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BACKGROUND: Deficiencies in risk assessment for patients with pulmonary nodules (PNs)
contribute to unnecessary invasive testing and delays in diagnosis.

RESEARCH QUESTION: What is the accuracy of a novel PN risk model that includes plasma
proteins and clinical factors? How does the accuracy compare with that of an established risk
model?

STUDY DESIGN AND METHODS: Based on technology using magnetic nanosensors, assays were
developed with seven plasma proteins. In a training cohort (n ¼ 429), machine learning
approaches were used to identify an optimal algorithm that subsequently was evaluated in a
validation cohort (n ¼ 489), and its performance was compared with the Mayo Clinic model.

RESULTS: In the training set, we identified a support vector machine algorithm that included
the seven plasma proteins and six clinical factors that demonstrated an area under the
receiver operating characteristic curve of 0.87 and met other selection criteria. The resulting
risk reclassification model (RRM) was used to recategorize patients with a pretest risk of
between 10% and 84%, and its performance was assessed across five risk strata (low, # 10%;
moderate, 10%-34%; intermediate, 35%-70%; high, 71%-84%; very high, > 85%). Stratifi-
cation by the RRM decreased the proportion of intermediate-risk patients from 26.7% to
10.8% (P < .001) and increased the low-risk and high-risk strata from 16.8% to 21.9% (P <

.001) and from 3.7% to 12.1% (P < .001), respectively. Among patients classified as low risk
by the RRM and Mayo Clinic model, the corresponding true-negative to false-negative ratios
were 16.8 and 19.5, respectively. Among patients classified as very high risk by the RRM and
Mayo Clinic model, the corresponding true-positive to false-positive ratios were 28.5 and
17.0, respectively. Compared with the Mayo Clinic model, the RRM provided higher spec-
ificity at the low-risk threshold and higher sensitivity at the very high-risk threshold.

INTERPRETATION: The RRM accurately reclassified some patients into low-risk and very high-
risk categories, suggesting the potential to improve PN risk assessment.
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Take-home Points

Research Question: What is the accuracy of a novel
pulmonary nodule (PN) risk model that includes
plasma proteins and clinical factors? How does the
accuracy compare with that of an established risk
model?
Results: A support vector machine (SVM) algorithm
that included seven plasma proteins and six clinical
factors decreased the proportion of intermediate-risk
patients and increased the proportion within low-risk
(< 10%) and high-risk ($ 70%) strata, respectively.
Compared with the Mayo Clinic model, the SVM
algorithm provided higher specificity at the low-risk
(< 10%) threshold and higher sensitivity at the
very high-risk ($ 85%) threshold.
Interpretation: An SVM algorithm accurately
reclassified some patients into low- and very high-
risk categories, suggesting the potential to improve
PN risk assessment.
Pulmonary nodules (PNs), often detected on chest CT
scan imaging, represent a frequent diagnostic problem
in clinical practice.1 PNs are most often identified
incidentally on CT scan imaging performed for other
indications, such as the evaluation of respiratory
symptoms.2,3 Within the context of lung cancer
screening, PNs are identified in 20% to 40% of scans, of
which roughly half require further evaluation to
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distinguish the small percentage of malignant nodules
(approximately 4%) from most of the detected nodules
deemed benign.4,5 Management of PNs is based on the
probability that they are malignant. However,
uncertainty in establishing the probability of cancer for
any given PN impacts the goal of expediting care for
patients with a malignant nodule while minimizing
testing for an individual with a benign nodule.

Risk assessment tools to estimate the probability of
cancer in patients with PNs based on imaging
parameters and other risk factors, such as the Mayo
Clinic model, are widely available and have undergone
extensive validation to assess their performance.6,7

Although guidelines recommend that subsequent
management decisions after nodule identification should
be based on an assessment of cancer risk, invasive
sampling of low-risk nodules and surgical resection of
benign nodules remain common, suggesting that
additional risk assessment tools are needed.1,8

The development of robust molecular biomarkers to
risk-stratify patients with PNs better could be
particularly useful in distinguishing patients who
warrant further surveillance from those who would
benefit from an invasive diagnostic procedure.9 In this
study, we developed and validated a combined clinical
and blood-based risk assessment tool with the goal of
improving risk assessment by focusing on patients with
PNs in whom the probability of malignancy is between
10% and 84%.
Study Design and Methods
Study Design and Participants

We conducted a multicenter, retrospective diagnostic study using
a training validation design with banked plasma samples from
patients with benign or malignant PNs collected from five
geographically diverse centers across the United States and
Canada: British Columbia Cancer Research Institute, Cleveland
Clinic, San Francisco Veterans Affairs Medical Center, the
University of Pennsylvania, and Vanderbilt University. The
study population included a mix of patients with screening-
identified and incidentally identified nodules: the University of
Pennsylvania (training and validation set) included patients
with incidental nodules, San Francisco Veterans Affairs Medical
Center and Cleveland Clinic included high-risk patients
undergoing screening, and Vanderbilt University and the
British Columbia Cancer Research Institute included a mix of
patients with screening-detected and incidentally detected
nodules.

