Overall, gene expression patterns between AECs obtained from children with asthma versus 

healthy children were similar when cultured in isolation with identification of only eight 

differentially expressed genes (Supplemental Table 1). To investigate the effect of MCs on 

AECs, we directly compared gene expression patterns between all AECs cultured alone or in 

the presence of LAD2 MCs and identified 111 differentially expressed genes. AECs cultured 

in the presence of MCs demonstrated increased expression of several pro-inflammatory 

cytokines and genes associated with anti-viral responses (Fig. 1A). These include IL19 (19–

22), CCL28 (23), and IL6 (24, 25) that have been implicated in asthma pathogenesis and 

IFIH1, which encodes the RIG-I-like receptor and viral RNA sensor MDA5 that restricts 

replication of respiratory syncytial virus (RSV) and RV (26). These differentially expressed 

genes were enriched in GO pathways for “cytokine metabolic response”, “interleukin-6 
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production”, “negative regulation of cell adhesion”, “negative regulation of immune system 

process”, “angiogenesis”, and “epithelial cell proliferation” (Fig. 1B). We utilized IPA to 

identify significant upstream regulators of these differentially expressed genes and found 

that type I IFNs, signaling through TLR3 and TLR9, IL-17A, and TGF-β were predicted to 

be activated with the changes in epithelial gene expression associated with exposure to MCs 

(Fig. 1C). We separately compared gene expression between AECs obtained from children 

with asthma versus healthy controls cultured with LAD2 MCs and found only a single 

DEG (PIP5K1B) encoding for phosphatidylinositol-4-phosphate 5-kinase type-1β, which 

has previously been implicated in childhood asthma susceptibility (27).

Epithelial responses to rhinovirus infection are modestly altered by MCs

RV16 infection of AECs cultured alone resulted in 5398 differentially expressed genes 

(Fig. 2A) that were highly enriched in pathways involved in the anti-viral response 

and IFN signaling (Supplemental Table 2). There were no differentially expressed genes 

identified upon comparison of AECs obtained from children with asthma and healthy 

controls following viral infection. However, we detected non-significantly higher RV copy 

numbers in AECs obtained from healthy children in comparison with AECs obtained from 

children with asthma (P = 0.06, Supplemental Fig. 2A). Previous work from our group 

demonstrated that RSV infection resulted in an exaggerated IFN response in AECs obtained 

from asthmatic subjects with airflow obstruction (defined as FEV1/FVC <0.85 and FEV1 

<100% predicted) (12). Of the 11 asthmatic AEC donors in our analysis, only 5 met these 

criteria for airflow obstruction. In contrast to previous results, we did not identify significant 

changes in gene expression patterns either at baseline or following RV infection amongst 

this subgroup in comparison to AECs obtained from healthy children (data not shown). 

However, we did identify lower RV copy numbers in AECs obtained from asthmatic subjects 

with airflow obstruction in comparison to AECs obtained from healthy children (P = 0.02, 

Supplemental Fig. 2B).

RV16 infection of AECs cultured in the presence of LAD2 MCs resulted in 4731 

differentially expressed genes and similarly demonstrated upregulation of IFNs and IFN-

stimulated genes in comparison to RV16 infection of AECs cultured alone (Figure 2B). 

Upon comparison of gene expression patterns between AECs infected with RV16 cultured 

in the presence of MCs versus AECs infected with RV16 cultured alone, we identified 688 

common DEGs that were enriched in genes involved in the anti-viral response and IFN 

signaling (Fig. 2C; Supplemental Tables 3 and 4). 174 DEGs exclusive to AECs cultured 

in the presence of MCs were enriched in genes involved in cellular motility and included 

upregulation of genes encoding the chemokine CXCL9 and the IL-36 receptor (IL1RL2), 

both of which have been implicated in regulating airway inflammation in asthma (28, 

29). 370 DEGs exclusive to AECs cultured alone were enriched in genes involved in cell 

adhesion but also included downregulation of the prostaglandin E2 receptor (PTGER2) and 

upregulation of nitric oxide synthase 2 (NOS2). However, despite these differences in gene 

expression patterns, there were no significant differences in RV16 copy number in AECs 

following viral infection in the presence or absence of MCs (Fig. 2D).
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RV16 infection of AECs alters MC gene expression patterns

