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Abstract

Background: Inhaled corticosteroids (CS) are a backbone of asthma treatment, improving 

quality of life, exacerbation rates and mortality. Though effective for most, a subset of asthma 

patients experience CS resistant disease despite receipt of high medication doses.

Objective: Our goal was to investigate the transcriptomic response of bronchial epithelial cells 

(BEC) to inhaled corticosteroids.

Methods: Independent component analysis was performed on datasets detailing the 

transcriptional response of BECs to CS treatment. The expression of these CS response 

components was examined in two patient cohorts and investigated in relation to clinical 

parameters. Supervised learning was used to predict BEC CS responses using peripheral blood 

gene expression.

Results: We identified a signature of CS response that was closely correlated with CS use in 

asthma patients. Participants could be separated based on CS response genes into groups with 

high and low signature expression. Patients with low expression of CS-response genes, particularly 

those with a severe asthma diagnosis, showed worse lung function and quality of life. These 

individuals demonstrated enrichment for T lymphocyte infiltration in endobronchial brushings. 

Supervised machine learning identified a 7 gene signature from peripheral blood that reliably 

identified patients with poor CS response expression in BECs.

Conclusion: Loss of CS transcriptional responses within bronchial epithelium was related to 

impaired lung function and poor quality of life, particularly in severe asthma. These individuals 

were identified using minimally invasive blood sampling, suggesting these findings may enable 

earlier triage to alternative treatments.

Clinical Implications: The specific transcriptional changes in BECs and blood identified here 

may guide early use of additional therapies.

Capsule Summary:

Severe asthma patients have reduced corticosteroid-linked transcriptional changes in the bronchial 

epithelium, show enrichment for T lymphocyte immune processes, and can be identified using a 

peripheral blood gene signature.

Graphical Abstract
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Introduction

Asthma is a common disease, effecting more than 300 million people worldwide(1, 

2). Inhaled corticosteroids (CS) are the current standard of care, improving quality of 

life, exacerbation rates and mortality(3). Response is not universal, however, and 5–10% 

of patients experience poor control despite high dose CS therapy(4). This variation in 

therapeutic efficacy led to investigations describing heterogeneity amongst asthma patients 

at the clinical, immunological and molecular levels(2, 5, 6). Though prior work illustrated 

activation of specific pathways in CS refractory patients, the interplay between CS 

response in bronchial epithelial cells (BECs) and asthma phenotype remains incompletely 

understood(5, 7–9).

CS signaling is mediated by the glucocorticoid receptor (GR), which, following ligand 

binding, translocates to the nucleus to activate target gene expression(10). The GR may 

also associate with other transcription factors, promoting or suppressing expression of 

their target genes(11). CS efficacy in the context of asthma has been largely attributed 

to downregulation of T cell cytokine production and induction of eosinophil apoptosis(12, 

13). Though downregulation of immune cell inflammatory cytokines may be crucial for 

CS response in asthma, growing work illustrates a role for airway epithelium in immune 

cell activation and propagation of inflammation(14, 15). Prior work clearly demonstrated 

transcriptional hallmarks of GR activation in human BECs(16). Murine models of asthma 

also show that epithelial GR expression is required for CS-mediated alleviation of airway 

hyperresponsiveness and inflammation(17). Together, these data suggest that interplay 

between BECs and immune cells is crucial for asthma pathogenesis.
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Here, we use independent component analysis (ICA) on transcriptomic datasets of CS 

treatment in heathy volunteers and cell lines to extract the transcriptomic CS response 

signal in epithelial cells. We then evaluate the expression of this CS response signal in 

two large, well described asthma patient cohorts, linking poor CS response to clinical traits 

including impaired lung function and inadequate disease control. We describe a subset of 

asthma patients with low expression of CS response genes despite self-reported medication 

adherence, suggesting their disease may be intrinsically recalcitrant to this therapeutic 

modality. Importantly, patients with low CS response expression in their BECs could be 

identified using a peripheral blood gene expression signature, offering hope that minimally-

invasive monitoring may be one day used to guide therapeutic choices.