The plasma samples were obtained from whole blood collected
within 60 days of imaging that identified the nodule at four of
five centers; these data were not recorded at one center.
Inclusion criteria included age older than 18 years, an
indeterminate (noncalcified, not known to be stable on imaging)
pulmonary nodule 4 to 30 mm in diameter, pathology-confirmed
malignant diagnosis, or confirmation of benign diagnosis by
pathologic examination or surveillance imaging demonstrating
stability or resolution over 2 years. Exclusion criteria included
evidence of metastatic disease, previous nodule biopsy, diagnosis
of any cancer within 5 years of nodule detection (except for
nonmelanoma skin cancer), or receipt of any blood products
within 30 days of enrollment. Study protocols were approved at
the individual institutions; all patients provided informed consent.
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Assay Technology

The magnetic nanosensor technology and instruments, developed by
MagArray, Inc., are based on magnetoresistive biosensor chips
capable of detecting low-level biomolecules in a multiplexed
format.10 Multiple quantitative protein assays were combined into
one multiplexed immunoassay. The immunoassays used commercial
antibodies and were calibrated with multiplexed recombinant human
protein standards. All samples were run in duplicate and included
two quality control human plasma samples for assay validity.
Acceptable analytical performance was defined as total assay
imprecision of # 15%.

Identification of Protein Biomarker Candidates

A review of the literature identified 59 protein biomarker
candidates, of which 41 were predicted to be detectable in
plasma. Antibody screening with the nanosensor technology
identified 26 proteins accurately measurable in human plasma.
The list was refined further to biomarkers with differentiating
levels between the plasma from individuals with benign
vs malignant PNs in a subset of the training cohort. Seven
proteomic biomarkers (carcinoembryonic antigen, epidermal
growth factor receptor, neutrophil activating protein 2,
prosurfactant protein B, C-X-C motif chemokine ligand 10,
receptor for advanced glycation end products, and tissue inhibitor
of metalloproteinases 1) were selected with preliminary evidence
of discrimination and low cross-reactivity.

Model Development Using Training Cohort

Natural log-transformed plasma concentrations of the seven
biomarkers and 10 clinical risk factors available for all training
cohort patients (age, sex, smoking history [current, previous, never],
pack-years, years smoked, number of years since quitting, cancer
history > 5 years, nodule diameter, lobar location, and spiculation)
were evaluated individually and in combination using regression
modeling.11 Four machine learning feature selection methods were
used to identify an optimal model: binomial error distribution
generalized linear models,12 boosted generalized linear model and
boosted tree random forest algorithms,13 and radial or linear kernel
support vector machines (SVMs).14 The performance of
approximately 1,000 models, fit using these four methods in a
random split of the training cohort into a development set (80%)
and test set (20%), were ranked to identify the fit method and
features that provided improvements in discrimination (assessed
using contingency tables, area under the receiver operating
characteristic curves [AUCs]), estimated negative predictive value
(NPV) and positive predictive value (PPV) at 25% cancer prevalence,
and robustness of the risk score to biomarker assay variability. The
initial target performance criteria were: (1) an AUC of $ 0.80 and a
positive AUC difference of $ 0.05 vs the Mayo Clinic model, (2)
sensitivity of $ 80% and specificity of $ 40% as recommended by a
recent biomarker development policy statement,15 and (3) estimated
NPV and PPV of $ 90% and $ 40%, respectively, at 25% cancer
prevalence.16 Additionally, target model volatility to the control
sample biomarker score variations was # �5 score units.

For model optimization, the top scoring algorithm was refit within
the training cohort using 5-fold cross validation. Calibration by a
generalized linear model fit of the cohort posterior probability to
the malignancy prevalence was used to provide malignancy
probabilities.

Risk Reclassification Model

A final algorithm (risk reclassification model [RRM]) was
developed to estimate the posttest probability in the validation
cohort. First, the method applies four cut points to separate the
cohort into five risk groups based on the Mayo Clinic model: low
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risk (LR; < 10%), moderate risk (MR; 10%-34%), intermediate
risk (35%-69%), high risk (70%-84%), and very high risk
(VHR; $ 85%). Second, the RRM uses the SVM score to provide
risk estimates only for individuals with a Mayo Clinic model
pretest risk of between 10% and 84% (Fig 1); individuals in the
two extreme categories (LR and VHR) do not undergo
recategorization. Patients in the intermediate risk category are
reclassified liberally based on the SVM score (Fig 1). Based on
preliminary analysis in the training cohort, full reclassification
(up or down) of patients in either the MR or high-risk categories
did not achieve sufficient accuracy, and so the final approach
selected allowed only limited reclassification based on the SVM
score; patients either remain in their original category or can be
reclassified to a one-step decrease or increase in risk category,
respectively.

Assessment of Model Performance in the Validation
Cohort

We conducted a risk stratum-specific analysis by calculating the
observed prevalence of lung cancer within each of the five risk
categories using patient-level estimates derived from the Mayo
Clinic model and the RRM. To estimate the benefit to harm ratio
of the RRM model, we calculated the ratios of the true-positive to
false-positive samples within the LR and MR strata and true-
negative to false-negative samples within the high-risk and VHR
strata. To estimate the predicted probability of cancer for each
risk stratum at a population prevalence of 25%, the stratum-
specific likelihood ratios were used to convert pretest odds of
malignancy to posttest probabilities. Model discrimination was
assessed further by calculation of the AUC within the validation
cohort and by comparing the sensitivity and specificity and
calculating at the two extreme thresholds (< 10% and > 85%) for
the RRM and the Mayo Clinic model. NPV and PPV were
calculated at the observed prevalence and at a cancer prevalence
of 25%. A subgroup analysis determined the sensitivity,
specificity, NPV, and PPV for the validation cohort limited to
patients with stage I or II disease. Calibration was assessed by
comparing the expected prevalence by quintiles with the observed
cancer prevalence based on categorization using either the RRM
or the Mayo Clinic model.