To examine the effect of epithelial viral infection on MCs, we compared MC gene 

expression in conditions with and without RV infection of AECs. We identified differential 

expression of 1897 genes, which included increased expression of several IFN-stimulated 

genes and genes implicated in response to viral infection, in MC conditions exposed to 

RV16-infected AECs (Fig. 3A). These differentially expressed genes were enriched in GO 

biologic processes involved in response to viral infection, including responses to IFN-α, 

IFN-β, and IFN-γ, as well as the response to IL-4 (Fig. 3B). An analysis for upstream 

regulators of these differentially expressed genes identified IFN-α, IFN-β, IFN-γ, and 

IFN-λ amongst the upstream regulators with the highest activation z-scores, suggesting that 

epithelial-derived IFNs may play a key role in regulating the alterations in gene expression 

patterns amongst MCs cocultured with RV-infected AECs (Fig. 3C). Again, we did not 

identify significant differences in LAD2 MC gene expression between conditions cultured 

with AECs obtained from children with asthma compared with AECs obtained from healthy 

controls.

Given that MCs express ICAM-1 and can be directly infected by rhinoviruses, we wanted 

to confirm that these alterations in gene expression were not related to direct infection 

with RV16 (30). We detected extremely low RV copy numbers in MCs relative to RV16-

infected AECs, suggesting that changes in MC gene expression may have been related to 

communication with the epithelium, exposure to viral components, or low-level infection 

with RV (Supplemental Fig. 3). However, we did not directly expose MCs to RV16 in this 

study, which may have served as a superior positive control condition.

In addition to identifying genes involved in a type-1 (T1) inflammatory response, we 

identified increased expression of genes implicated in T2 inflammation. IL-4 inducer-1 

(IL4I1) has been implicated in M2 polarization of macrophages and T2 inflammation (31). 

IL18 is a pleotropic pro-inflammatory cytokine that has been implicated in asthma (32–38) 

and is capable of inducing T2 cytokine production in basophils and MCs (39, 40).

IFN-β Induces MC T2 Gene Expression

Given that we identified type I, II, and III IFNs as upstream regulators of global 

transcriptional changes in MCs exposed to RV-infected AECs coupled with the known 

associations between RV infection and T2 inflammation, we hypothesized that epithelial-

derived IFNs can directly activate MC T2 inflammatory responses without confounding by 

exposure to viral products or through direct RV16 infection. LAD2 MCs stimulated with 

IFN-β directly induced IL4, IL5, and IL13 expression in LAD2 MCs (Fig. 4A–C). The 

effects of IFN-β on IL4 (Fig. 4D) and IL13 expression (Fig. 4F) were completely attenuated 

and the effects on IL5 expression (Fig. 4E) were partially attenuated in the presence of an 

IFNAR blocking antibody, which serves as the common receptor for type I IFNs.

RV16 Infection Induces Early Epithelial IL33 Expression

IL-33 has previously been implicated in the T2 inflammatory response following RV 

infection of individuals with asthma and is also known to stimulate MC T2 gene expression, 

prompting us to evaluate expression of IL33 and epithelial-derived IFNs at multiple 
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timepoints following RV16 infection of primary AECs obtained from healthy children (Fig. 

5). Epithelial IL33 expression peaked at 4 hours while IFNB1 and IFNL1 expression peaked 

at 24 hours following RV16 infection.

DISCUSSION

Here we studied the bidirectional communication between the airway epithelium and MCs, 

focusing on the role of this intercellular signaling in regulating airway inflammation in the 

context of acute viral infection (Fig. 6). We performed transcriptomic analyses of an ex 
vivo model using primary AECs from children with asthma and healthy controls infected 

with RV16 cocultured with LAD2 MCs. First, we observed that MCs promote increased 

expression of several pro-inflammatory genes in AECs but the magnitude of these effects 

were modest relative to the effects of RV16 infection on the epithelium. Secondly, we found 

that epithelial RV16 infection results in significant changes in MC gene expression patterns, 

including increased expression of genes involved in both T1 and T2 inflammation. We 

identified extremely low RV counts in MCs cultured with RV16-infected AECs, suggesting 

that exposure to viral components or low-level infection may have induced some changes in 

MC transcriptional patterns. However, upstream regulator analyses indicated that epithelial-

derived IFNs also may have altered MC gene expression, which prompted additional ex 
vivo modeling that demonstrated that IFN-β can directly induce MC IL4, IL5, and IL13 
expression and is mediated through the primary receptor for type I IFNs (IFNAR2). This 

represents a novel mechanism through which epithelial viral infection can connect T1 and 

T2 inflammatory pathways in asthma.

