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Effective diabetic retinopathy
screening can reduce risk of 
blindness by 90%.

700 million people are projected
to have diabetes by 2045.

CONCLUSIONS: 
At all screening capacities, model-based approach
outperforms random screening (diagonal line) for all
three outcome measures. Abbreviations: PDR
(proliferative diabetic retinopathy), refDR (referable
retinopathy), ME (diabetic macular edema).

Risk stratification models
were tested and validated for 
vision threatening diagnoses.

276,794 Kaiser Permanente
Northern California patients
with diabetes included in
retrospective study.

Development and Validation of a Diabetic Retinopathy Risk Stratification Algorithm 

Access to health services
limits screening success
and efficiency.

Can clinical risk stratification
improve diabetic retinopathy
screening?

ARTICLE HIGHLIGHTS

• Diabetic retinopathy (DR) is a leading cause of blindness. Though timely screening and intervention can prevent
90% of DR-related blindness, barriers exist.

• This study used longitudinal clinical data from the electronic health record to create risk stratification models for
the development of DR.

• Machine learning algorithms and logistic regression were trained using a primary outcome of proliferative DR and
secondary outcomes of referable retinopathy and diabetic macular edema. A nine-covariate simple model had
high predictive power for all three outcomes.

• Risk stratification tools greatly improve the efficiency of DR screening.
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OBJECTIVE

Although diabetic retinopathy is a leading cause of blindness worldwide, diabetes-
related blindness can be prevented through effective screening, detection, and
treatment of disease. The study goal was to develop risk stratification algorithms
for the onset of retinal complications of diabetes, including proliferative diabetic
retinopathy, referable retinopathy, and macular edema.

RESEARCH DESIGN AND METHODS

Retrospective cohort analysis of patients from the Kaiser Permanente Northern
California Diabetes Registry who had no evidence of diabetic retinopathy at a
baseline diabetic retinopathy screening during 2008–2020 was performed. Ma-
chine learning and logistic regression prediction models for onset of proliferative
diabetic retinopathy, diabetic macular edema, and referable retinopathy de-
tected through routine screening were trained and internally validated. Model
performance was assessed using area under the curve (AUC) metrics.

RESULTS

The study cohort (N = 276,794) was 51.9% male and 42.1% White. Mean (±SD)
age at baseline was 60.0 (±13.1) years. A machine learning XGBoost algorithm
was effective in identifying patients who developed proliferative diabetic retinopa-
thy (AUC 0.86; 95% CI, 0.86–0.87), diabetic macular edema (AUC 0.76; 95% CI,
0.75–0.77), and referable retinopathy (AUC 0.78; 95% CI, 0.78–0.79). Similar results
were found using a simpler nine-covariate logistic regression model: proliferative
diabetic retinopathy (AUC 0.82; 95% CI, 0.80–0.83), diabetic macular edema (AUC
0.73; 95% CI, 0.72–0.74), and referable retinopathy (AUC 0.75; 95% CI, 0.75–0.76).

CONCLUSIONS

Relatively simple logistic regression models using nine readily available clinical
variables can be used to rank order patients for onset of diabetic eye disease and
thereby more efficiently prioritize and target screening for at risk patients.

Diabetes has been described as a global pandemic (1), with over 700 million
people projected to have diabetes by 2045 (2). The societal cost of diabetes is
already significant, with diabetes care representing approximately 25% of cur-
rent Medicare expenditures (3). One of the most feared complications of diabe-
tes is vision loss due to diabetic retinopathy (DR), which occurs in approximately
one-third of patients with DM.

