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Abstract

Cytogenetic analysis provides important information on the genetic mechanisms of cancer. The 

Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (Mitelman DB) 

is the largest catalog of acquired chromosome aberrations, presently comprising >70,000 cases 

across multiple cancer types. Although this resource has enabled the identification of chromosome 

abnormalities leading to specific cancers and cancer mechanisms, a large-scale, systematic 

analysis of these aberrations and their downstream implications has been difficult due to the 

lack of a standard, automated mapping from aberrations to genomic coordinates. We previously 
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5.SOFTWARE AND DATA AVAILABILITY
The Mitelman web application can be accessed from https://mitelmandatabase.isb-cgc.org
The Mitelman dataset and all CytoConverter-generated genomic coordinates are hosted on the ISB-CGC17 (https://isb-cgc.org/) in 
existing Google BigQuery tables which are publicly available (dataset ID: mitelman-db.prod). Example use cases, implemented in 
Jupyter notebooks, describing how to access and use these tables are available on the ISB-CGC Github repository of notebooks 
(https://github.com/isb-cgc/Community-Notebooks).
The notebooks described in the main text are accessible through the following links:

• Frequency of gains and losses in the Mitelman DB and TCGA: https://github.com/isb-cgc/Community-Notebooks/blob/
master/MitelmanDB/Exploring_and_comparing_MitelmanDB_CytoConverter_and_TCGA_datasets.ipynb

• Pearson correlations comparing the Mitelman DB and TCGA: https://github.com/isb-cgc/Community-Notebooks/blob/
master/MitelmanDB/Correlations_MitelmanDB_and_TCGA_datasets.ipynb
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introduced CytoConverter as a tool that automates such conversions. CytoConverter has now been 

updated with improved interpretation of karyotypes and has been integrated with the Mitelman 

DB, providing a comprehensive mapping of the 70,000+ cases to genomic coordinates, as well as 

visualization of the frequencies of chromosomal gains and losses. Importantly, all CytoConverter-

generated genomic coordinates are publicly available in Google BigQuery, a cloud-based data 

warehouse, facilitating data exploration and integration with other datasets hosted by the Institute 

for Systems Biology Cancer Gateway in the Cloud (ISB-CGC) Resource. We demonstrate the 

use of BigQuery for integrative analysis of Mitelman DB with other cancer datasets, including a 

comparison of the frequency of imbalances identified in Mitelman DB cases with those found in 

The Cancer Genome Atlas (TCGA) copy number datasets. This solution provides opportunities 

to leverage the power of cloud computing for low-cost, scalable, and integrated analysis of 

chromosome aberrations and gene fusions in cancer.
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1. INTRODUCTION

1.1 Cytogenetics

Chromosome aberrations are a characteristic feature of neoplasia, and cytogenetic analyses 

of tumor cells have been instrumental for our understanding that cancer is a genetic disorder 

at the cellular level. Acquired chromosome abnormalities, numerical and structural, leading 

to escape from normal regulation of growth, apoptosis, and differentiation, have been 

reported in more than 70,000 cases of neoplasia comprising all major cancer entities. A 

steadily increasing number of characteristic aberrations that are associated with distinctive 

tumor types have been identified1; some are even pathognomonic, thus serving as important 

theoretical and clinical biomarkers. The growing understanding of the clinical significance 

of the genetic constitution of tumor cells has gradually led to an increasing emphasis on 

such features in the classification of neoplasms. As a consequence, cytogenetic data and/or 

their molecular equivalents have been incorporated as important, sometimes necessary, 

parameters in the WHO classifications of hematologic disorders2, central nervous system 

(CNS) tumors3, and bone and soft tissue tumors4.

1.2 Balanced and unbalanced chromosome aberrations

Chromosome aberration may be dichotomized into those (translocations, inversions, 

insertions) that are seemingly balanced, i.e., the aberrations are not associated with any net 

gain or loss of genetic material, and those that are unbalanced (e.g., ploidy shifts, numerical 

changes, deletions, duplications, and non-reciprocal translocations); often, balanced and 

unbalanced rearrangements co-exist in tumor cells. Of the balanced structural chromosomal 

aberrations that have been characterized at the genomic level, practically all have been 

shown to give rise to either deregulation, usually over-expression, of a cancer-causing 

gene in one of the breakpoints, or the creation of an abnormal cancer-initiating hybrid 

gene through fusion of parts of two genes, one in each breakpoint5. More than 1,000 
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oncogenic gene fusions in malignant hematologic disorders and solid tumors have by now 

been identified as a consequence of cytogenetically identified chromosomal abnormalities.

