Skip to main content
. 2023 May 29;9(6):e16797. doi: 10.1016/j.heliyon.2023.e16797

Table 2.

- Equations of the DSPM-DE used in this study.

Solute flux in the solution-membrane interface (polarization layer)
Js=Cp,sJv=(Jvexp(Jv/ks)exp(Jv/ks)1)(Cw,sCf,s)zsCw,sDsRgTFξ+Cw,sJv (T1)
The mass-transfer coefficient in the polarization layer [38]
ks=91.5·Ds0.67·v0.8 (T2)
Partitioning equation
Cm,sCw,s=(1rsrp)2exp(zsFRgT·ΔψD)exp(zs2e28πkBTεors·(1εp1εb)) (T3)
Extended Nernst-Planck equation for simulating solute transport through the membrane
Js=Cp,sJv=Ds,pdCm,sdxzsCm,sDs,pRgTFdψmdx+Ks,cCm,sJv (T4)
The potential gradient inside the pores
dψmdx=s=1nzsJvDs,p(Ks,cCm,sCp,s)FRgTs=1nzs2Cm,s (T5)
Electroneutrality in the solution-membrane interface
s=1nzsCw,s=0 (T6)
Electroneutrality inside the membrane pores
s=1nzsCm,s=Xd (T7)
Solute hindrance factor for convection
Ks,c=(2(1rsrp)2)(1.0+0.054(rsrp)0.988(rsrp)2+0.441(rsrp)3) (T8)
Solute pore diffusion coefficient
Ds,p=Ds(1.02.30(rsrp)+1.154(rsrp)2+0.224(rsrp)3) (T9)
Rejection of uncharged solutes
Russ=1Ks,c(1rsrp)21(1Ks,c(1rsrp)2)exp(Ks,cDs,pΔxAkJv) (T10)