The International Clinical Diabetic Retinopathy Disease Severity Scale separates
DR into five categories based on retina fundus signs: no retinopathy, or mild,
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moderate, severe, and proliferative reti-
nopathy (4). Patients with moderate or
higher levels of retinopathy, also called
referable retinopathy (refDR), are at in-
creased risk of vision loss and usually re-
quire additional ancillary testing or close
follow-up by an ophthalmologist. Diabetic
macular edema (DME) or proliferative
DR (PDR) are manifestations of sight-
threatening retinopathy that can cause
significant vision loss if not identified
and treated promptly.
Although 90% of blindness from DR

can be prevented by early detection and
treatment (5), screening for DR in the
ever-increasing population with diabetes
represents a significant effort for health
care delivery systems (6,7). Fundus photog-
raphy has become the standard for accu-
rate and rapid identification of DR (8–11)
but in most urban centers, fewer than 50%
of the population with diabetes receives DR
screening (12). Failure to identify DR in a
timely manner leads to an increased risk of
blindness and a reduced quality of life.
Health care systems screen for DR

through direct clinical exams or non-
mydriatic fundus photography. One strat-
egy to improve DR screening involves the
use of artificial intelligence to read and
interpret digital fundus photos (13,14).
An alternate approach to improve screen-
ing efficiency is to prioritize screening
among patients who are at high risk based
on systemic, nonocular risk factors. At any
given time, over 85% of patients screened
by Healthcare Effectiveness Data and
Information Set guidelines show no ret-
inopathy or mild retinopathy and require
no treatment. Prioritizing those at highest
risk for visual complications based on
a combination of clinical characteristics
has the potential to create greater effi-
ciencies in the screening process.
By leveraging electronic medical re-

cords (EMR) in integrated health care de-
livery systems, population-based studies
of DR can now be undertaken on much
larger cohorts compared with the smaller
studies performed in the 1990s (15–17).
With the more complete and wider range
of clinical data captured in the EMR, asso-
ciations between nonocular clinical risk
factors and DR onset might be better
understood.
In the current study, machine learning

(ML) and logistic regression (LR) predic-
tive models for DR were developed and
validated with the goal of facilitating risk
stratification of a large population with

diabetes from Kaiser Permanente North-
ern California (KPNC).

RESEARCH DESIGN AND METHODS

Data Collection
This was a retrospective observational co-
hort study of patients with diabetes in
KPNC, one of the largest integrated health
care delivery systems in the U.S. Inclusion
criteria were patients in the KPNC Diabe-
tes Registry (18) aged 18 years or older
with $1 DR screenings between 2 Jan-
uary 2008 and 31 December 2020 with
no evidence of retinopathy. A patient’s ear-
liest negative retinopathy screening was
the baseline for follow-up. Each study par-
ticipant was also required to have continu-
ous KPNC membership for 12 months
prior to baseline. The study cohort was
randomly split into a training set (90%)
and an internal validation set (10%). An
additional temporal model validation co-
hort was created from patients screened
for DR during the calendar year 2021.

The outcomes of interest were PDR,
refDR, and DME. Predictive models were
developed and model performance eval-
uated by area under the curve (AUC)
measures.

Baseline and time-varying clinical and
demographic candidate predictors were
collected from the KPNC EMR for each
patient starting 12 months prior to base-
line and continuing until the end of
follow-up (when the participant either
experienced an outcome of interest or
was right-censored due to death, dis-
enrollment, or the administrative end
of the study).

Initial model development was based
on 43 candidate nonocular clinical, demo-
graphic, and behavioral predictor varia-
bles, including lab results, diabetes
medications, diagnoses (e.g., diabetic
neuropathy), vital signs (pulse, respira-
tory rate, temperature, blood pressure),
and resource utilization (Table 1). Some
variables were observed at multiple points
for each patient over the follow-up period
preceding each subsequent DR screening
visit. To minimize the complexity of the
model and to simplify implementation,
only the most recent data immediately
preceding each DR screening encounter
were used. When missing, continuous
covariates were imputed using a median
value with an additional indicator of
missingness added as a separate covariate.

Model Development
Extreme gradient boosting (XGBoost) and
logistic regression models were trained,
validated, and tested. XGBoost is an ML
algorithm frequently favored by data sci-
entists in predictive modeling studies, due
its efficiency, speed, and accuracy (19).
Ninety percent of the cohort population,
using data up to 31 December 2020, was
used for training with fivefold cross-
validation, and a 10% subset was used
for internal validation. A second, tempo-
ral model validation and performance
reporting step was done on a separate
data set collected throughout the 2021
calendar year. Predictive models were
developed for each of the three outcomes
defined as onset of PDR, refDR, and DME.