Methods

For full methods, see online supplementary methods.

Human Participants

Endobronchial brushings from the Immune Modulation in Severe Asthma (IMSA; 

GSE158752) and Severe Asthma Research Program (SARP; dbGaP Study Accession: 

phs001446.v2.p1) cohorts were used as previously described(18). Gene expression counts 

for all data were normalized using the variance stabilizing transform from the DESeq2 

suite(19). Batch effects within and between endobronchial brush data from the two studies 

were controlled for using the COMBAT algorithm(20), creating a combined epithelial 

dataset of the two cohorts.

Peripheral blood was also extracted from a subset of the IMSA patients. Transcriptomic data 

was prepared from the whole peripheral blood using the same methods as the endobronchial 

brushing and the data are available at GSE207751.

Corticosteroid Signal Source Datasets

Two microarray datasets were downloaded from GEO and used in our analysis. The 

first dataset, GSE83233, consisted of paired endobronchial biopsies obtained from healthy 

volunteers from before and after inhaled budesonide(21). The second dataset, GSE161805 

consisted of primary human bronchial epithelial cells (pHBECs) from six different 

donors under control conditions, budesonide, formoterol, or budesonide and formoterol 

combined(22). For our analysis of GSE161805, only the control and budesonide groups 

were used.

Corticosteroid component extraction with independent component analysis

Joint Approximate Diagonalization of Eigenmatrices (JADE) was used to perform 

independent component analysis (ICA) on the GEO datasets(23). Each component produced 

by ICA is a vector containing a score for each gene which denotes the amount that gene 

contributes to the component.

After extracting the components, paired T-tests were performed to compare the relative 

expression of each component in the pre-CS samples against the post-CS samples. In 
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each case, the expression of one of the components was highly significant between the 

pre- and post-CS samples, and thus deemed as the CS components (Fig 1A). Because the 

expression of the two CS components in the combined IMSA+SARP epithelial dataset were 

similar (Fig 2A), we averaged their expression levels to create a set of one CS component 

expression value per patient.

Computational and Machine Learning Methods

Packages used for computational analysis include ClusterProfiler (24) for gene ontology 

analysis, GSVA (25) to quantify the expression of the GO term Response to Steroid 
Hormone, ComplexHeatmap (26) for visualization, Deseq2 (19) for differential expression, 

and WGCNA to identify groups of coexpressed genes (referred to as modules) (27).

Patients in the IMSA cohort that had transcriptomic data for both blood and epithelial cells 

(n = 36) were used for machine learning. For estimation of epithelial CSRGE from blood 

transcriptomics, elastic net regularized regression analysis was performed with glmnet (28). 

For supervised modeling, the mixOmics package (29) was used to perform sparse-partial 

least square discriminant analysis training.

Statistical Analysis

All statistical analysis was performed using the R computing environment (Version 4.1.0) 

unless otherwise noted(30, 31). Statistical testing and methodology are described within 

figure legends or above within context specific methodologies. For all figures, significance 

levels are denoted as *p< 0.05, **p< 0.01, ***p< 0.001, ****p < 0.0001.

For information on other computational methods, see the online supplementary material.

Results

Extraction of Corticosteroid Signal

We used Independent Component analysis (ICA) to extract a corticosteroid (CS)-response 

component from two separate datasets (one CS-response component from each dataset; see 

methods). The first (GSE83233) consisted of paired endobronchial biopsies before and after 

inhaled budesonide and the second (GSE161805) of primary human bronchial epithelial 

cells (pHBEC) cultured with and without budesonide.