Statistical Analyses

For assessment of model accuracy within the validation cohort, sample
size requirements were estimated based on a cancer prevalence of 0.50
and a desired width of the 95% CI of sensitivity and specificity of no
more than 0.10. Given that sensitivity and specificity in the analysis
would be assessed at two different thresholds (0.10 and 0.85), sample
size was calculated at a target of 0.50 for both sensitivity and
specificity, resulting in a minimum sample of 193 cases and 193
control subjects. Although no formal power calculation for model
development in the training cohort was performed, it was estimated
that the training cohort sample size should include at least 10 events
per prediction parameter. Because 17 variables were considered, we
estimated needing a minimum of 170 cancers (and at least 170
benign nodules).

Statistical and modeling analyses were carried out using Microsoft
Excel version 16 (Microsoft) and R version 4.0.3 or higher software
(R Foundation for Statistical Computing) with the following
packages from the Comprehensive R Archive Network17: caret
(version 6.0-86), e1071 (version 1.7-4), ggplot2 (version 3.35),
glmnet (version 4.0-2), OptimalCutpoints (version 1.1-4), ppsr
(version 0.0.2), pROC (version 1.10.0), randomForest (version
4.6-14), rms (version 6.2-0), rpart (version 4.1-15), and stats
(version 4.0.3).
[ 1 6 3 # 4 CHES T A P R I L 2 0 2 3 ]



Patients PatientsPatients
Redistribution

18

52

VERY HIGH RISK pCA 85%-99%
59 VERY HIGH RISK

74 HIGH RISK

53 INTERMEDIATE RISK

196 MODERATE RISK

107 LOW RISK

HIGH RISK pCA 70%-84%

131
INTERMEDIATE RISK

pCA 35%-69%

206
MODERATE RISK
pCA 10%-34%

82 82
23
2

183
13

53

46
28

17
24
18

LOW RISK pCA 1%-9%

PRETEST RISK CATEGORY
(Mayo Model)

RISK RECLASSIFICATION
MODEL (RRM)

POSTTEST RISK CATEGORY

Figure 1 – Diagram showing the redistribution of validation cohort patients using the RRM. Process of reclassification of patients in the validation
cohort based on RRM results based on pretest risk assessed by the Mayo Clinic model. Only patients with pretest risk between 10% and 84% were
reclassified by the RRM. The numbers of patients by risk category before and after RRM categories (shown in columns) and the number of patients who
were redistributed by the RRM (embedded within arrows) are provided. pCA ¼ probability of cancer; RRM ¼ risk reclassification model.
Differences in frequency and distribution of validation cohort patients
among the five risk categories by the Mayo Clinic model and the RRM
were assessed using the McNemar’s test for marginal homogeneity.
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Estimates of diagnostic accuracy for the Mayo Clinic model and
RRM at the 10% and 85% risk thresholds were compared using
McNemar’s test.
Results

Study Population

The training cohort included 429 patients with a 4- to
30-mm PN found either incidentally or through
screening from San Francisco Veterans Affairs Medical
Center, University of Pennsylvania, and Vanderbilt
University (Table 1, e-Table 1). The three sites showed a
similar proportion of patients with cancer with
adenocarcinoma histologic findings. Most cancers were
stage I or II (79%), and the overall prevalence of lung
cancer was 43% (186 of 429). In total, 20% of patients
never smoked, 28% were currently smoking, and
52% previously smoked. Malignant PNs were larger than
benign PNs (mean diameter, 17.5 mm vs 12.2 mm; P <

.001). Across both training and validation cohorts, 376
of 520 patients (72%) with nonmalignant findings
received a diagnosis of a benign lesion based on nodule
stability or resolution over 2 years; the remaining lesions
were diagnosed based on pathologic confirmation.

The validation cohort included 489 patients with a 4- to
30-mm PN found incidentally or via lung cancer
screening from the British Columbia Cancer Research
Institute, Cleveland Clinic, and the University of
Pennsylvania (Table 1, e-Table 2). Samples from the
University of Pennsylvania were distinct from those
included in the training cohort. Similar to the training
cohort, the validation cohort showed a lung cancer
prevalence of 43% (212 of 489), of which 65% showed
adenocarcinoma histologic findings and 70% were stage
I or II disease.
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TABLE 1 ] Patient Characteristics

Variable

Training Validation

Benign (n ¼ 243) Malignant (n ¼ 186) Benign (n ¼ 277) Malignant (n ¼ 212)

Age, y 62.7 � 11.4 65.7 � 9.15 65.6 � 7.23 69.3 � 8.5

Sex, female 83 (34.2) 82 (44.1) 129 (46.6) 120 (56.6)