The introduction of deep sequencing or massively parallel sequencing (MPS) has 

revolutionized the possibilities to detect gene fusions without any pre-existing knowledge 

of the genetic constitution and has led to an enormous increase in the numbers of identified 

gene fusions in different cancer types6–8. The results have dramatically changed the gene 

fusion landscape; a plethora – more than 30,000 – new gene fusions, the great majority 

involving previously unsuspected genes, has been identified through MPS. Recent evidence, 

albeit indirect, indicates that a substantial subset of MPS-detected fusions may be stochastic 

events5,9, and a major challenge will be to verify by functional studies which of the alleged 

gene fusions are primary, pathogenetically important, and which are non-consequential 

“noise” abnormalities.

The great majority of all chromosomal changes in cancer are, however, unbalanced and lead 

to gain or loss of genetic material; more than 95% of all malignant epithelial tumors, the 

predominant cancer type in humans in terms of morbidity and mortality, display aneuploidy 

resulting in genomic imbalances. Gained/amplified segments have been shown to harbor 

oncogenes, and deleted segments to contain tumor suppressor genes1. Sophisticated new 

model systems have produced important insights into how aneuploidy develops and how 

imbalances may affect cells, but how they contribute to tumorigenesis is largely still 

unknown10,11,12. It is consequently important to map and validate all imbalances that 

characterize cancer cells.

1.3 Database content

The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer 

(Mitelman DB) is a continuously updated catalog that relates cytogenetic changes and their 

genomic consequences, in particular gene fusions, to tumor characteristics, based either 

on individual cases or associations. The database presently (January 19, 2023) contains 

information on >75,000 karyotypes and >33,000 unique gene fusions affecting >14,000 

genes. It is important to note that the cytogenetic and sequencing studies complement 

each other in that the former focus on the relatively uncommon hematologic malignancies 

(leukemias and lymphomas) and bone and soft tissue tumors, the latter on the most common 

malignant epithelial tumors. It is striking that whereas 85% of the cases in the cytogenetic 

database are hematologic disorders or mesenchymal tumors, more than 80% of the cases 

with gene fusions are malignant epithelial neoplasms.

The karyotypes of individual cells as revealed by cytogenetic methods provide information 

not always captured by sequencing which gives an aggregated picture of the entire tumor 

cell population. Intratumor heterogeneity, clonal evolution, ploidy levels, and mechanisms of 

origin (for example, loss of genetic material may originate by many different chromosome 

abnormalities such as deletions, dicentric chromosomes, and unbalanced translocations) are 

examples of parameters more easily identified by cytogenetics. However, so far, no reliable 

computational tool to analyze the cytogenetic nomenclature has been available. An attempt 

to map systematically all imbalances in 3,185 solid tumors reported up to 1995 was made 

by Mertens et al.13 Today, with >70,000 cases, it would be an arduous task to try to perform 
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such an analysis without the help of a computer program that is capable of converting 

cytogenetic nomenclature into genomic coordinates.

1.4 Computational analysis of karyotypes

Several methods to parse cytogenetic nomenclature14–16 have been recently developed. 

ISCN-SNAKE14 has been used to compare a select number of malignant neoplasms in the 

Mitelman DB with sequence data from The Cancer Genome Atlas (TCGA) project and was 

found to have a very good correspondence as regards chromosome gains, amplifications, 

and heterozygous deletions, indicating that cytogenetically identified aberrations, in spite 

of their lower resolution level, are in fact on par with genomic analyses. CytoGPS16 

parses ISCN17 karyotypes into a machine-readable format and converts it into a binary Loss-

Gain-Fusion (LGF) model which allows researchers to process automatically thousands 

of karyotypes. The recently developed CytoConverter18, which can precisely specify a 

chromosomal location according to its distance from the end of the chromosome, offers such 

a possibility. This user-friendly web-based tool allows users to input any number of human 

karyotypes and obtain the genomic coordinates of all gains and losses implied by each of 

the karyotypes. CytoConverter is the only existing program that focuses on conversion to 

genomic coordinates.