We found that many known steroid and inflammation-related genes were among the top 

genes contributing to the CS response component in both datasets, and that there was a 

general overall correlation of gene contribution scores in the CS components (r = 0.186, 

p < 0.00001, Fig S1, Table S1). To test if the CS-response component from one dataset 

could be used to examine gene expression patterns in the other, we cross interrogated 

their expression in control and budesonide treated samples (Fig 1A). Expression of the 

CS response component derived from endobronchial biopsies was significantly higher in 

budesonide treatment conditions compared to control in both the original dataset and 

in pHBECs. A similar expression pattern was observed for the CS response component 

originating from pHBECs. These results show that a transcriptional signal for CS response 

can be extracted with ICA and validated across external datasets. Averaging the scores 
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from the two CS components and performing gene ontology on the top 1% of positively 

and negatively-contributing genes confirmed that these components are highly enriched for 

multiple CS-related ontologies (Fig 1B, Table S2).

Expression of CS Signals in Combined IMSA and SARP Dataset

Satisfied that our CS response components could be validated between exposure data 

sets, we next investigated their utility in assessing asthma patient cohorts. To this end, 

we examined bronchial epithelial cell (BEC) expression of the extracted CS components 

in a pooled data set (clinical information in Table S3) from the Immune Modulation in 

Severe Asthma (IMSA) and Severe Asthma Research Program (SARP) cohorts(18, 32). 

We calculated an expression value for both of the previously identified CS components in 

each patient in the IMSA+SARP dataset and found that expression of the two components 

was highly correlated (Fig 2A; r = 0.70205, p< 0.0001). For clarity in presentation moving 

forward, we averaged their expression levels to create a single value of CS-response gene 

expression (CSRGE) for each cohort participant. Unsurprisingly, CSRGE was higher in 

patients who had used inhaled CS in the past 12 months than in those who had not (Fig 2B).

We next split the moderate asthma patients into two groups: those who had used inhaled 

CS in the past 12 months (MA+, n = 53) and those who had not (MA-, n = 21). We found 

that there was no significant difference in CSRGE between MA- and HC (Figure 2C). While 

CSRGE differed between MA+ and MA-, MA+ and SA (who by definition were taking 

ICS) showed comparable levels. To further support the relationship between CS exposure 

and CSRGE values, we next created modules of coexpressed genes using Weighted Gene 

Co-expression Network Analysis (WGCNA)(27). WGCNA identified a module that was 

strongly correlated with CSRGE (Fig S2A) and included many of the top contributing genes 

to the combined CS component (Fig S2B). Gene ontology analysis on this module showed 

enrichment for CS response-related terms (Fig S2C).

To further test the utility of our CSRGE in determining transcriptional response to CS, we 

compared its performance to gene set variation analysis (GSVA), which scores individuals 

using known pathways(25). For the purpose of this comparison, we selected the top result 

from gene ontology analysis of the combined CS component: GO response to steroid 
hormone(33). While there was a strong correlation between the expression of the GSVA 

response to steroid hormone ontology and CSRGE (r = 0.548, p< 0.001), GSVA was less 

effective at separating CS+ from CS- patients (Fig. 2D). These data suggest that CSRGE 

is more effective than currently available GO libraries at determining the transcriptomic 

response of patients to CS treatment.

CSRGE and Clinical Traits in Asthma

Although CSRGE expression identified asthma patients receiving CSs in aggregate, we 

noticed high variability in CSRGE amongst MA+ and SA patients, with many having 

CSRGE values at or below the levels of HCs (Figure 2C). To investigate the nature of 

this variability in CSRGE, we first correlated CSRGE in MA+ and SA patients with various 

clinical traits. We found that CSRGE had a strong positive correlation with FEV1% predicted 

and FEV1/FVC % predicted in SA but not MA+ patients (Fig 3A&B), suggesting that 
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appropriate CS response may protect lung function in SA. In both MA+ and SA patients 

there was a correlation between CSRGE and worsening Asthma Control Questionaire-6 

(ACQ6) score, although the negative correlation was stronger in SA patients (Fig 3C). SA 

patients are older on average than those with MA. As age is known to impact lung gene 

expression(34), we next determined whether a relationship exists with CSRGE value. We 

found a positive correlation between CSRGE and age in MA+ patients but not in SA patients 

(Fig 3D), suggesting that age has minimal relationship to any differences seen in CSRGE 

value in SA. Overall, these results suggest that age independent, high CSRGE values were 

linked with improved clinical outcomes in SA but not MA.