Race or ethnicity

White 216 (88.9) 159 (85.5) 249 (89.9) 172 (81.1)

Black 22 (9.1) 22 (11.8) 11 (4.0) 12 (5.7)

Asian 2 (0.8) 2 (1.1) 12 (4.3) 23 (10.8)

Other 2 (0.8) 2 (1.1) 2 (0.7) 3 (1.4)

Missing 1 (0.2) 1 (0.5) 3 (1.1) 2 (0.9)

Cancer history 57 (23.5) 77 (41.4) 17 (6.1) 16 (7.5)

Smoking History

Current 57 (23.5) 52 (28.0) 105 (37.9) 46 (21.7)

Former 129 (53.1) 97 (52.2) 166 (59.9) 138 (65.1)

Never 57 (23.5) 37 (19.9) 6 (2.2) 28 (13.2)

Pack-years 38.5 � 39.5 41.1 � 36.3 42.2 � 21.3 34.4 � 28.8

Nodule size, mm 12.2 � 6.5 17.5 � 6.3 11.0 � 6.0 19.8 � 6.2

Nodule located in upper lobe 107 (44.0) 110 (59.1) 148 (53.4) 134 (63.2)

Nodule spiculation 42 (17.3) 92 (49.5) 19 (6.9) 100 (47.2)

Cancer histology

Adenocarcinoma . . . 139 (74.7) . . . 137 (64.7)

Squamous cell carcinoma . . . 35 (18.8) . . . 39 (18.4)

NSCLC . . . 9 (4.8) . . . 10 (4.7)

Other . . . 2 (0.0) . . . 13 (6.1)

Unknown . . . 1 (0.0) . . . 13 (6.1)

Cancer stage

I or II . . . 147 (79.0) . . . 147 (69.3)

III or IV . . . 18 (9.7) . . . 58 (27.4)

Unknown . . . 21 (11.3) . . . 7 (3.3)

Data are presented as No. (%) or mean � SD. NSCLC ¼ non-small cell lung cancer.
Model Derivation

We identified 14 machine learning models that
provided the highest relative AUC in the training
cohort (AUC, 0.87) (e-Table 3). An SVM algorithm
fit using a radial kernel of seven biomarkers
(carcinoembryonic antigen, epidermal growth factor
receptor, neutrophil activating protein 2,
prosurfactant protein B, C-X-C motif chemokine
ligand 10, receptor for advanced glycation end
products, and tissue inhibitor of metalloproteinases
1) and six clinical factors (age, sex, pack-years,
nodule size, nodule spiculation, and nodule location)
produced the lowest volatility and was the single
SVM model selected for incorporation into the RRM
and for further validation (model 1 in e-Table 3).
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Model Performance

The AUCs of the RRM and the Mayo Clinic model in
the validation cohort were 0.85 (95% CI, 0.80-0.90) and
0.87 (95% CI, 0.82-0.92), respectively (Fig 2A).
Sensitivity and specificity plots in the validation cohort
show that the RRM, in comparison with the Mayo Clinic
model, was more sensitive and less specific at the higher
model thresholds and more specific and less sensitive at
lower thresholds (Fig 2B).

The RRM was used to reclassify validation cohort
patients with a Mayo Clinic model risk of 10% to
84% (e-Table 4), resulting in alterations in the frequency
and distribution of the patients in the validation cohort
within the five risk categories when compared with a
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Figure 2 – Line graphs showing the discrimination of pulmonary nod-
ules with the RRM and Mayo Clinic model. A, ROC curves for the Mayo
Clinic model (dashed line) and RRM (solid line). Mayo Clinic model
area under the ROC curve, 0.87 (95% CI, 0.82-0.92); RRM area under
the ROC curve, 0.85 (95% CI, 0.80-0.90). B, Sensitivity and specificity
plot across the full range of model cutoffs. Cutoff (x-axis) is the threshold
from the model used to define the classification of benign (# the cutoff)
and malignant (> cutoff) nodules. ROC ¼ receiver operating
characteristic.
pretest assessment using the Mayo Clinic model (Fig 1).
Among patients in the pretest intermediate risk group,
the RRM recategorized 78 patients (60 with malignant
findings, 18 with benign findings), resulting in a
decrease in the overall proportion of this category from
26.7% to 10.8% (P < .001) (Fig 3). The LR category
chestjournal.org
increased by 25 patients (two with malignant findings,
23 with benign findings; true-negative to false-negative
ratio, 11.5), increasing the overall proportion of this
category from 16.8% to 21.9% (P < .001) (Fig 3). The
VHR category increased by 41 patients (40 with
malignant findings, one with benign findings; true-
positive to false-positive ratio, 40.0), increasing the
overall proportion of this category from 3.7% to
12.1% (P < .001).

Table 2 summarizes the cancer probabilities observed
in the five risk strata based on classification by the
Mayo Clinic model and RRM. At both the current
cancer prevalence and for estimates at a prevalence of
25%, this approach yields nearly equivalent cancer
probabilities for the Mayo Clinic model and RRM for
the LR stratum, whereas the RRM provides a slightly
higher estimated probability in VHR stratum. Within
the LR stratum, the true-negative to false-negative
ratios were 16.8 and 19.5 for the RRM and Mayo
Clinic model, respectively. The corresponding true-
positive to false-positive ratios for the VHR stratum
were 28.5 and 17.0 for the RRM and Mayo Clinic
model, respectively.