In this work we developed a cloud-based resource, the Mitelman DB web application, 

that combines Cytoconverter and the Mitelman DB. Cytoconverter’s interconversion 

functionality further increases accessibility to the comprehensive data in the cloud. 

Moreover, we demonstrate the effectiveness of CytoConverter as a solution to the lack 

of standard mapping from aberrations to genomic coordinates, a major issue obstructing 

large-scale genomic analyses. This was achieved through integration with the Mitelman DB, 

and by providing examples that compare and combine Mitelman DB data with common 

datasets available through the ISB-CGC.

2. MATERIAL AND METHODS

2.1 Mitelman database

The present work was based on the July 27, 2022 release of the database containing 

information on 73,930 karyotypes with 53,901 different abnormalities and 33,457 unique 

gene fusions affecting 14,061 different genes. Figure 1 shows the increase of data 

contained in the database since data collection was initiated. Table 1 shows the numbers 

of cytogenetically abnormal cases and identified fusion genes among various tumor entities. 

It should be kept in mind that tumor karyotypes often contain more than one abnormality; 

in particular, malignant solid tumors may be extremely complex with as many as 50 

subclones and more than 100 distinct aberrations within the same tumor. The total number 

of abnormalities thus exceeds 400,000 and is hence almost six times higher than the 

number of cases. Table 2 shows the distribution of the malignant neoplasms according 

to organ involvement. The Mitelman DB, including genomic coordinates translated by 

CytoConverter, is stored in Google’s BigQuery data warehouse. BigQuery provides users 

with the ability to access, combine, and analyze large datasets using SQL.
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2.2 Generation of genomic coordinates from Mitelman DB data.

To generate genomic coordinates from the Mitelman DB, we used an updated version of 

CytoConverter with improved parsing ability. In the new version, ploidy processing does not 

require the chromosome count in the first field to be exact. Instead, the ploidy is determined 

via estimation of unaccounted chromosomes and with the bounds specified by ISCN17. 

The abbreviation of translocations is now permitted as long as the given translocation has 

been defined previously and no other unique translocation with different breakpoints bears 

the exact same chromosomes that were translocated. Improved parsing for clones is now 

implemented; CytoConverter is now able to transform previously used aberrations into 

consecutive clones.

In order to calculate the genomic coordinates of the gain or loss in each karyotype, all the 

karyotypes in the Mitelman DB were extracted. Before being converted, each karyotype was 

validated that it was in the proper format by a syntax checker tool, for details see User 

Guide in the Mitelman DB. Invalid aberrations within the karyotype were not included 

in the genomic imbalances analysis. If the karyotype could not be parsed at all, the 

entire karyotype was excluded. Among the 122,535 cytogenetically abnormal clones in 

the database, a total 99,970 (81.6%) were acceptable for analysis. The validated karyotype 

was then run against the CytoConverter tool using an R terminal for the conversion. The 

generated results were formatted and loaded into the BigQuery dataset that are part of the 

Mitelman DB web application. This dataset, “mitelman-db:prod” is publicly accessible in 

the Google Cloud Platform.

2.3 Dataset integration and analysis

We implemented two notebooks that use the BigQuery tables containing Mitelman DB and 

CytoConverter results in combination with other datasets available in Institute for Systems 

Biology Cancer Gateway in the Cloud (ISB-CGC). These notebooks are implemented 

in Google’s Jupyter Notebook application, Colaboratory (Colab) which uses Python to 

explore and analyze BigQuery tables. Colab can be used for free with limited computational 

resources, which is sufficient to run the analysis implemented in the notebooks.

Specifically, the notebooks compare frequencies of imbalances obtained from the Mitelman 

DB and those computed with TCGA. Pearson correlation was used to compare data 

from Mitelman DB and from TCGA chromosomal aberrations. The Pearson correlation 

coefficient computation was implemented as SQL User Defined Functions allowing to 

perform the entire statistical analysis in the cloud.