Corticosteroid Response Dictates Clinical Outcomes in Severe Asthma

The current ERS/ATS definition of SA includes treatment with high dose inhaled CS, 

thereby suggesting poor responsiveness to therapy as an intrinsic feature(4). Our data 

suggest, however, that transcriptional response to CS may in fact vary amongst SA patients 

and this may have important implications for clinical outcomes. We clustered cohort 

participants by the top 20 genes in our combined CS component, effectively identifying 

HCs and MA- patients (Figure 4A). Though the majority of MA+ and SA patients were 

effectively delineated from those not receiving CSs, there were some individuals whose gene 

expression profile was similar but not identical to those not on therapy.

To further examine differences in clinical outcomes between high- and low-CSRGE groups, 

we split both the MA+ and SA patients into high- and low- CSRGE groups by the 

median CSRGE expression of the patients in the MA+ and SA groups (Fig 4B, Table 

S4 & S5). As medication adherence may complicate our assessment of CS response, 

we next investigated prevalence of CS associated comorbidities. We found no difference 

between MA-, MA+ and SA groups in prevalence of coronary artery disease, osteoporosis 

or diabetes mellitus. Importantly, we also found no difference in Medication Adherence 

Report Scale (MARS) score, a validated self-reporting metric for medication compliance, 

between CSRGE-high or -low patients with either MA+ or SA (Figure 4C)(35). There were, 

however, large differences in FEV1 % predicted and FEV1/FVC% predicted between high- 

and low- CSRGE groups in SA, but not MA+ (Figure 4D&E). There was also a significant 

difference in ACQ6 between high- and low-CSRGE groups in SA, but not MA+ (Figure 4F). 

Intriguingly, no difference in peripheral blood cell count, including eosinophils, fraction of 

exhaled nitric oxide (FeNO) or BMI was found between high- and low-CSRGE groups in 

either SA or MA+ (Figure S3), suggesting currently available biomarkers for evaluation of 

asthma patients cannot discern BEC CS response.

Transcriptomic Differences in CS Response Between Severe and Moderate Asthma 
Patients

These differences in clinical traits between CSRGE-high and -low asthma patients suggest 

that therapeutic response may result in, or be attributed to, broader changes to molecular 

phenotype. To investigate potential genes and pathways to explain this phenomenon, we 

performed differential expression between MA+ and SA patients, as well as between high- 

and low-CSRGE patients. We then plotted the log-fold change from the two differential 

expression comparisons together and split the plot into quadrants (Fig 5, Table S6). Gene 
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ontology was then performed on each quadrant (Fig 5 and S4). Unsurprisingly, the high- 

CSRGE-specific quadrant (top-middle; yellow-green; Fig 5 and S4) was enriched for several 

CS-response related ontologies. Interestingly, the SA-specific quadrant (middle-left, green, 

Fig 5 and S4) was enriched for several terms related to bone morphogenic protein (BMP) 

signaling and prostaglandin pathways. The MA+ high-CSRGE quadrant (upper-right; light 

blue; Fig5 and S4), i.e. the gene expression for the patients most responsive to treatment, 

was enriched for several neurological ontologies. Both the low-CSRGE-specific quadrant 

(bottom- middle; orange; Fig 5 and S4) and the SA low-CSRGE quadrant (bottom-left; pink; 

Fig 5 and S4) were enriched for T-cell and lymphocyte related ontologies and cytokines. 

The bottom SA and low- CSRGE quadrant was also enriched for several ontologies related to 

peptidase activities.