Among the 89 validation cohort patients with 4- to < 8-
mm nodules, five patients had malignant findings
(5.6% prevalence); 52 patients (58%) had a Mayo Clinic
risk score of < 10% and 37 patients (42%) had a Mayo
Clinic risk score of 10% to 36%. Of these 37 patients, the
RRM reclassified 21 patients downwards to LR, all of
whom were proven to have benign nodules. The
remaining 16 patients were classified as MR by RRM, of
whom 14 were proven to have benign nodules and two
to have lung cancer.

Using a threshold-based approach to examine the
extreme strata (LR and VHR), the RRM provided higher
specificity (36% vs 28%; P < .001) while achieving a
similar level of sensitivity at the 10% risk threshold
compared with the Mayo Clinic model (Table 3). At the
85% risk threshold, the RRM results in higher sensitivity
(27% vs 8%, at a similar level of specificity; P < .001)
(Table 3). In the subgroup analysis limited to patients
with stage I or II disease (Table 3), estimates of accuracy
(sensitivity, specificity, NPV, and PPV) were similar to
the main analysis.

To examine calibration, we compared expected
vs observed frequencies of cancer across quintiles of
predicted probability. The theoretical expected
probability of malignancy is represented by the midpoint
of each quintile (10%, 30%, 50%, 70%, and 90%). The
971

http://chestjournal.org


22

134

0

0

0

156

1

5

19

12

0

37

0

0

0

4

1

5

MR
10-34%

IR
35-69%

HR
70-84%

MR
10-34%

IR
35-69%

Mayo Model pCA Mayo Model pCA

Benign Malignant

HR
70-84%

0

23

139

19

16

1

TotaI

1

49

0

0

0

50

1

8

34

34

17

94

0

0

0

24

23

47

2

57

34

58

40

LR

MR

IR

HR

VHR

LR

MR

IR

HR

VHR

RRM

pCA

RRM

pCA

TotaI

Figure 3 – Reclassification by RRM of patients with Mayo Clinic Model Risk of 10% to 84%. RRM recategorized 41 patients (40 with malignant findings
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observed malignancy proportion was calculated for all
patients who fell within each quintile range. The RRM
classification aligned more closely with the expected
malignancy risk compared with the Mayo Clinic model,
which underestimated the risks of malignancy in the
middle and high quintiles (Fig 4).
Discussion
In this study, we derived and validated a combined
clinical and plasma protein-based lung cancer risk
prediction model that improved the estimation of lung
cancer risk for PNs. The RRM functions by
reclassifying patients with a pretest risk of 10% to
84% as assessed by the Mayo Clinic model. This
approach results in a favorable redistribution by
decreasing the intermediate risk category by 60% of
patients while increasing the proportion identified as
LR and VHR by 30% and 228%, respectively. The
reclassification into these two categories was highly
accurate; of 25 patients reclassified to LR, 23 had
benign disease, and of 41 patients reclassified to VHR,
40 had malignant disease. This level of performance in
reclassification has the potential to provide tangible
results aligning accurate risk assessment with
appropriate management decisions. Patients with an
intermediate risk of malignancy traditionally have
been the most challenging group to manage clinically
given the inherent challenges in balancing the desire
to avoid invasive procedures in patients with benign
disease and to expedite a timely diagnosis in patients
with lung cancer. Current guidelines suggest further
evaluation with PET and CT scan imaging or biopsy
(transthoracic needle aspiration or bronchoscopy) in
972 Original Research
patients in this risk range.1,8 The performance of PET
and CT scan imaging is reasonable for solid nodules,
but false-positive results (mostly commonly because of
active infection) and false-negative results (eg,
subcentimeter tumors, adenocarcinoma of the lepidic
subtype) can occur, and the overall accuracy of PET
and CT scan imaging is limited in certain geographic
regions, such as in areas with high rates of endemic
fungal infections.18 Intermediate risk PNs account for
a large proportion of invasive biopsy procedures
among patients with benign diagnoses. Biopsy
procedures most frequently used in patients with
intermediate risk nodules, transthoracic needle
aspiration and bronchoscopy, can have a high burden
of complications, exposing these patients to
unnecessary risk.19 Strategies to assess risk that more
closely align the probability of malignancy with the
appropriate management strategy are likely to improve
cancer outcomes, to minimize harms, and to yield
higher levels of patient satisfaction.