3. RESULTS

3.1 The Mitelman DB web application

The web application of the Mitelman DB leverages Google’s cloud resources to enable 

exploration of the Mitelman DB and the converted karyotype results generated from 

CytoConverter. Using the CytoConverter results, the application provides the option of 

viewing the genomic coordinate information for either individual karyotypes or for multiple 

karyotypes in a search result.
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For individual karyotypes, the corresponding chromosome and its start and end position are 

given with the type of imbalance (gain or loss). The information is shown in both tabular 

and ideogram formats. A screenshot of the Karyotype Info page is shown in Figure 2 as 

an example. The chromosome abnormalities are shown in a table that includes the clone 

number, genomic coordinates of the chromosome (start and end position), and the imbalance 

type (gain or loss). The overall gain or loss in chromosomes can also be visualized in an 

ideogram (Figure 3).

For analysis of multiple samples, net imbalances across the selected group are available in 

chart, ideogram, or tabular format. Information includes the chromosome affected, start and 

end positions, and whether the segment has been lost or gained. Figure 4 shows an example 

of a result screen in the Mitelman DB, after running an overall chromosomal imbalance 

analysis from a Cases Cytogenetic search result.

3.2 Cloud-based analysis of the Mitelman DB

In addition to the Mitelman DB web application, users can leverage Google’s cloud 

computation resources to customize their analyses. The Mitelman DB, including genomic 

coordinates translated by CytoConverter, is stored in Google’s BigQuery data warehouse 

which provides users with the ability to access, combine, and analyze large datasets using 

SQL, Python, and R. We implemented two Python notebooks that demonstrate usage of 

the Mitelman DB in combination with other datasets available in the ISB-CGC set of 

BigQuery tables. The notebooks are hosted in ISB-CGC GitHub repository and that can 

be easily run in Google’s Jupyter Notebook application, Colaboratory (Colab), which 

allows users to write and execute Python in their browsers. These examples provide a 

framework to researchers for performing data mining of chromosome aberrations using 

common bioinformatics tools. They can easily be adapted to add user’s own data, as well as 

be supplemented and/or combined with other analyses.

The notebooks compare the frequencies of copy number changes in the Mitelman DB 

with those calculated from TCGA data for three well-known deletions: breast cancer 

(Chromosome 1), kidney adenocarcinoma (Chromosome 3), and acute myeloid leukemia 

(Chromosome 5). In agreement with Denomy et al.14 we found similar patterns of gains and 

losses in the two data sets (Figure 5). Moreover, Table S1 (Supplementary material) shows 

the Pearson correlation of frequencies computed from Mitelman DB and TCGA-BRCA for 

each chromosome. According to the analysis most of the significant correlations of Table 

S1 are also significant in the results of Denomy et al.14 with few exceptions, likely due to 

different resolution levels.

4. DISCUSSION

The Mitelman DB provides a rich source of cancer genomic information that is 

complementary to recent genomic sequencing datasets of cancer. In the present work, the 

Mitelman DB has been integrated with CytoConverter, a recently developed web-based tool 

that generates genomic coordinates from the karyotypes. The integration is implemented in 

a user-friendly web application in which users can explore the Mitelman DB and view the 

genomic coordinate information for either individual or multiple karyotypes. For individual 
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karyotypes, the corresponding chromosome, its start and end positions, and the type of 

imbalance (gain or loss) is given by the web application. For multiple karyotypes in the 

search results, net imbalances across the selected group are displayed in chart, ideogram, or 

tabular format; information includes the chromosomes affected, start and end positions, and 

whether the segment has been lost or gained.

We anticipate that the cloud-based resource will be of considerable value as it offers several 

benefits to the scientific community. The proposed resource provides a reliable, updated 

computational tool that links karyotypes to genomic coordinates, allowing a systematic 

analysis of the Mitelman DB and integration with other large datasets of cancer, to 

uncover previously unrecognized patterns in cancer genetics. Moreover, all CytoConverter-

generated genomic coordinates are publicly available in Google BigQuery, a cloud-based 

data warehouse, facilitating data exploration and integration with other datasets hosted 

by the ISB-CGC Cloud Resource19, such as TCGA, PanCancer Atlas, the Human Tumor 

Atlas Network (HTAN), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). 