The SA high- CSRGE quadrant (top-left; dark blue; Fig 5 and S4) expressed many genes 

associated with activation of fibroblasts and other mesenchymal cells, including MHY11, 

DES, ACTG2, and surfactant genes(36, 37), suggesting that activation and proliferation of 

mesenchymal cells could play a role in the pathophysiology of severe asthma. We further 

note that the contrast between CSRGE-high samples with upregulated mesenchymal gene 

expression and CSRGE-low samples with upregulated cytokine expression is similar to 

the contrast between myofibroblastic and inflammatory subpopulations of cancer-associated-

fibroblasts(38–40).

Although differential expression can identify genes with different mean expression between 

groups, there is also the possibility of a gene being correlated with CSRGE in one direction 

for SA and in the opposite direction for MA+. Such a gene might not be differentially 

expressed but could still be important in explaining the mechanism behind CS response in 

SA. Thus, we performed differential correlation analysis between MA+ and SA (Fig 6A, 

Table S7). Interestingly, among the genes with the lowest ratio of SA vs CSRGE correlation 

to MA+ vs CSRGE correlation were DUSP10 (Fig 6B) and DUSP6, which both negatively 

regulate members of the MAP kinase superfamily. Gene ontology on the top differentially 

correlated genes found that genes differentially corelated with MA+ CSRGE are enriched 

for multiple ontologies related to RNA splicing. This suggests that dysregulation of RNA 

splicing in SA may be responsible for blunted response to CS treatment.

Predicting Lung CS Response Using Peripheral Blood

Though bronchial epithelial sampling is an invaluable tool for understanding asthma 

pathobiology, the resources required and risk imposed by the procedure are prohibitive 

for regular clinical evaluation of asthma patients. Prior work from our group showed that 

peripheral blood cell composition may reflect BEC transcriptional phenotype. We next 

determined whether peripheral blood transcriptional profile can be used to predict BEC 

CSRGE. Elastic net modeling on IMSA patients that had matched epithelial and peripheral 

blood (n = 36) showed strong correlation between measured BEC CSRGE values and those 

predicted by blood gene expression from matched IMSA cohort participants (Figure 7A). 

As CSRGE response class showed important relationship to both lung function and quality 

of life, we developed supervised learning models for class prediction. BEC gene expression 

could be reliably used to predict CSRGE response class using 55 genes (Figure 7B). We 
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repeated this process using blood gene expression (Figure 7C), with the goal of identifying 

a minimal set of genes required to meet or exceed the sensitivity of our BEC model. CSRGE 

class prediction using supervised learning with blood gene expression was highly effective 

(Figure 7D). A 7-gene model was able to achieve a test sensitivity of 88%, comparable to 

performance of the original BEC data set. Of these 7 genes, 6 were down-regulated and 1 

was up-regulated in CSRGE-high patients (Figure 7E). These data suggest that peripheral 

blood can be used to predict BEC expression of corticosteroid responsiveness genes.

Discussion

Inhaled CSs have become ubiquitous in the treatment of persistent asthma symptoms. 

Morbidity and mortality from asthma have been significantly impacted and as a result these 

can be life changing medicines for many(1, 3). For some, however, disease control is never 

accomplished, even with dose escalation into ranges that characterize a patient as having 

severe disease. Prior studies have uncovered heterogeneity in immune cell profile and BEC 

transcriptional profile that are associated with SA using clustering techniques on patient 

cohort data(5, 6, 41). Here, we use a different approach to assessing heterogeneity amongst 

asthma patients, first defining CS response using publicly available data sets that specifically 

test their effect on BEC transcription. We then identify heterogeneity in CS response that 

dictates important clinical outcomes such as lung function and asthma control within the SA 

population.