Although the RRM provides favorable reclassification of
patients with a Mayo Clinic model risk probability of
10% to 84%, we noted that the overall AUCs of the RRM
and Mayo Clinic model were similar in the validation
cohort. Notably, the AUC of the Mayo Clinic model was
considerably higher in the validation cohort than in the
training cohort (AUC, 0.87 vs 0.78), a level of
discrimination considerably higher than what has been
observed in prior validation assessments of the Mayo
Clinic model.6,20,21 This suggests that the clinical
features used in the Mayo Clinic model exerted greater
influence on discrimination in the current validation
cohort, which may have limited the contribution of the
[ 1 6 3 # 4 CHES T A P R I L 2 0 2 3 ]



TABLE 2 ] Estimates of Benefit to Harm and Cancer Probability Across Risk Strata in Full Validation Cohort

Variable

Risk Strata

LR (1%-9%) MR (10%-34%) IR (35%-69%) HR (70%-84%) VHR (85%-100%)

Benign Malignant Benign Malignant Benign Malignant Benign Malignant Benign Malignant

Mayo Clinic
model, n

78 4 156 50 37 94 5 47 1 17

RRM, n 101 6 139 57 19 34 16 58 2 57

Benefit to harm
analysesa

TN to FN Ratio . . . TP to FP Ratio

Mayo Clinic
model

19.5 3.1 9.4 17.0

RRM 16.8 2.4 3.6 28.5

Cancer
probabilityb

Mayo Clinic
model

4.9 (4 of 82) 24.3 (50 of 206) 71.8 (94 of 131) 90.4 (47 of 52) 94.4 (17 of 18)

RRM 5.9 (6 of 101) 29.1 (57 of 196) 64.2 (34 of 53) 78.4 (58 of 74) 96.6 (57 of 59)

Likelihood ratio
(stratum
specific)

Mayo Clinic
model

0.07 0.42 3.32 12.28 22.21

RRM 0.08 0.54 2.34 4.74 37.24

Estimated cancer
probability, %b

Mayo Clinic
model

2.2 12.2 52.5 80.4 88.1

RRM 2.5 15.2 43.8 61.2 92.5

Data are presented as percentage (No./total No.), unless otherwise indicated. FN ¼ false-negative; FP ¼ false-positive; HR ¼ high-risk; IR ¼ intermediate
risk; LR ¼ low risk; MR ¼ moderate risk; RRM ¼ risk reclassification model; TN ¼ true-negative; TP ¼ true-positive; VHR ¼ very high risk.
aBenefit to harm analysis performed by calculation of within strata of TN to FN ratio for LR and MR categories and TP to FP ratio for HR and VHR categories.
bCancer probability within strata estimated at 25% prevalence.
plasma proteins in the RRM. That the RRM did not
fluctuate together with the Mayo Clinic model between
the training and validation sets suggests that the RRM
provided independent information from the Mayo
Clinic model.

Although 95% of patients with malignant nodules either
remained in the original risk category or were
reclassified into a higher level of risk, 10 discordant
results occurred in which the RRM classified patients
into a lower risk group compared with the Mayo Clinic
model. Two cancers were classified as LR and eight
cancers were categorized as MR by the RRM. These
findings substantiate the need to consider a patient’s
comprehensive clinical presentation when assessing risk
and the importance of close imaging surveillance among
patients with intermediate risk PNs that do not go on to
an invasive strategy. The RRM also will require
prospective studies to validate the test performance
chestjournal.org
further and to assess the impact of the model on the rate
of invasive procedures in patients with benign nodules
and its impact on time to diagnosis and treatment for
patients with malignant nodules.

Our analysis used five risk categories, although two
existing guidelines from the American College of Chest
Physicians and the British Thoracic Society for
incidental nodules have suggested thresholds of 5% or
10% to distinguish between LR and intermediate risk
and 65% or 70% to differentiate between intermediate-
risk and HR nodules. Although these guidelines are well
established, we used a more granular approach for two
reasons. First the HR threshold of 65% or 70% was
conceived as a level above which surgical biopsy and
resection or empiric radiation treatment would be
appropriate. However, given the concerns that have
emerged regarding the high rate of surgery for benign
disease, we incorporated a VHR category that could
973
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TABLE 3 ] Diagnostic Performance of RRM and Mayo Clinic Model Using Risk Thresholds

Variable

Risk Threshold

10% 85%

All Patients (n ¼ 489)
Patients With Stage I or II

Disease (n ¼ 431) All Patients (n ¼ 489)
Patients With Stage I or II

Disease (n ¼ 431)

RRM Mayo Clinic RRM Mayo Clinic RRM Mayo Clinic RRM Mayo Clinic

True positive 206 208 150 152 57 17 44 13

False positive 176 199 176 199 2 1 2 1

True negative 101 78 101 78 275 276 275 276

False negative 6 4 4 2 155 195 110 141

Sensitivity (95% CI) 97 (95-100) 98 (96-100) 97 (95-100) 99 (97-100) 27 (17-36) 8 (0-19) 29 (18-40) 8 (0-21)

Specificity (95% CI) 36 (29-44) 28 (20-36) 36 (29-44) 28 (20-36) 99 (97-100) 100 (97-100) 99 (97-100) 100 (97-100)

PPV (95% CI)a 54 (46-62) 51 (42-60) 46 (38-54) 43 (34-52) 97 (93-100) 94 (86-100) 96 (91-100) 93 (82-100)

NPV (95% CI)a 94 (91-98) 95 (91-99) 96 (93-99) 98 (95-100) 64 (54-74) 59 (40-78) 71 (60-82) 66 (45-87)

PPV (95% CI)b 35 (27-42) 32 (24-41) 34 (26-41) 31 (23-40) 93 (88-99) 88 (76-100) 93 (87-99) 89 (75-100)

NPV (95% CI)b 97 (95-100) 97 (93-100) 98 (95-100) 98 (96-100) 81 (76-90) 78 (62-94) 81 (75-90) 77 (64-95)