To increase the usability, practicality,
and transportability of our model in other
health care settings, we developed a sim-
plified version to remove covariates that
may not be readily available to most
practitioners, might introduce algorith-
mic bias, have high rates of missing
values, or did not show good predictive
performance in our ML models. The re-
sulting LR models were trimmed to nine
key covariates (Table 2).

Statistical Analysis
For each model, we visually compared the
receiver operating characteristic (ROC)
curves for risk stratification of each model-
ing approach and valuated their corre-
sponding AUC with 95% CIs (20,21).

The resulting models were assessed
for algorithmic bias, by evaluating the
AUC performance of each model among
protected subgroups defined by race
and sex. We measured discrimination,
the ability of a model to accurately dis-
tinguish between subjects who do ver-
sus do not develop the outcome, based
on the AUC, with >0.7 considered good
discrimination. Calibration (the extent to
which the predicted risks overestimate
or underestimate the observed risks) was
visually assessed using calibration plots.
Given that the goal was not to quantify
the numeric probability of an outcome
for a given patient but rather to risk-
stratify the population, model discrimi-
nation was prioritized over calibration.
Statistical analysis was done in the R
programming language (22). ML, train-
ing, and evaluation were performed with
the h2o R package (23).

The study was reviewed and approved
by the KPNC Institutional Review Board
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Table 1—Baseline characteristics of the cohorts

Full sample (N = 276,794)

2021 temporal validation
cohort (N = 169,678)

Derivation cohort
(N = 249,148)

Internal validation cohort
(N = 27,646)

Sex (%)
Female 119,917 (48.1) 13,323 (48.2) 81,233 (47.9)
Male 129,217 (51.9) 14,323 (51.8) 88,439 (52.1)
Other/unknown 14 (0.0) 0 (0.0) 6 (0.0)

Race (%)

White 101,891 (40.9) 11,205 (40.5) 113,096 (40.9)
Asian 54,675 (21.9) 6,185 (22.4) 60,860 (22.0)
Black 22,078 (8.9) 2,459 (8.9) 24,537 (8.9)
Hispanic 52,747 (21.2) 5,769 (20.9) 58,516 (21.1)
Other 17,757 (7.1) 2,028 (7.3) 19,785 (7.1)

Age in years at baseline

Mean (SD) 60.0 (13.1) 59.8 (13.2) 64.1 (13.0)
Median [min, max] 61.0 [18.0, 102] 61.0 [18.0, 100] 65.0 [18.0, 103]

Age in years at diabetes diagnosis

Mean (SD) 55.9 (13.1) 55.7 (13.2) 54.0 (12.7)
Median [min, max] 56.0 [0, 103] 56.0 [1.00, 99.0] 55.0 [0, 99.0]

Diabetes type (%)

1 4,858 (1.9) 569 (2.1) 5,442 (3.2)
2 221,742 (89.0) 24,512 (88.7) 162,537 (95.8)
Unknown 22,548 (9.1) 2,565 (9.3) 1,699 (1.0)

BMI, kg/m2

Mean (SD) 31.8 (6.73) 31.8 (6.72) 31.2 (6.93)
Median [min, max] 30.7 [10.6, 197] 30.7 [14.5, 91.7] 30.0 [10.4, 162]

Systolic blood pressure, mmHg

Mean (SD) 127 (14.2) 127 (14.2) 129 (16.2)
Median [min, max] 126 [55.0, 258] 126 [69.0, 227] 130 [50.0, 248]

Diastolic blood pressure, mmHg

Mean (SD) 72.8 (9.82) 72.8 (9.79) 69.8 (11.8)
Median [min, max] 73.0 [0, 173] 73.0 [0, 132] 70.0 [20.0, 148]