Correlation between contributors to the CS components from pHBECs and endobronchial 

biopsies was highly significant but only showed a modest coefficient in statistical 

comparison of contribution (Figure S1), likely owed to technical and biological 

considerations. ICA utilizes every gene entry in the transcriptome for component assembly, 

meaning that many genes included in that calculation had very small component loading 

values(28). Correspondence between the data sets improved dramatically when considering 

top contributors to each component. It is important to note that pHBECs represent a 

more homogenous cell population than endobronchial biopsy samples which contain sub-

epithelial stroma and embedded immune cells. It is also important to consider that the 

experiments in these external datasets were measured 6 hours after exposure to CS, and thus 

may not contain information regarding long-term repeated exposure to CS.

The lack of significant difference in CSRGE between MA+ and SA patients (Figure 2B) was 

surprising, as we expected to see a blunted CS response in the SA patients who, by clinical 

definition, are poorly responsive to CS treatment. Heterogeneity in these individuals instead 

suggests that CS dose escalation may remain an effective treatment modality for some 

moderate asthma patients. As CSRGE-low SA patients show decrements in lung function, 

use of alternative treatment modalities in those that show ineffective CS response may have 

significant impact on quality of life and objective measures of lung health. The detection 

of non-responsiveness thereby becomes a critical consideration. Whether CSRGE-low MA+ 

patients will progress to SA designation, and along the way develop worsening lung function 

and asthma control, remains to be seen.
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Severe asthma patients in CSRGE-low and CSRGE-high groups could not be discerned using 

peripheral blood cell count or FeNO, two commonly used measures in clinical evaluation 

of asthma patients. Prior study has associated high levels of Type-2 inflammation, driven 

by cytokines such as IL-4, IL-5 and IL-13, with CS responsiveness in many but not all 

patients(42). Here we see that the most commonly used biomarkers of Type-2 inflammation 

(blood eosinophilia and FeNO) were not significantly different between those with BEC 

transcriptional response to CS and those without, suggesting that additional biomarkers 

may be needed to guide expedient patient triage to alternative therapies such as targeted 

biologics.

As FeNO has been linked to CS-responsiveness (and low adherence(43)) in asthma, a lack 

of difference between CSRGE-low and CSRGE-high groups also supports the notion that 

compliance alone does not explain transcriptional changes in BECs(44). Cohort participants 

identified by CSRGE levels and disease severity were transcriptionally distinct, which would 

also not be expected if medication adherence was the principal driver. Rather, we would 

have expected low CSRGE SA patients to resemble MA patients not on ICS. Although 

we did not have directly observed therapy or pharmacy data available, we did not find 

difference in self-reported adherence using the MARS scale(35), a scale validated for use 

across multiple disease states and care contexts, including asthma (35, 45–47).

Both moderate and SA patients with low CSRGE shared upregulation of IFNG, CXCL9 

and CXCL10. These cytokines have been previously reported by our group and others 

in association with CS-resistant inflammation in asthma(6, 8, 9). Interferon-γ is a 

predominantly T cell derived cytokine; although production from macrophages has been 

noted, it is unlikely that this signal is being driven by bronchial epithelial cells present in 

endobronchial brushings. These data suggest that nested T cells may be a critical factor 

in driving CS resistance. Our recent data confirmed the presence of CD4 and CD8 T 

cells bearing surface markers of tissue residency within the airways of CS resistant asthma 

patients(6). Epithelial derived factors that may contribute to tissue resident memory (TRM) 

cell generation and maintenance have yet to be elucidated, but may offer novel avenues of 

treatment in asthma and other pathologies.

CS-resistant severe asthma was characterized by expression of CYP1B1, CCL26, IDO1, 

SLC26A4 and CPA4 in our study. The high expression of these genes could explain the 

poor prognosis of SA patients with low CSRGE: CYP1B1 and IDO1 are involved in the 

metabolism of tryptophan, which has been implicated in the pathology of asthma(48, 49). 