Data are presented as No. or value (95% CI), unless otherwise indicated. RRM ¼ risk reclassification model.
aCalculated at observed cancer prevalence of 43%.
bCalculated at cancer prevalence of 25%.
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1-19 1 10% 176 196 169160 16 279% 14%

20-39 2 30% 131 110 7283 48 3837% 35%

40-59 3 50% 82 29 1323 59 1672% 55%

60-79 4 70% 64 61 1110 54 5084% 82%

80-99 5 90% 36 93 121 35 8197% 87%

TOTAL 489 489 277277 212 212
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Expected Risk Mayo Model RRM

Figure 4 – Bar graph showing the model calibration in the validation cohort by risk quintiles (n ¼ 489). Diagonal pattern indicates expected risk, light
gray indicates Mayo Clinic model, and dark gray indicates the RRM. RRM ¼ risk reclassification model.
minimize potential harms from surgery or radiotherapy
for benign disease. Of note, the PPV of 97% at the HR
threshold suggests that inappropriate surgery could be
limited. Second, since the publication of the American
College of Chest Physicians and British Thoracic Society
guidelines, advances in our understanding of nodule
management have led many to believe that defining
management into three buckets requires refinement. For
examples, the American College of Radiology Lung-
RADS has six categories (1, 2, 3, 4A, 4B, and 4X) to
guide shared decision-making. Thus, strategies with > 3
categories, such as those proposed in this study, may
facilitate subsequent decision-making.
chestjournal.org
This study has limitations. First, this was a retrospective
validation study that relied on banked plasma samples
collected across five institutions. This design can result
in certain biases in which patients were identified for
inclusion in the study. For example, we observed a
cancer prevalence of 43% in both the training and
validation sets, which is higher than the prevalence
observed in broader clinical settings. We partly account
for this by estimating performance of the models at both
the observed prevalence and at a prevalence of 25%.
Second, full reclassification did not achieve sufficient
accuracy in the MR or HR categories to allow for this
strategy to be evaluated in the validation cohort,
975
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ultimately limiting the overall impact of the current
model. Additional biomarker discovery that can be
incorporated into the model may allow for future
improvements in performance. Finally, we were unable
to perform any comparisons with functional imaging
because PET and CT scans for nodule evaluation were
limited in our study population. When performed, PET
and CT scan timing varied considerably relative to time
point of the index CT scan, blood collection, or both.
Interpretation
The RRM improves the assessment of PNs with a pretest
risk of 10% to 84% by reclassifying patients within this
range into LR and VHR groups, suggesting the potential
to improve PN risk prediction and to provide better
alignment to subsequent management decisions. These
results warrant further investigation in prospective
studies to confirm the RRM’s performance and
assessment of appropriate utility end points.
976 Original Research
Funding/Support
This study was funded by MagArray, Inc. and by
National Institutes of Health [Grant U01CA152662].
A. V. is supported in part by the National Institute of
Environmental Health Sciences [Grant P30-ES013508].

Financial/Nonfinancial Disclosures
The authors have reported to CHEST the following:
A. V., J. K. B., P. P. M., and P. J. M. received funding to
their institution from MagArray for the work performed
in this study. Outside of the submitted work, A. V.
reports personal fees as a scientific advisor to the Lung
Cancer Initiative at Johnson & Johnson and reports
grants to his institution from Optellum, Precyte, the
Gordon and Betty Moore Foundation, and the Lungevity
Foundation. P. J. M. reports grants to his institution
from Adela, Exact Sciences, DELFI, Nucleix, Biodesix,
and Veracyte. M. B., A. L. F., and L. C. are employees of
MagArray, Inc. S. X. W. is a consultant to MagArray,
Inc. None declared (J. K. B).
Acknowledgments
Author contributions: A. V. had full access
to all data in the study and takes
responsibility for the content of manuscript,
including the data and analysis. S. L., P. P. M.,
J. K. B., M. B., A. L. F., L. C., S. X. W., and P.
J. M. contributed substantially to the study
design, data analysis and interpretation, and
writing of the manuscript.
Role of sponsors: MagArray, Inc., provided
financial support for the work reported.

Additional information: Coauthor Pierre P.
Massion, MD, passed away on April 1, 2021.
The e-Tables are available online under
“Supplementary Data.”

References
1. Gould MK, Donington J, Lynch WR, et al.

Evaluation of individuals with pulmonary
nodules: when is it lung cancer? Diagnosis
and management of lung cancer, 3rd ed:
American College of Chest Physicians
evidence-based clinical practice
guidelines. Chest. 2013;143(5 suppl):
e93S-e120S.

2. Gould MK, Tang T, Liu I-LA, et al. Recent
trends in the identification of incidental
pulmonary nodules. Am J Respir Crit Care
Med. 2015;192(10):1208-1214.

3. Vachani A, Zheng C, Liu I-LA,
Huang BZ, Osuji TA, Gould MK. The
probability of lung cancer in patients
with incidentally detected pulmonary
nodules: clinical characteristics and
accuracy of prediction models. Chest.
2022;161(2):562-571.

4. Aberle DR, DeMello S, Berg CD, et al.
Results of the two incidence screenings in
the National Lung Screening Trial. N Engl
J Med. 2013;369(10):920-931.