Hemoglobin A1C, %

Mean (SD) 7.31 (1.63) 7.35 (1.65) 7.47 (1.57)
Median [min, max] 6.80 [3.50, 22.4] 6.80 [4.30, 19.7] 7.10 [4.20, 20.0]

Urinary albumin creatinine ratio, mg/g

Mean (SD) 19.6 (42.7) 19.7 (43.5) 45.4 (80.5)
Median [min, max] 8.70 [0.200, 1,050] 8.70 [0.200, 1,010] 13.2 [0.700, 1,430]

Triglycerides, mg/dL

Mean (SD) 173 (172) 173 (159) 172 (132)
Median [min, max] 145 [22.0, 13,400] 145 [24.0, 5,400] 145 [17.0, 9,540]

LDL, mg/dL

Mean (SD) 93.8 (31.8) 93.9 (31.4) 82.2 (33.2)
Median [min, max] 89.0 [1.00, 1,360] 89.0 [15.0, 338] 77.0 [7.00, 968]

HDL, mg/dL

Mean (SD) 45.8 (10.9) 45.8 (10.8) 47.4 (11.7)
Median [min, max] 44.0 [4.00, 177] 44.0 [5.00, 128] 46.0 [4.00, 217]

Creatinine, mg/g

Mean (SD) 0.913 (0.349) 0.913 (0.356) 1.00 (0.703)
Median [min, max] 0.870 [0.0700, 15.3] 0.870 [0.200, 14.0] 0.890 [0.200, 20.8]

Smoking status (%)

Current smoker 14,141 (5.7) 1,551 (5.6) 7,464 (4.4)
Former smoker 52,285 (21.0) 5,781 (20.9) 49,719 (29.3)
Passive smoker 1,427 (0.6) 169 (0.6) 654 (0.4)
Never smoker 115,487 (46.4) 12,933 (46.8) 102,121 (60.2)
Unknown 65,808 (26.4) 7,212 (26.1) 9,720 (5.7)

Continued on p. 1071
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(Oakland, CA) and adhered to the tenets
of the Declaration of Helsinki.

RESULTS

The study population included 276,794
patients; 51.9% were male, and 42.2%
were White (Table 1). The mean age
was 60.0 ± 13.1 years. 89% had type 2
diabetes, and 26.4% used insulin. Ap-
proximately 1.0% of the population
eventually became positive for PDR,
6.9% for refDR, and 3.0% for DME.

Model Performance
Both the full 43 covariate ML and 9 co-
variate (trimmed) LR models performed
best when predicting the PDR outcome
(ML AUC 0.86; 95% CI 0.86–0.87) versus
(LR AUC 0.82; 95% CI 0.80–0.83). ROC
curves and AUCs from the 2021 tempo-
ral validation and internal validation data
sets are shown in Fig. 1. The ML model
including 43 variables slightly out-
performed the trimmed LR model using

only 9 variables for each of the three
outcome measures. Both approaches were
able to accurately predict refDR and DME
outcomes.

At 80% screening capacity, in the 2021
temporal validation data set, the LR
model for PDR outcome had 98.3%
sensitivity, 20.2% specificity, 0.01 posi-
tive predictive value (PPV), 0.999 neg-
ative predictive value; 128,128 type 1
errors and 23 type 2 errors (Supplementary
Table 1).

The nine variable LR models were ex-
amined for algorithmic bias for selected
patient subgroups determined by race
and sex, and comparable AUCs were
found for all groups, suggesting algorith-
mic fairness.

Odds Ratios
Odds ratios (OR) were calculated to esti-
mate the clinical contribution of the nine
variables in the LR model (Table 2). Insu-
lin use made the largest contribution for

PDR (OR 3.768, 95% CI 3.439–4.129),
refDR (OR 2.996, 95% CI 2.897–3.098),
and DME (OR 2.727, 95% CI 2.596–
2.865). Other variables also showed sig-
nificant effects, notably, evidence of dia-
betic neuropathy and elevated creatinine
(which are generally indicative of end-
organ damage). Increased BMI and age
were slightly protective for all three
outcomes.

