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Abstract

Moving from association to causal analysis of neuroimaging data is crucial to advance

our understanding of brain function. The arrow-of-time (AoT), that is, the known

asymmetric nature of the passage of time, is the bedrock of causal structures shaping

physical phenomena. However, almost all current time series metrics do not exploit

this asymmetry, probably due to the difficulty to account for it in modeling frame-

works. Here, we introduce an AoT-sensitive metric that captures the intensity of

causal effects in multivariate time series, and apply it to high-resolution functional

neuroimaging data. We find that causal effects underlying brain function are more

distinctively localized in space and time than functional activity or connectivity,

thereby allowing us to trace neural pathways recruited in different conditions. Over-

all, we provide a mapping of the causal brain that challenges the association paradigm

of brain function.
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1 | INTRODUCTION

The advent of functional neuroimaging has provided us with unique

insight into the complex spatiotemporal structure of brain function

(Damoiseaux et al., 2006). This organization is classically characterized

on the basis of association assessments such as functional connectiv-

ity (Friston, 2011) that was shown to reflect, for example, cognitive

status (Greicius et al., 2003; van den Heuvel et al., 2009) and disease

(Anderson et al., 2011; Bassett et al., 2012; Drysdale et al., 2017).

However, the limits of this approach in accurately characterizing neu-

ral communication and pathways are becoming increasingly appreci-

ated (Reid et al., 2019; Weichwald & Peters, 2021). Therefore, it is

crucial to move from association to causal frameworks to improve the

interpretation of functional neuroimaging datasets (Siddiqi

et al., 2022). For this purpose, various methods have been proposed

to extract causal structure from functional imaging time series. They

include dynamic causal modeling (Friston, 2009; Friston et al., 2003),

multivariate autoregressive modeling (Rogers et al., 2010; Valdés-Sosa

et al., 2005), Granger causality (Barnett & Seth, 2014; Barrett

et al., 2010), and more application-oriented variants of these (Seth

et al., 2015).

A shared limitation of these causal discovery approaches, however,

is their inability to capture the asymmetry induced by the so-called

arrow-of-time (Eddington, 1928) (AoT, Figure 1a). Generally speaking,

the AoT refers to the fact that, while the physical equations governing

the behavior of particles are invariant to time reversal (i.e., they are

unchanged if one considers et¼�t), in practice, time still flows in a

preferential direction (Aiello et al., 2008) and we hypothesize that this
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asymmetry encodes (part of) the causal structure of functional mag-

netic resonance imaging (fMRI) time series. The AoT has been studied

in various fields, including cosmology (Ellis, 2013), quantum mechanics

(Castagnino et al., 2005) and thermodynamics (Fröhlich, 2022). In this

latter case, in micro-scale nonequilibrium steady state systems, the

establishment of an AoT is tied to the notion of irreversibility (i.e., a

sequence of events during a process occurs with different probability

than the same sequence in time-reversed order) (Roldán &

Parrondo, 2010). Irreversibility is larger when there is more evidence

for a forward state sequence as opposed to its backward counterpart

(Roldán et al., 2015), and a larger irreversibility goes with a larger

breaking of detailed balance, and equivalently, the establishment of an

AoT (Lynn et al., 2022a; Lynn et al., 2022b).

Recent studies have pioneered the translation of these micro-

scale concepts to neuroimaging, capitalizing on the fact that irrevers-

ibility is then lower-bounded by the above information-theoretic cri-

terion (Roldán & Parrondo, 2010). In neurons from the salamander

retina, the irreversibility of spiking patterns differed as a function of

the visual stimulus (Brownian motion versus naturalistic paradigm)

(Lynn et al., 2022a; Lynn et al., 2022b). In the macaque brain, irrevers-

ibility in electrocorticography recordings differed between awake,

sleep and anesthesia states, when directly contrasting backward and

forward state sequence probabilities (Perl et al., 2021) as well as when

relying on forward and backward time-shifted correlation measures

(Deco, Sanz Perl, Bocaccio, et al., 2022). In human fMRI data, irrevers-

ibility also differed as a function of the performed task, both when

quantified probabilistically (Lynn et al., 2021) or when using a machine

learning framework to predict the directionality of time series (Deco,

Sanz Perl, de la Fuente, et al., 2022).