This feature provides opportunities to leverage the power of cloud computing for low-cost, 

scalable, and integrated analysis of chromosome aberrations and gene fusions in cancer.

BigQuery also allows users to access, combine, and analyze large datasets using SQL, 

Python, and R. We implemented cloud-based examples that demonstrate how the Mitelman 

DB can be combined with other datasets in the ISB-CGC set of BigQuery tables. 

Specifically, we compared the frequencies of imbalances in three cancer types in the 

Mitelman DB with those available in TCGA, finding an overall good correlation regarding 

gains, amplifications, and heterozygous deletions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Number of neoplasms with clonal chromosome aberrations and b) number of gene 

fusions in the Mitelman DB since data collection was initiated.
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Figure 2. 
An example of a Karyotype Info page from the Mitelman DB web application, displaying 

the karyotype sample information and its chromosome abnormalities generated by 

CytoConverter.
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Figure 3. 
The overall gains and losses in chromosomes can also be visualized in an ideogram for each 

case.
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Figure 4. 
For multiple karyotypes in the Cases Cytogenetics search results, net imbalances across the 

selected group are available in chart, ideogram or tabular format.
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Figure 5. 
Frequencies of gains, deletions, amplifications, and homozygous deletions in a) 

chromosome 1 in breast cancer, b) chromosome 3 in kidney adenocarcinoma, and c) 

chromosome 5 in acute myeloid leukemia (AML), calculated from CytoConverter-generated 

Mitelman DB data (left panels) and TCGA CNV data (right panels).
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Table 1.

Number of cytogenetically abnormal cases and fusion genes in the Mitelman database.

Tumor type No. of cytogenetically abnormal cases No. of fusion genes*

Hematologic disorders

Undifferentiated and biphenotypic leukemia 605 35

Acute myeloid leukemia 20,205 620

Myelodysplastic syndromes 5,497 71

Chronic myeloproliferative disorders 5,957 87

Acute lymphoblastic leukemia 11,873 760

Plasma cell neoplasms 2,331 543

Mature B-cell neoplasms 9,444 420

Mature T- and NK-cell neoplasms 1,412 44

Hodgkin lymphoma 250 13

Miscellaneous hematopoietic/lymphoid neoplasms 214 57

Hematologic disorders - Total 57,788 2,382 

Solid tumors

Benign solid tumors

Epithelial neoplasms 1,156 79

Mesenchymal neoplasms 2,838 160

Melanocytic neoplasms 24 3

Benign solid tumors - Total 4,018 237 

Malignant solid tumors

Epithelial neoplasms 6,066 24,918

Germ cell neoplasms 509 117

Neuroglial neoplasms 942 1,845

Embryonal nervous system neoplasms 638 180

Melanocytic neoplasms 352 1,682

Mesenchymal neoplasms 3,117 951

Malignant solid tumors - Total 11,217 28,230 

*
The total numbers of fusion genes do not add up because each gene fusion is only counted once but may be found in distinct tumor entities.
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Table 2.

Distribution of cytogenetically investigated abnormal cases and fusion genes in malignant tumors by organ 

involvement arranged in decreasing order of frequency according to global cancer incidence rates20.

Tumor type No. of cytogenetically abnormal cases No. of fusion genes

 Breast 886 6,547

 Lung 470 4,334

 Prostate 208 2,288

 Skin 269 1,721

 Colon 404 750

 Stomach 189 1,270

 Liver 144 1,146

 Uterus 323 2,272

 Esophagus 44 610

 Thyroid 143 288

 Bladder 190 1,551

 Lymphoma 12,012 517

 Pancreas 180 331

 Leukemia 46,468 1,912

 Kidney 1,769 740

 Oral cavity 249 403

 Ovary 499 2,247

 Brain 946 1,845

 Salivary glands 135 60

 Soft tissue 2,063 253

 Bone 1,054 75
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