Sensitivity
The sensitivity of our LR model was cal-
culated and performance plotted over a
range of screening capacities of 10% to
90% (Fig. 2). As an example, in the 2021
temporal cohort, there were 1,350 inci-
dent PDR cases identified. If random
screening was performed at 50% screen-
ing capacity, 675 cases of PDR would have
been identified, and another 675 cases of
PDR would not have been screened. If the
cohort was first risk stratified by the LR
model and then screened, only 148 cases

Table 1—Continued

Full sample (N = 276,794)

2021 temporal validation
cohort (N = 169,678)

Derivation cohort
(N = 249,148)

Internal validation cohort
(N = 27,646)

UACR stage (%)
Macroalbuminuria 455 (0.2) 60 (0.2) 1,386 (0.8)
Microalbuminuria 26,689 (10.7) 2,964 (10.7) 42,225 (24.9)
Missing 105,139 (42.2) 11,679 (42.2) 26,489 (15.6)
Normal 116,865 (46.9) 12,943 (46.8) 99,578 (58.7)

Chronic kidney disease stage number (%)

1 97,620 (39.2) 10,778 (39.0) 64,265 (37.9)
2 101,162 (40.6) 11,328 (41.0) 72,604 (42.8)
3 26,500 (10.6) 2,920 (10.6) 25,614 (15.1)
4 1,183 (0.5) 134 (0.5) 2,232 (1.3)
5 336 (0.1) 40 (0.1) 1,524 (0.9)
Missing 22,347 (9.0) 2,446 (8.8) 3,439 (2.0)

Diabetic neuropathy 23,261 (9.3) 2,488 (9.0) 40,858 (24.1)

Diabetes medications (%)a

Metformin 148,500 (59.6) 16,482 (59.6) 114,654 (67.6)
Sulfonylurea 113,607 (45.6) 12,635 (45.7) 70,115 (41.3)
Insulin 65,848 (26.4) 7,388 (26.7) 50,182 (29.6)
Thiazolidinediones 23,512 (9.4) 2,612 (9.4) 7,564 (4.5)
Dipeptidyl peptidase 4 inhibitors 4,355 (1.7) 472 (1.7) 3,048 (1.8)
Glucagon-like peptide-1 1,563 (0.6) 191 (0.7) 2,626 (1.5)
Sodium-glucose cotransporter-2 inhibitors 1,481 (0.6) 156 (0.6) 9,258 (5.5)
Other 1,263 (0.5) 143 (0.5) 278 (0.2)
None 77,475 (31.1) 8,559 (31.0) 32,267 (19.0)

Positive outcomes (%)

PDR 2,434 (1.0) 279 (1.0) 1,350 (0.8)b

refDR 17,108 (6.9) 1,970 (7.1) 6,284 (4.2)c

DME 7,404 (3.0) 825 (3.0) 1,828 (1.2)d

For overall cohort, baseline is the date of visit when no DR is confirmed by fundus photograph; for 2021 cohort, baseline is 1 January 2021. All clinical
inputs are last measurement prior to baseline. min, minimum value; max, maximum value. aMedication dispensed during 6 months prior to base-
line; bn for validation cohort = 161,819; cn for validation cohort = 145,056; dn for validation cohort = 158,094.
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of PDR would have been missed. This
means a prioritized, model-based approach
reduces the missed cases by nearly 80%
compared with random screening at a
50% capacity.

Calibration
Model calibration was assessed visually by
plotting the observed event rate against
the predicted event rate based on deciles
of predicted risk. For all three outcomes
(Supplementary Fig. 1), our model slightly
overestimates the number of events, thus
limiting the chance for false negatives. As
previously discussed, the objective of our
models was discrimination and not calcula-
tion of continuous probability risk.

Type 1 Diabetes
Diabetes is classified as type 1 or 2, al-
though the ocular management of patients

with retinopathy is similar in both groups.
Even though type 1 patients only repre-
sent less than 5% of the total popula-
tion, we were able to show there was
no algorithmic bias for subtype of diabe-
tes (Supplementary Fig. 2).