Here, we introduce a new AoT-sensitive multivariate metric and

apply it to high-resolution fMRI time series from the Human Connec-

tome Project (Van Essen et al., 2013) (HCP). This metric is a multivariate

extension of a previously defined measure (Hernández-Lobato

et al., 2011), and relies on the comparison of residuals of linear models

identified from forward versus backward time series. More precisely, we

define τ, the AoT strength, as the difference between non-Gaussianity

of the residuals of multivariate autoregressive models of forward time

series and backward time series (Figure 1b and Equation (2), details in

Section 2). These residuals are expected to be less Gaussian when

computed from forward time series (Shimizu et al., 2006), hence we

expect τ to be positive. This metric is applied on fMRI data from

100 subjects in the resting state and when performing seven different

tasks, thereby providing the AoT strength in each brain region, each

condition, and as a function of time during paradigms.

We find that in almost all conditions, the AoT strength averaged

over brain regions is positive, that is, the AoT is detected in fMRI time

series and shapes their dynamics. Then, we show that patterns of brain

regions acting as causal triggers or targets are more sharply localized in

space and time as compared to classical activity or connectivity patterns,

complementing the “networked-brain” paradigm that has emerged in

recent years (Betzel & Bassett, 2017). Finally, the temporal fluctuations

of τ during a task paradigm allowed us to identify a causal pathway of

neural activations supporting the task. Overall, our results provide

unique insight into the causal structure of brain function by leveraging

the asymmetric nature of the passage of time to which almost all clas-

sical functional neuroimaging metrics are blind (Pearl, 2000).

2 | MATERIALS AND METHODS

2.1 | Data acquisition and preprocessing

We considered S¼100 unrelated healthy subjects from the Human

Connectome Project S900 data release (46 males, 54 females, mean

F IGURE 1 Identifying causal
effects in neuroimaging time series
using the arrow-of-time. (a) Since
cause precedes effect, causal effects
in multivariate time series cannot be
identified from metrics that are blind
to the AoT. Such symmetric metrics,
for example, mean or average
correlation over time points, are equal

in forward and backward data. In
contrast, asymmetric metrics are
different in forward and backward
data as they are sensitive to the
arrow-of-time, thereby bearing the
potential of capturing causal effects.
(b) We use fMRI time series acquired
during resting state and seven
different tasks. The AoT signature is
evaluated in these time series using
Equation (2), and the amplitude of the
causal effect is assessed by
comparison against null time series
with no causal effects.
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age=29.1±3.7 years). We used fMRI recordings acquired at rest and

during seven tasks (emotion, gambling, language, motor, relational,

social, working memory), for which ethical approval was obtained within

the HCP. Our analyses focused on the first of two available resting state

sessions, and on each available task session, purely on the left–right

phase encoding direction runs. Right–left phase encoding data were

examined in supplementary analyses (see Supplementary Material).

To generate regional fMRI time courses, for each run of interest,

minimally preprocessed data from the HCP (Glasser et al., 2013; Van

Essen et al., 2013) were taken as input. Nuisance signals were first

removed from the voxel-wise fMRI time courses, including linear and

quadratic trends, the six motion parameters and their first derivatives,

as well as the average white matter and cerebrospinal fluid signals and

their first derivatives. In our main analyses, the global signal was also

included as a confounding variable. In additional analyses (see Supple-

mentary Material), we contrasted the obtained results to those with-

out global signal regression, and also examined the impacts of

performing scrubbing as a final preprocessing step. Voxel-wise time

courses were averaged within each region of a parcellation containing

400 cortical (Schaefer et al., 2018) and 19 subcortical (Fischl

et al., 2002; Glasser et al., 2013) areas, for a total of R¼419 parcels,

and eventually z-scored. To complement these analyses, we also con-

sidered cortical atlases containing 200 and 800 regions (Schaefer

et al., 2018) (see Supplementary Material).