RV infection is known to induce T1 immune responses but can also lead to an enhanced 

T2 inflammatory response in individuals with asthma, although the key cellular sources 

and mechanisms responsible for generating this response are unclear (10, 11). CD4+ T 

cells, ILC2s, and monocytes have been implicated in the response to viral infection in 

asthma but here we focused on the interaction between the epithelium and MCs due 

to their proximity in asthma, although the role of MCs in regulating responses to viral 

infection has received less attention (10, 41, 42). A previous study demonstrated that RSV 

infection of AECs cocultured with a human mast cell line (HMC-1) promotes increased 

MC degranulation and multiple investigators have demonstrated that MCs are permissive 

to RV infection, which causes release of IL-6, IL-8, TNF-α, and IFN-β (30, 43, 44). Here 

we identify increased expression of genes associated with both T1 and T2 inflammation in 

MCs cocultured with RV16-infected AECs. One potential mechanism is through generation 

of IL-33, which has been identified following RV infection in clinical samples and was 

found by our lab to participate in a feedforward loop regulating T2 responses through 

MCs. Here we show that IL33 expression is transiently increased at early timepoints 

following RV16 infection but was not sustained at the 48-hour time point. Based on this 

early increase in IL33, we postulate that IL-33 may play a role in governing AEC-MC 

communication in the early stages following viral infection, but this was not identified in 

our coculture model evaluating gene expression at 48 hours post-epithelial RV16 infection 

and represents a limitation of performing transcriptomic analyses at a single timepoint. 

However, we identified epithelial-derived IFNs as important upstream regulators of global 

MC transcriptional changes following exposure to RV16-infected AECs, which motivated 
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further examination of the direct effects of key epithelial-derived IFNs and revealed that 

IFN-β induces MC IL4, IL5, and IL13 gene expression. Previous studies have demonstrated 

that IFN-γ, the type II IFN primarily released from leukocytes, can induce IL-4 and 

IL-13 production from cord blood-derived MCs but, to our knowledge, this is the first 

study to directly demonstrate that an epithelial-derived IFN such as IFN-β can promote 

enhanced MC T2 gene expression (45). These findings suggest that increased levels of 

IFN-β in the epithelial compartment following epithelial viral infection can promote a 

T2 inflammatory response in MCs, representing a previously unrecognized mechanism 

through which respiratory viral infections can drive airway inflammation in a manner that is 

dependent upon both T1 and T2 signals and may be particularly relevant for individuals with 

asthma, where MCs reside in the epithelial compartment.

We also found that MCs enhance AEC expression of multiple pro-inflammatory genes 

and genes involved in the response to viral infection, which is consistent with a previous 

study demonstrating increased epithelial release of IL-6, CXCL1, and CXCL8 following 

coculture with HMC-1 cells (46). Here we identified multiple additional genes with 

increased expression including IL19, which has been implicated in asthma based upon 

increased expression in asthmatic AECs (19), increased expression in lung tissue as well 

as higher levels of IL-19 protein in the blood and saliva of individuals with asthma (20). 

IL19 SNPs have also been associated with recurrent wheezing in infants following RSV 

infection and in regulating inflammatory responses to viral infection (21, 22). We also 

observed upregulation of CCL28, IL6, and IFIH1 and downregulation of DUSP5 in AECs 

cocultured with MCs. CCL28 has been suggested as a therapeutic target in asthma as it 

is elevated after viral infection and blocking CCL28 in a murine model reduces AHR and 

mucous cell metaplasia following murine respirovirus infection (23). IL6 is a ubiquitous 

pro-inflammatory cytokine released following viral infections that is implicated in severe 

asthma and stimulates CD4+ T cells to secrete IL-4 (24, 25). IFIH1 encodes the RIG-I-like 

receptor and viral RNA sensor MDA5, which induces a response that restricts RSV and 