CONCLUSIONS

This study compared ML and LR risk
stratification models for onset of PDR,
refDR, and DME. Both approaches are
able to accurately predict the onset of
advanced stages of DR. Surprisingly, a
trimmed LR model using only nine vari-
ables proved to be nearly as effective as
the 43-variable ML model. The nine-
variablemodel provided 80%more sensi-
tivity for PDR at 50% screening capacity
compared with random screening. Sensi-
tivity for the other outcomes of DME and
refDRwere similarly high.

A first step in effective population
management is risk stratification. In many
health systems in the U.S., DR screen-
ing is driven purely by compliance with
Healthcare Effectiveness Data and Infor-
mation Set screening guidelines. Patients
are screened using a “one size fits all” al-
gorithm. Often, screening efforts are in-
complete due to constraints in capacity
or patient compliance. The COVID-19 pan-
demic has adversely impacted screening
access and further contributed to chal-
lenges in DR screening. Unfortunately,
those who are overdue for DR screening
are at highest risk for complications. Es-
pecially for the outcome of PDR, failure
to identify disease in a timely manner
can lead to severe vision loss.

One approach to capture patients at
higher risk for adverse outcomes in the
face of limited screening resources is to
rank order patients due for screening,
based on estimated clinical risk. Our re-
sults suggest that, especially at lower
screening capacities, the risk of missing
a PDR diagnosis would be significantly
reduced using our simplified LR model
to identify the highest-risk population for
screening prioritization. While more com-
plicated ML models can be more accurate
in predicting adverse outcomes, there is a
cost of the added complexity they pro-
vide. These models are often “black box,”
without the transparency to understand
the importance of individual variables,
and also are typically more difficult to
implement.

This study is the largest to date to
predict DR strictly based on nonocular,
systemic risk factors. Recent studies have
been smaller (24,25) or have used both
clinical records and fundus photography
strategies (26) to train and validate their
models. Similar to these studies, we
found the most important covariate to
be insulin dependence. This is not sur-
prising since, fundamentally, diabetes
is a disease of blood glucose metabo-
lism deregulation.

Other strengths of this study included
up to 12 years of follow-up, enabling
capture of more clinical events and rare
outcomes, like PDR, over time. Despite
the very low prevalence of some out-
comes, the models were able to per-
form at very high sensitivities at multiple
screening capacities. Using these models
to identify patients at highest risk and
provide timely intervention to prevent

Table 2—OR from multivariate LR models for PDR, refDR, and DME

Outcome b OR 95% CI

PDR
Covariate

Insulin (0/1) 1.333 3.768 3.439–4.129
HgbA1c (%) 0.150 1.162 1.140–1.185
Age at visit (years) �0.030 0.966 0.964–0.969
Systolic BP (mmHg) 0.010 1.010 1.008–1.013
BMI (kg/m2) �0.020 0.975 0.969–0.980
Diabetic peripheral neuropathy (0/1) 0.743 2.104 1.936–2.286
LDL (mg/dL) 0.002 1.002 1.002–1.004
UACR (mg/g) 0.003 1.003 1.003–1.004
Serum creatinine (mg/dL) 0.205 1.238 1.195–1.263

refDR

Covariate
Insulin (0/1) 1.097 2.996 2.897–3.098
HgbA1c (%) 0.251 1.285 1.275–1.296
Age at visit (years) �0.222 0.978 0.977–0.979
Systolic BP (mmHg) 0.011 1.011 1.010–1.012
BMI (kg/m2) �0.023 0.976 0.975–0.979
Diabetic peripheral neuropathy (0/1) 0.349 1.418 1.369–1.468
LDL (mg/dL) 0.002 1.002 1.002–1.003
UACR (mg/g) 0.002 1.002 1.002–1.003
Serum creatinine (mg/dL) 0.139 1.149 1.127–1.172