2.2 | AoT quantification

To quantify AoT strength across brain regions, we extend a previously

defined univariate metric (Hernández-Lobato et al., 2011) to the mul-

tivariate case. First, we fit a first-order multivariate autoregressive

model to concatenated fMRI time series population-wise (Liégeois

et al., 2019), both in the forward and in the backward directions as

shown in Equation (1):

xt ¼ Af �xt�1þεft Forwardmodel

xt ¼ Ab �xtþ1þεbt Backwardmodel

(
ð1Þ

where xt is of size R�1, Af and Ab each have size R�R, and the resid-

uals εft and εbt are of size R�1. The model parameters are estimated

using ordinary least squares (Stoica & Moses, 2005), and successive

samples that originate from separate subjects (owing to the concate-

nation step) are excluded. Then, the presence of causal effects in dif-

ferent brain regions is assessed by comparing non-Gaussianity of

forward and backward residuals. This was motivated by the fact that

residuals of linear models of true cause-effect links (in this case, the

forward model) are more non-Gaussian than the residuals of the

reversed linear models (in this case, the backward model) (Shimizu

et al., 2006). Concretely, with T the total number of time points, we

define Ef ≜ εft
� �

t¼1,…,T and Eb ≜ εbt
� �

t¼1,…,T as the forward and back-

ward error distributions. Regional AoT strength τ ið Þ is then esti-

mated as:

τ ið Þ¼ K Ef ið Þ
� �

�K N 0,1ð Þð Þ
h i2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Forward non�Gaussianity

� K Eb ið Þ
� �

�K N 0,1ð Þð Þ
h i2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Backwardnon�Gaussianity

8i� 1,…,Rf g

ð2Þ

where K �ð Þ denotes the kurtosis of a distribution, and N 0,1ð Þ stands
for the standard normal distribution. In the case of a marked AoT,

non-Gaussianity of residuals is larger in the forward than in the back-

ward model, and τ ið Þ is positive. From Equation (2) it is seen that in

that case, region i is primarily receiving information from the rest of

the brain, hence we refer to it as a causal sink. By symmetry, we say

that if τ ið Þ is negative, brain region i is a causal source. Note, however,

that a negative value of τ suggests that one model assumption has

been violated, for example, due to the presence of an unobserved var-

iable, or due to different delays in hemodynamic responses, and inter-

pretation of negative values of τ ið Þ should be cautious. Finally, we also

devised an alternative metric relying on the Kullback–Leibler diver-

gence to quantify AoT strength (see Supplementary Material for

details).

2.3 | Regional AoT patterns

Using n�s samples, regional AoT patterns were extracted for each par-

adigm of interest. For the compatible tasks, the same process was

also conducted after the removal of baseline epochs. To do so, indi-

vidual binarized paradigm time courses (0= rest, 1= task) were con-

volved with the canonical hemodynamic response function from

SPM12, and resulting time points with a value larger/lower than 0.5

were treated as task/rest samples. Of note, since less samples are

then available per subject, the obtained AoT estimates gather data

from a more extended set of subjects compared to the full

recording case.

To study the contribution of separate networks to the AoT pat-

terns, each cortical brain region was assigned to one of seven canoni-

cal whole-brain resting state networks (Yeo et al., 2011) through a

majority voting procedure. Positive- and negative-valued AoT contri-

butions were separately quantified.

2.4 | Significance assessment

To assess AoT significance, comparison was performed to null data

for which causal effects were destroyed. For this purpose, for each

paradigm at hand, amplitude-adjusted phase randomization (Theiler

et al., 1992) was applied to the original time courses to generate

nn ¼100 null realizations. We considered this surrogate procedure in

order to destroy causal effects while preserving the original auto-

correlation structure and sampling distribution, including potential

non-Gaussian effects. For each set of null data, using n�s samples, AoT

strength was calculated across 100 folds, and the median was taken

as an estimate of null regional AoT strength. The mean and standard
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deviation were quantified for each regional null distribution, and τ was

deemed significant if it exceeded the Bonferroni-corrected 2:5
R th or

100� 2:5
R

� �
th null percentiles (τ� and τþ in Figure 3, respectively).

2.5 | Software availability

All the scripts used in this work were implemented and tested in

MATLAB, versions 2014b, 2020b and 2021a (MathWorks, Natick,

MA, USA). They can be freely downloaded from the following link:

https://github.com/TiBiUan/AoT_Benchmarking.git. For figure gener-

ation, we used the cbrewer and BrainNet Viewer (Xia et al., 2013) (ver-

sion 1.7) utilities.