RV replication (26). DUSP5, a phosphatase involved in regulating MAPK signaling, has 

been identified as a negative regulator of IL-33-dependent function of murine eosinophils 

but its role in epithelial IL-33 signaling has not been examined (47). It should be noted that 

the changes in epithelial transcriptional patterns induced by MCs were relatively modest in 

comparison to the epithelial response to RV16 infection, which was notable for pronounced 

upregulation of IFNs and IFN-stimulated genes. In this model, the presence of MCs in the 

basolateral compartment did not markedly alter epithelial transcriptional programs or affect 

viral replication in AECs. One possible explanation is that while MCs increase expression 

of pro-inflammatory genes in the absence of viral infection, MCs may also serve to suppress 

epithelial inflammatory responses following viral infection including through release of 

tryptase, which was recently found to reduce type I and type III IFN expression and reduced 

IFN-β release following exposure to poly(I:C) (48). Overall, these results reveal the capacity 

of MCs to regulate epithelial transcriptional patterns in a manner that is relevant to asthma.

Finally, although we utilized primary AECs from atopic children with asthma and non-

atopic healthy children, the differences in expression between the groups were minor 

relative to the changes in the epithelium induced by MCs and the changes in MCs induced 

by epithelial viral infection. We suspect that this lack of difference may be driven by 
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heterogeneity in our epithelial donor population. Prior studies of primary AECs from 

individuals with asthma and healthy controls differentiated at ALI have demonstrated 

variable results with some studies indicating significant alterations in gene expression 

patterns (14, 49, 50) and others revealing overall conservation of baseline gene expression 

(51), potentially due to loss of some phenotype-specific characteristics in ex vivo culture 

conditions (52). The antiviral response appears similarly heterogeneous as initial studies of 

AECs in monolayer culture found compromised IFN responses in AECs from individuals 

with asthma following RV infection (6) but subsequent studies of both RV and RSV 

infection of AECs differentiated at ALI did not replicate these results (7–9, 12, 53). 

A recent study has also suggested that the overall IFN and anti-viral response may be 

conserved between asthmatic and control AECs but there is an overall delayed response in 

asthmatic AECs, although investigators did not identify any difference in viral copy number 

or viral replication (54). Here we demonstrate that AECs obtained from children with mild 

to moderate asthma and atopic disease differentiated at ALI have similar transcriptional 

responses to RV infection at 48 hours compared with AECs obtained from non-atopic 

healthy children. Although we did not see an enhanced IFN transcriptional response in 

AECs from individuals with asthma as we had identified following RSV infection in relation 

to altered lung function, we did find lower levels of RV replication in AECs derived from 

asthmatic children with reduced lung function. These results suggest that the epithelial 

anti-viral response from individuals with asthma may vary based upon specific endotypic 

differences between asthma subpopulations.

The strengths of this study include our novel experimental design, which for the first 

time utilizes transcriptomics to examine interactions between AECs obtained from carefully 

phenotyped children and MCs in the context of RV16 infection. This design allowed enough 

power to detect differences not only in the overall epithelial response to MC exposure and 

viral infection but also to detect significant differences based on AEC donor phenotype in 

response to these same conditions. Our bioinformatics analysis identified epithelial-derived 

IFNs as key upstream regulators of global MC transcriptional changes, which resulted in 

confirmation that IFN-β induces T2 gene expression in MCs.

However, our study also has several limitations, which include a lack of data at the protein 

level confirming the presence of epithelial-derived IFNs and the critical T2 cytokines in the 

cell culture supernatant of our experimental conditions. Additionally, further exploration of 

the effects of epithelial RV16 infection in our coculture model system at additional time 

points and in the presence of blocking antibodies targeted at epithelial-derived IFNs would 

have further strengthened our conclusions. We also acknowledge several limitations that 

reduce this study’s generalizability to the in vivo environment. First, ex vivo modeling of 

primary AECs cannot precisely replicate the airway microenvironment and our coculture 

system does not allow for the direct cell-cell contact that occurs within the epithelial 

compartment of asthmatic individuals with intraepithelial MCs, which may significantly 

alter in vivo epithelial and MC responses. Second, we purposely utilized LAD2 MCs to 

avoid introducing additional transcriptional heterogeneity from MCs derived from human 

donors to focus on differences in gene expression patterns between AECs obtained from 

asthmatic and non-asthmatic donors. However, LAD2 MCs may not fully replicate responses 

of MCs residing in the lung tissue. Third, the role of intraepithelial MCs in asthma has 
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primarily been characterized in adults but the importance of AEC-MC communication in 

pediatric populations is not well understood. Thus, examination of pediatric AECs and 

MCs may not replicate the responses of AECs obtained from adult subjects. Also, it is 

important to clarify that we used RV16, an RV-A serogroup virus, in our model system 

and thus our results may not translate directly to other RV serogroups (RV-B or RV-C) 

or other common viral pathogens causing lower respiratory tract infections in children 

(such as RSV). Finally, although our pediatric study population was well characterized and 

asthmatic subjects were determined to have atopic disease, asthma remains a heterogeneous 

disease and the epithelial responses from our study population may not mimic the epithelial 

responses of AECs obtained from patients with more severe disease, higher disease activity 

at the time of collection, or different disease endotypes.