Furthermore, CYP1B1 is involved in the metabolism of steroid hormones and arachidonic 

acid(50). Curiously, CCL26, CYP1B1, and SLC26A4 are upregulated by IL4, whereas 

IDO1 expression in suppressed by IL4(51). IDO1 is, however, strongly induced by IFN-γ, 

suggesting a complex inflammatory microenvironment featuring both T1 and T2 signaling in 

the airways of these individuals(52, 53). We also found that severe asthma was enriched for 

terms related to BMP signaling, which has previously been implicated in asthma by a study 

that found increased BMP-4 and BMP-6 in asthma sputum supernatants with increased 

neutrophils (54). These data open the possibility for differential signaling within the airway 

microenvironment and may point to the importance of temporal regulation.
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Mesenchymal genes were highly expressed in CSRGE-high patients, whereas cytokine-

related genes were highly expressed in CSRGE-low patients. We noticed that this contrast 

is similar to the contrast between myofibroblastic and inflammatory cancer-associated 

fibroblasts, suggesting that differentiation of fibroblasts into heterogeneous subpopulations 

during activation could contribute to variation in treatment response among SA patients. 

Although further in vivo experiments are needed to test this hypothesis, these data suggest 

that experimental treatments focused on reverting cancer-associated fibroblasts to their 

quiescent state(55, 56) could also be beneficial in severe asthma.

In addition to their impact on transcription, corticosteroids are also known to exert 

post-transcriptional and translational effects (57). We identified several genes related to 

post-translational effects that had differential correlation of CSRGE and gene expression 

between severe asthma and moderate asthma. Among these was ZFP36 (also known as 

tristetraprolin), which is known to regulate immune response and inflammation through 

post-translational degradation of AU-rich element mRNAs, including several cytokines such 

as TNFα (58–60). Therefore, dysregulation of CS-induced post-transcriptional modification 

may play a role in resistance to CS in some severe asthma patients.

The ability to identify CS unresponsive patients using peripheral blood assessment may be a 

valuable tool in evaluation of asthma patients. A 7 gene test is tenable for use in a clinical 

laboratory setting and may offer value to individuals and health systems for expediting the 

triage of asthma patients to other treatments such as targeted biologic therapies. Some of 

the genes identified by predictive modeling may also give insight into biological processes 

governing systemic immune response of steroid-resistant asthma patients. TAS2R38 codes 

for a bitter taste receptor expressed by neutrophils and mast cells, as well as ciliated airway 

epithelium(61). Agonists of the TAS2R family have been shown to curtail allergen-induced 

inflammatory responses and mitigate airway remodeling in animal models of asthma. 

Peptidoglycan recognition protein (Pglyrp) 1 is a pattern-recognition protein that mediates 

antibacterial host defense(62). Mice lacking Pglyrp1 on hematopoietic cells have shown a 

reduction in HDM-induced eosinophilic and lymphocytic airway inflammation(63).

Using publicly available datasets, we report a transcriptional signal for CS response in 

BECs that is heterogeneously expressed in asthma patients and linked to lung function and 

symptom burden in severe disease. Those with poor CS response show hallmarks of T 

lymphocyte infiltration within their airways and are able to be identified using a blood gene 

expression signature, suggesting a systemic immune process. Further study may allow us to 

identify these individuals and restore CS sensitivity or tailor treatment to the specific drivers 

of their disease.
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Figure 1: Independent Component Analysis Extracts the Corticosteroid Response Signal.
(A) Corticosteroid components were extracted from both the bronchial biopsy data and 

the pHBEC data. Each component was then expressed in each of the two datasets. 