3 | RESULTS

3.1 | The AoT characterizes cognitive status

We first evaluate τ in all conditions as a function of the number of

time points used. The AoT strength was computed for each brain

region across 100 folds in which subjects were randomly ordered and

their time courses were concatenated. The median across folds was

taken as an estimate of regional AoT strength, and averaging was then

performed across regions to derive a whole-brain AoT heuristic,

referred to as τ. Figure 2 (top) shows τ as a function of the total

amount of considered samples and for all paradigms. In the resting

state case (left panel), τ progressively increased as more time points

were included, and started to plateau from ns ¼8000 samples, at

τ≈0:01. Thus, when sufficient data is available, the AoT is detected in

resting state fMRI time series, confirming the presence of an underly-

ing causal structure.

For task paradigms (middle and right panels), τ also progressively

stabilized as more samples were used, but the asymptotic values dif-

fered by task: while no sizeable τ was detected for the gambling (pur-

ple) and emotion (yellow) tasks, it was negative for the social task

(pink), and positive for all others at varying intensities. The largest

AoT was obtained for the motor task, at τ≈0:02. Thus, whole-brain

AoT strength also varies as a function of the cognitive task being per-

formed. The negative AoT found in the social task is surprising and

suggests that a model assumption has been violated, for example, the

presence of an important non-observed variable (such as a visual cue),

or spatial variation in hemodynamic delays (Buxton et al., 2004).

For subsequent analyses, we focused on the results obtained

using n�s ¼8000 samples, as AoT convergence is observed with this

amount of data. Figure 2 (bottom) shows estimated AoT strength τ

across regions as a violin plot for each paradigm, as well as when

quantified from surrogate data having underwent amplitude-adjusted

phase randomization (Theiler et al., 1992), that is, non-causal null data.

In the null case, τ was close to zero for all regions, spanning a nar-

rower range of values than for any paradigm. With the exception of

the emotion and gambling tasks, while median τ across regions was

close to zero, mean τ was not, denoting that the aforementioned

whole-brain causal effects are induced by a subset of brain areas.

3.2 | Mapping the causal brain

To determine which brain regions exhibit a significant AoT, we com-

pared them to their respective non-causal null distributions (Theiler

F IGURE 2 The arrow-of-time is detected in functional magnetic resonance imaging time series. Top—Estimated AoT strength across regions
(τ) as a function of the number of available samples at rest (left) and for seven different tasks (center, right), with central lines denoting the mean
over regions of interest, and surfaces the standard error of the mean, across subjects. Bottom—Distribution of τ across regions using ns ¼8000
time points for estimation in non-causal surrogate data (NULL, shown here, for indicative purposes, when derived from resting state time
courses), at rest, and in seven tasks. Emot., emotion; WM, working memory.
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et al., 1992). Figure 3a shows the results at rest (left), and for the

motor task when analyzing full recordings (center) or only task epochs

(i.e., having excluded baseline periods, right). Figure 3b summarizes

network contributions to causal effects in all paradigms where contri-

butions to positive and negative τ were distinguished. From

Equation (2), it is observed that a positive τ corresponds to the pres-

ence of a causal sink, that is, the variable is the target of the causal

effect. By symmetry, we associate negative values of τ to the pres-

ence of a causal source, that is, the variable triggers the causal effect

(details on the interpretation of positive and negative AoT values are

found in Section 2).

At rest, 184 regions (43.91%) showed a significant AoT, with a

mild right lateralization, and positive-valued τ dominated (130 to

54 negative values). The most significant areas primarily spanned the

temporal, prefrontal and parietal cortices, and belonged to the default

mode and fronto-parietal control networks. Some canonical hubs of

these high-level networks showed little significance, such as the pos-

terior cingulate cortex. During the motor task, 284 regions (67.78%)

displayed significant causal effects, with no lateralization, and positive

values still dominated (214 to 70 negative values). Contributions from

the limbic and somatomotor networks were seen in addition to the

default mode and fronto-parietal control ones. When excluding base-

line moments, 333 regions (79.47%) became significant, with no evi-

dent lateralization, and positive values continued to be more

prominent (237 to 96 negative ones). Contributions within the soma-

tomotor cortical stripe became stronger, and some other areas with

marked negative values were also newly resolved with regard to the

two above cases, such as a low-level visual region (R218, VIS18) and a

prefrontal region (R178, PFC13). Overall, these results support the

presence of stronger causal mechanisms when a subject engages into

the motor task as compared to resting state.