In summary, we utilized a coculture system to model the intraepithelial environment in 

asthma and assess AEC and MC responses to epithelial RV16 infection. MCs enhanced 

epithelial expression of pro-inflammatory and anti-viral genes but did not alter RV 

replication. Importantly, viral infection of the epithelium significantly upregulated MC 

expression of T1 and T2 inflammatory genes, which our upstream regulator analysis 

suggested was regulated by epithelial-derived IFNs. We subsequently confirmed that IFN-

β promotes MC IL13 expression, which represents a novel mechanism by which the 

epithelium drives T2 airway inflammation following RV infection and may be critical to 

regulating airway inflammation in asthma, particularly for individuals with asthma who have 

intraepithelial MCs.
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Abbreviations:

MCs mast cells

AECs airway epithelial cells

AHR airway hyperresponsiveness

ALI air-liquid interface

LAD2 laboratory of allergic diseases-2

RV16 human rhinovirus-A serogroup 16

ICAM-1 intercellular adhesion molecule-1

IFNs interferons
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ILC2s type-2 innate lymphoid cells

RNAseq RNA-sequencing

FEV1 forced exhaled volume in one second

FVC forced vital capacity

FeNO fractional exhaled nitric oxide

DEGs differentially expressed genes

FDR false discovery rate
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Key Messages:

• Mast cells (MCs) reside within the airway epithelial compartment in asthma 

where they participate in significant cross-talk with airway epithelial cells 

(AECs), resulting in activation of pro-inflammatory and anti-viral genes in 

AECs.

• Human rhinovirus (RV) infection of AECs promotes dramatic changes in MC 

gene expression, including activation of type-1, type-2, and type-3 immune 

responses.

• Interferon-β, an epithelial-derived type I interferon, directly induces MC type 

2 gene expression.
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Figure 1. 
Mast cells (MCs) alter airway epithelial cell (AEC) gene expression patterns. (A) A 

volcano plot showing fold-change differences in gene expression between AECs cultured 

in the presence of LAD2 MCs versus AECs cultured alone. Red indicates genes that 

have significantly higher expression and blue indicates genes that have significantly lower 

expression in AECs exposed to MCs (FDR <0.05). (B) Gene Ontology (GO) biologic 

processes overrepresented amongst the 111 differentially expressed genes between AECs 

cultured in the presence or absence of MCs using WebGestalt 2019 (FDR <0.05). (C) 

Upstream regulator analysis of the 111 differentially expressed genes between AECs 

cultured in the presence or absence of MCs using Ingenuity Pathway Analysis.
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Figure 2. 
Mast cells (MCs) modestly alter airway epithelial cell (AEC) responses to human rhinovirus 

A16 (RV16) infection. (A, B) Volcano plots showing fold-change differences between 

RV16-infected AECs and AECs treated with vehicle control in the absence of LAD2 MCs 

(A) or presence of LAD2 MCs (B). (C) Venn diagram demonstrating overlapping and 

non-overlapping differentially expressed genes (FDR <0.05 and a log2 fold change ≥1.0 or 

≤−1.0) between AECs at baseline and following RV16 infection in the presence or absence 

of MCs. (D) RV16 copy numbers relative to RNA concentration between AECs cultured in 

the presence or absence of MCs. RV copy numbers are log-transformed. P value represents 

the results from a Wilcoxon matched-pairs signed rank test.
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Figure 3. 
Human rhinovirus A16 (RV16) infection of airway epithelial cells (AECs) alter mast cell 

(MC) gene expression patterns. (A) A volcano plot showing fold-change differences in gene 

expression between LAD2 MCs cultured in the presence of RV16-infected AECs versus 

AECs treated with vehicle control identified using a paired analysis. Red indicates genes that 

have significantly higher expression and blue indicates genes that have significantly lower 

expression in the LAD2 MCs cultured in the presence of RV16-infected AEC group (FDR 

<0.05). (B) Gene Ontology (GO) biologic processes overrepresented amongst the 1897 

differentially expressed genes between AECs cultured in the presence of RV16-infected 

AECs versus AECs treated with vehicle control using WebGestalt 2019 (FDR <0.05). 