DME

Covariate
Insulin (0/1) 1.003 2.727 2.596–2.865
HgbA1c (%) 0.123 1.130 1.116–1.145
Age at visit (years) 0.005 1.005 1.003–1.006
Systolic BP (mmHg) 0.009 1.009 1.007–1.010
BMI (kg/m2) �0.013 0.986 0.983–0.990
Diabetic peripheral neuropathy (0/1) 0.376 1.457 1.389–1.529
LDL (mg/dL) 0.004 1.004 1.004–1.005
UACR (mg/g) 0.002 1.002 1.002–1.003
Creatinine (mg/dL) 0.120 1.127 1.102–1.154

Nonstandardized ORs from multivariate LR models of all nine covariates were calculated for
each outcome. The 95% CIs are included. All P values were <0.001. BP, blood pressure; HgbA1c,
glycosylated hemoglobin.
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further disease progression should lead
to improved quality of care.
Significant limitations of this study in-

clude its retrospective nature. Our study
strictly considered systemic, nonophthal-
mological clinical risk factors for retino-
pathy onset. Duration of diabetes is
recognized as a significant risk factor for
DR onset and progression (27). That said,
date of detection of diabetes may not
be readily available in the EMR in most
health care settings. Since our primary
objective was to create a model that
will be readily transportable to other

health care systems, we purposely ex-
cluded variables not readily available
and thus did not include duration of
diabetes as a covariate in our analysis.

Local mediators of neovascularization
such as posterior vitreous separation sta-
tus, vascular endothelial growth factor
(VEGF), and intraocular cytokine levels can
influence retinopathy outcomes. These
were not included in our analysis.

The urine albumin to creatinine ratio
(UACR) is predictive in our model. UACR
is a ratio of measured albumin and cre-
atinine in urine and serves as a marker

of nephropathy (28). The American Dia-
betes Association has recommended yearly
screening for patients with type 1 diabetes
(disease over 5 years duration) and
those with type 2 diabetes, but this is
rarely achieved in clinical practice (29).
In our cohort, approximately 40% of pa-
tients had UACR measurements. While
the low rate of UACR measurement in
our model could influence performance,
our model still functions quite well.

Our models perform with very high
sensitivity and high negative predictive
value. However, since our measured

Figure 1—Performance of prediction models on validation cohort data. ROC plots of XGBoost (ML) and LR for three outcome measures: PDR,
refDR, and DME in a temporal validation cohort (A) and internal validation cohort (B). Additional results report AUC and 95% CI for each outcome.

diabetesjournals.org/care Tarasewicz and Associates 1073

https://diabetesjournals.org/care


outcomes were rare (prevalence <5%),
specificity and PPV were low. The pur-
pose of our models is to rank order a
population due for screening but not in-
fluence clinical decision-making or mea-
sure risk on an individual basis. Thus,
lower PPV have no substantive clinical
consequences.

Patients overdue for screening are
at higher risk, since their retinopathy
status is unknown. Post model imple-
mentation validation studies can be
done to compare model performance
in patients that were screened on time
versus those that were screened when
overdue.

Other limitations included reliance on
data from the KPNC EMR and validation
in the same single U.S. health care deliv-
ery system that the models were derived
from. Though our models performed
well, external validation should be done
in other health care systems, as their
performance may be less robust when
using data sets from other health systems
with less comprehensive or reliable input
capture.

In summary, a simple and practical
model was developed that can rank order
the risk of retinopathy in a population
with diabetes that has been previously
screened and is now overdue, facilitat-
ing prioritizing screening for retinopathy

complications among those at highest risk.
Clinical researchers may find this tool help-
ful in identifying patients at high risk for di-
abetic eye disease, for either purposeful
inclusion or exclusion in clinical trials of
novel therapies and diagnostic tests.
Quality improvement and implementa-
tion studies are needed to evaluate
whether and how this retinopathy risk
stratification tool may influence pro-
vider behavior, screening, and rates of di-
abetic eye disease. Health care delivery
systems can use this model to allocate
resources to improve outreach and
compliance with the highest-risk popu-
lations. Future research can identify
optimal screening frequencies for
lower-risk populations, yielding higher
efficiency and safety for all patients with
diabetes.
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