More broadly across task paradigms (Figure 3b), negative-valued

τ was primarily observed within the visual network, indicating that it

consistently acts as a causal trigger. The only cases where this did not

hold true were the language task, which is the only one that involves

auditory rather than visual stimulation, and the resting state. Further-

more, the visual network was also dominant in terms of positive con-

tributions for the working memory and the relational tasks, indicating

that it also acts as a causal target in these tasks.

3.3 | From causal maps to neural mechanisms

The differences found between full and task-only recordings

(Figure 3a, middle-right) hint at strong temporal fluctuations of the

AoT. To ascertain this, we performed a sliding window analysis on the

motor task paradigm with a window width of W¼20 time points slid

by one sample until a full AoT strength time course is computed for

each region, and using concatenated data from all 100 subjects

(Figure 4a, top). Obtained results were contrasted to the activity time

courses temporally smoothed with a moving average filter of length

W, and to dynamic functional connectivity time courses generated

using identical window settings and Pearson's correlation coefficient

as functional connectivity measure. In this latter case, we derived a

F IGURE 3 Distinct regional arrow-of-time patterns are observed across paradigms. (a) At rest (left), for the full motor task (middle) and when
only motor task epochs are considered (right), significant regions in terms of AoT strength. τm (τM): minimum (maximum) value of τ, τ� (τþ): lower
(upper) significance threshold at p¼0:05 using Bonferroni correction. (b) For each analyzed paradigm, respective contribution of each of seven
canonical networks (Yeo et al., 2011), shown separately for positive-valued and negative-valued τ. All areas (including non-significant ones) are
included in this representation. The size of a pie chart is proportional to overall AoT strength in the paradigm at hand.
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regional measure by summing all functional connections of an area to

the rest of the brain within each temporal window.

As expected, clear increases in activity occurred during each of

the task epochs in motor regions subserving hand, foot or tongue

movement. Connectivity of a given region to the rest of the brain was

consistently either positive (denoting a temporally stable regime with

more prominent correlation to the rest of the brain), or negative (more

prominent anti-correlation). On the whole, activity and connectivity

fluctuations were relatively diffuse in time (spanning full task epochs)

and in space (involving many different areas). In contrast, causal effect

time courses were highly localized in space (typically only applying to

individual regions at any given time point), and occurred within

shorter time intervals with fast transition from positive (causal target)

to negative (causal source) values.

Figure 4b exemplifies the evolution of causal effects when tran-

siting from baseline to the first tongue movement epoch (see

highlighted area in panel A, bottom), for the four left hemispheric

brain regions with the largest extent of temporal fluctuations of τ

within this interval. Consistent with the paradigm's demands, these

regions were motor (SM12 and SM14, for tongue movement), visual

(VIS24, for parsing the provided instructions), and prefrontal (PFC13,

to trigger movement execution). When the visual cue is provided to

the subjects, VIS24 becomes a causal sink. Shortly afterwards, PFC13

becomes a sink, as visual information is treated frontally to make the

decision to move. This information is then transmitted to the rest of

the brain, as PFC13 becomes a causal source (see the temporally

localized negative values in its time course), while SM14 and, later on,

SM12 become sinks. Finally, SM14 further transmits the information

and becomes a source to trigger motion. Figure 4c schematically sum-

marizes these observations. Note that regional intensities in temporal

fluctuations were also reproducible between the first and the second

tongue movement epoch, as evidenced by a significant correlation

between both spatial patterns (Spearman's correlation R¼0:6,p¼0;

see Supplementary Material for details).

4 | DISCUSSION

Here, we introduced a new AoT-sensitive metric that captures causal

effects in multivariate time series. Applied to fMRI data, we showed

that causal effects (i) shape brain function in all conditions, (ii) are

highly localized in space and time, and (iii) reflect underlying neural

mechanisms. These results are found to be robust to head motion, to

the use of a different metric of non-Gaussianity, and to varying pro-

cessing strategies (see Supplementary Material). While other methods

have attempted to assess causality in neuroscience and neuroimaging

(Cekic et al., 2018; Friston et al., 2013; Roebroeck et al., 2011; Seth

et al., 2015), or to quantify the AoT (Deco, Sanz Perl, Bocaccio,

et al., 2022; Deco, Sanz Perl, de la Fuente, et al., 2022; Lynn

et al., 2021; Perl et al., 2021), to the best of our knowledge, we are

the first to exploit the AoT-related asymmetry of neuroimaging time

series to assess the causal brain.