5. Mazzone PJ, Lam L. Evaluating the patient
with a pulmonary nodule: a review.
JAMA. 2022;327(3):264-273.

6. Choi HK, Ghobrial M, Mazzone PJ.
Models to estimate the probability of
malignancy in patients with pulmonary
nodules. Ann Am Thorac Soc.
2018;15(10):1117-1126.

7. Swensen SJ, Silverstein MD, Ilstrup DM,
Schleck CD, Edell ES. The probability of
malignancy in solitary pulmonary
nodules. Application to small
radiologically indeterminate nodules. Arch
Intern Med. 1997;157(8):849-855.

8. Baldwin DR, Callister MEJ; Guideline
Development Group. The British Thoracic
Society guidelines on the investigation and
management of pulmonary nodules.
Thorax. 2015;70(8):794-798.

9. Seijo LM, Peled N, Ajona D, et al.
Biomarkers in lung cancer screening:
achievements, promises, and challenges.
J Thorac Oncol. 2019;14(3):343-357.

10. Gaster RS, Xu L, Han SJ, et al.
Quantification of protein interactions and
solution transport using high-density
GMR sensor arrays. Nat Nanotechnol.
2011;6:314-320.

11. Harrell FE Jr. Regression Modeling
Strategies: With Applications to Linear
Models, Logistic and Ordinal Regression,
and Survival Analysis. New York, NY:
Springer; 2015.

12. Friedman J, Hastie T, Tibshirani R.
Regularization paths for generalized linear
models via coordinate descent. J Stat
Softw. 2010;33:1-22.
13. Breiman L. Random forests. Mach Learn.
2001;45(1):5-32.

14. Cortes C, Vapnik V. Support-vector
networks. Mach Learn. 1995;20(3):
273-297.

15. Mazzone PJ, Sears CR, Arenberg DA, et al.
Evaluating molecular biomarkers for the
early detection of lung cancer: when is a
biomarker ready for clinical use? An
official American Thoracic Society policy
statement. Am J Respir Crit Care Med.
2017;196(7):e15-e29.

16. Tanner NT, Aggarwal J, Gould MK, et al.
Management of pulmonary nodules by
community pulmonologists: a multicenter
observational study. Chest. 2015;148(6):
1405-1414.

17. R Development Core Team. The R Project
for Statistical Computing. 2013. Accessed
February 20, 2023. https://cran.r-project.org

18. Deppen SA, Blume JD, Kensinger CD,
et al. Accuracy of FDG-PET to diagnose
lung cancer in areas with infectious lung
disease: a meta-analysis. JAMA.
2014;312(12):1227-1236.

19. Wiener RS, Schwartz LM, Woloshin S,
Welch HG. Population-based risk of
complications following transthoracic
needle lung biopsy of a pulmonary nodule.
Ann Intern Med. 2011;155(3):137-144.

20. Massion PP, Antic S, Ather S, et al.
Assessing the accuracy of a deep learning
method to risk stratify indeterminate
pulmonary nodules. Am J Respir Crit Care
Med. 2020;202(2):241-249.

21. Kammer MN, Lakhani DA, Balar AB,
et al. Integrated biomarkers for the
management of indeterminate pulmonary
nodules. Am J Respir Crit Care Med.
2021;204(11):1306-1316.
[ 1 6 3 # 4 CHES T A P R I L 2 0 2 3 ]

http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref1
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref2
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref2
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref2
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref2
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref3
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref3
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref3
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref3
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref3
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref3
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref3
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref4
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref4
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref4
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref4
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref5
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref5
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref5
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref6
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref6
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref6
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref6
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref6
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref7
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref7
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref7
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref7
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref7
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref7
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref8
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref8
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref8
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref8
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref8
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref9
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref9
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref9
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref9
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref10
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref10
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref10
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref10
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref10
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref11
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref11
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref11
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref11
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref11
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref12
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref12
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref12
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref12
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref13
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref13
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref14
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref14
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref14
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref15
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref15
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref15
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref15
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref15
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref15
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref15
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref16
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref16
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref16
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref16
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref16
https://cran.r-project.org
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref18
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref18
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref18
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref18
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref18
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref19
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref19
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref19
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref19
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref19
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref20
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref20
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref20
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref20
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref20
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref21
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref21
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref21
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref21
http://refhub.elsevier.com/S0012-3692(22)04055-7/sref21

	Development and Validation of a Risk Assessment Model for Pulmonary Nodules Using Plasma Proteins and Clinical Factors
	Study Design and Methods
	Study Design and Participants
	Assay Technology
	Identification of Protein Biomarker Candidates
	Model Development Using Training Cohort
	Risk Reclassification Model
	Assessment of Model Performance in the Validation Cohort
	Statistical Analyses

	Results
	Study Population
	Model Derivation
	Model Performance

	Discussion
	Interpretation
	Funding/Support
	Financial/Nonfinancial Disclosures
	Acknowledgments
	References