The corticosteroid components expression levels were significantly different for both 

components in their native dataset as well as the other dataset. (B) Gene ontology of the 

top positively and negatively contributing genes for the average of the two corticosteroid 

components.
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Figure 2: The CS Component is Correlated With CS Usage and Response to Corticosteroid.
(A) The two CS components extracted from GSE161805 (pHBEC) and GSE83233 

(Bronchial Biopsy) are highly correlated (r = 0.702, p < 0.00001) when expressed in the 

bronchial epithelial cells of the merged IMSA+SARP dataset. (B) There is a significant 

difference in CS component expression between patients who had used inhaled CS in the 

past 12 months and those who had not (Student’s t-test). (C) Comparison of CS component 

expression between healthy controls, MA-, MA+ and SA patients. Moderate asthma patients 

with CS have a significantly higher CS component expression level than moderate asthma 

patients without CS and healthy controls (ANOVA with Tukey post-hoc test). (D) There 

is no significant difference between the four groups of GSVA expression of the GO term 

Response to Steroid Hormone (ANOVA, p = 0.506).
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Figure 3: Correlations Between CS-Response Gene Expression and Clinical Traits for Asthma 
Patients Taking CS.
A-D: Correlation between CSRGE and various clinical traits, split between severe asthma 

(red) and moderate asthma with CS (yellow).

Ginebaugh et al. Page 19

J Allergy Clin Immunol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Heterogeneity in CSRGE Dictates Clinical Outcomes in SA.
(A) Heatmap showing clustering of patients for the combined IMSA+SARP dataset by the 

top 20 contributing genes to the two corticosteroid components (determined by taking the 

absolute value of the average contribution of each gene to the two components). (B) CSRGE 

for each diagnosis group, with Severe Asthma and Moderate Asthma with Corticosteroids 

split into high- and low- CSRGE groups. (C-F): Comparisons of clinical traits between high- 

and low- CSRGE groups. Statistics are performed with student’s t-test comparing high- and 

low- groups within each diagnosis group.
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Figure 5: Comparison of Differentially Expressed Genes by Asthma Severity and CS-Response 
Gene Expression.
Log-fold changes in differential expression between high- vs low- CSRGE groups (y-axis) 

and Moderate-with-CS vs Severe Asthma patients (x-axis). Hashed lines separating the plot 

into quadrants are drawn at +/− 1 on each axis. Summary terms for Gene Ontology analysis 

(Figure S4) are included in each hashed area.
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Figure 6: Differential Correlation Analysis by Asthma Severity.
(A) Differential gene correlation between MA-with-CS and SA for CSRGE. (B) Expression 

levels of DUSP10 compared to CSRGE for Severe Asthma and Moderate-Asthma-with-CS. 

DUSP10 is negatively correlated with CSRGE in Severe Asthma (r = −0.404), but positively 

correlated with CSRGE in Moderate-Asthma-with-CS (r = 0.330). (C) Gene ontology for the 

top differentially correlated genes for Moderate-Asthma-with-CS and Severe Asthma. Top 

genes are selected as those with p-value < 0.05.
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Figure 7: Prediction of BEC CSRGE Using Peripheral Blood.
(A) Elastic Net (EN) predicted BEC CSRGE based on blood gene expression versus 

measured BEC CSRGE in IMSA. Grayed area indicates the 95% confidence bounds around 

a linear regression model comparing the two. Spearman’s rho and p-value are indicated 

in plot area. (B) Stacked bar plot of leave-one-out CSRGE response class prediction using 

BEC transcriptional data. P-value of chi square testing = 4.03e-22. (C) Stacked bar plot 

of leave-one-out CSRGE response class prediction using blood transcriptional data. P-value 

of chi square testing = 6.17e-05. (D) Receiver operating characteristics (ROC) curve of 

a sparse-partial least squares discriminant analysis (sPLS-DA) model for CSRGE class 

prediction. ROC curves were calculated using 5 fold-validation. Area under the curve (AUC) 

value is 0.9598 based on comparison of predicted scores of one class vs the other. Wilcoxon 

test of predicted scores < 1e-10. (E) Boxplot for expression of genes included the in the 

blood prediction model. Upper and lower hinges correspond to the first and third quartiles. 

The upper whisker extends from the hinge to 1.5 * Inter-quartile range (IQR) and the lower 

whisker extends from the hinge 1.5 * IQR of the hinge. Data beyond the end of the whiskers 

are plotted individually.
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