(C) Upstream regulator analysis of the 1897 differentially expressed genes between AECs 

cultured in the presence of RV16-infected AECs versus AECs treated with vehicle control 

using Ingenuity Pathway Analysis.
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Figure 4. 
IFN-β induces type-2 gene expression in mast cells (MCs). (A-C) PCR analysis was 

performed on Laboratory of Allergic Diseases-2 (LAD2) MCs stimulated with IFN-β1 (1 

ng/mL) for 4, 12, 24, 48, and 72 hours. IL4 (A), IL5 (B), and IL13 (C) expression levels in 

comparison to the housekeeping gene HPRT1 (each data point represents the mean of three 

PCR reactions). Mean values are shown with error bars representing the standard error of 

the mean. (D-F) LAD2 MCs were stimulated with IFN-β1 (1 ng/mL) for 24 hours in the 

presence or absence of an anti-IFNAR antibody or isotype control antibody. IL4 (D), IL5 
(E), and IL13 (F) expression levels in comparison to the housekeeping gene HPRT1 (each 

data point represents the mean of three PCR reactions). The P values in (A-F) are the result 

of a one-way ANOVA with correction for multiple comparisons using the 2-stage step-up 

method of Benjamini, Krieger, and Yekutieli. * indicates a P values <0.05, ** indicates a P 
value <0.01, *** indicates a P value <0.001, and **** indicates a P value <0.0001.
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Figure 5. 
PCR analysis was performed on airway epithelial cells (AECs) obtained from non-atopic 

healthy children differentiated in air-liquid interface organotypic cultures and exposed to 

human rhinovirus A16 (RV16). IL33 (A), IFNB1 (B), and IFNL1 (C) expression levels in 

comparison to the housekeeping gene HPRT1 were assessed at various time points following 

infection (each data point represents the mean value of 4 individual donors; individual AEC 

donors had 3 replicates at each timepoint and each replicate was the result of three PCR 

reactions). Mean values are shown with error bars representing the standard error of the 

mean. P values represent the result of two-way ANOVA analyses. * indicates a P values 

<0.05, ** indicates a P value <0.01, *** indicates a P value <0.001, and **** indicates a P 
value <0.0001.
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Figure 6. 
Ex vivo coculture modeling suggests bidirectional communication between airway epithelial 

cells (AECs) and mast cells (MCs) within the epithelial compartment in asthma. At baseline, 

MCs reside within the airway epithelium in asthma and our transcriptomic analyses suggest 

that MCs induce epithelial expression of pro-inflammatory and anti-viral genes. However, 

following human rhinovirus (RV) infection, epithelial-derived interferons enhance MC 

type-1 (T1) and type-2 (T2) immune responses. Figure created with biorender.com.
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Table 1.

Study population characteristics.

Asthma (n = 11) Healthy Controls (n = 10) P value

Age (years) 10.5 (6 – 17) 11.8 (6 – 18) 0.50

Sex (female) 7/11 5/10 0.55

FEV1 (% predicted) 98.6 (80 – 122) 101.1 (92 – 117) 0.66

FEV1/FVC 0.81 (0.70 – 0.92) 0.88 (0.81 – 0.98) 0.02

FeNO (ppb) 23.5 (6 – 68) 11.7 (6 – 27) 0.10

Total IgE (kIU/L) 380.6 (1 – 1069) 16.2 (1 – 52) 0.01

# (+) Allergen-Specific IgE Results 2.82 (0 – 6) 0 0.002

Controller Treatment 5/11

Five of the 11 children with asthma were on controller therapy: 3 children were on low dose fluticasone monotherapy, 1 child was on montelukast 
monotherapy, and 1 child was on low dose fluticasone and montelukast dual therapy. Mean values and ranges are listed. P values represent the 
result of unpaired t tests. FEV1, forced exhaled volume in one second; FVC, forced vital capacity; FeNO, fractional exhaled nitric oxide.
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