F IGURE 4 The arrow-of-time identifies spatiotemporally localized causal effects in the motor task. (a) Measures of causal effects (τ, top),
activity (middle), and connectivity (bottom) during the motor task paradigm. The paradigm consists of movement epochs (left and right hands and
feet, tongue), separated by resting blocks. (b) Detailed view of causal effects in left hemispheric brain regions showing the strongest AoT
fluctuations in the interval highlighted in panel (a) (tongue movement). Positive values suggest that the region acts as a sink for causal effects,
while negative values suggest that the region acts as a source of causal effects. (c) Visualization of the four brain regions in panel (b), together
with a putative causal pathway recruited when the subjects start moving their tongue. The dashed line between VIS24 and PFC13 means that
direct information flow between these two areas cannot be inferred from only the four analyzed regions, and likely involves intermediates.
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4.1 | The AoT provides a new perspective into the
causal structure of time series

The term “arrow-of-time” has been coined by Sir A. Eddington almost

a century ago to express this one-way property of time which has no

analogue in space (Eddington, 1928). Rather surprisingly, identifying

the AoT from time series is not trivial and most current AoT detection

methods rely on deep learning (Deco, Sanz Perl, de la Fuente,

et al., 2022; Seif et al., 2020; Wei et al., 2018). Other approaches

instead exploit simpler features such as the distribution (Hernández-

Lobato et al., 2011) or the independence (Bauer et al., 2016) of linear

model residuals in forward and backward time series. The latter mea-

sures, from which we defined τ in Equation (2), also come with a natu-

ral interpretation in terms of causality as they leverage causal

inference theory to detect the AoT (Bauer et al., 2016; Shimizu

et al., 2006). Therefore, the interpretation of τ in terms of causality

comes with all causal inference assumptions and guarantees, which is

not necessarily the case of other causality detection methods used in

neuroimaging studies that encode different forms of causality

(Pearl, 2000; White et al., 2011), cf. hereunder.

Identifying causal effects rather than association effects in multi-

variate time series comes with estimation challenges. For example, it

is seen from Figure 2 (see also Supplementary Material for further evi-

dence) that at least �1000 fMRI time points are required to identify

stable AoT patterns. In contrast, stable patterns of functional connec-

tivity, that is, of correlation, can be identified from as little as around

100 fMRI time points (Van Dijk et al., 2010). Exploiting the non-

Gaussianity of time series through kurtosis also requires cautious esti-

mation of group effects as this metric relates to outliers in a distribu-

tion. For this reason, we took several precautions to maximize the

stability of our maps: we evaluated our group (original and null) results

from the median over folds (thus accounting for the selection of differ-

ent subjects and making our results more generalizable), and adopted

the most efficient sample selection scheme after evaluating several

candidates (see Supplementary Material). Resorting to non-

Gaussianity of linear models was important in order to unambiguously

identify causal structures; indeed, linear-Gaussian approaches usually

only lead to a class of possible models equivalent in their conditional

correlation structure and from which no unique causal structure can

be inferred (Shimizu et al., 2006; Spirtes et al., 2000).

4.2 | The association brain versus the causal brain

The current perception of brain function has been built from associa-

tion metrics of functional neuroimaging data, thus probing the ‘associ-
ation brain’. For example, functional connectivity (Biswal et al., 1995;

Friston, 2011; Power et al., 2011), canonical resting state networks

(Damoiseaux et al., 2006; Yeo et al., 2011), and most representations

of brain dynamics such as (innovation-driven) co-activation patterns

(Karahano�glu & Van De Ville, 2015; Liu, 2016), dynamic modes

(Casorso et al., 2019), or sliding window-based states (Allen

et al., 2014; Lurie et al., 2020; Preti et al., 2017) are defined from

association metrics, for example, correlation, which are blind to

causality. By leveraging advances in causal inference, we defined a

simple metric that exploits time series asymmetry induced by causal

effects. This shift of the methodological paradigm lays the ground to a

shift of canonical representations of brain function and dynamics. Fur-

thermore, a causal representation of brain function also comes with

promises for the cognitive and clinical use of neuroimaging data as

the causal brain is expected to more clearly reflect underlying neural

mechanisms (Weichwald & Peters, 2021), as illustrated in Figure 4b,c.

Recent neuroimaging endeavors further substantiate this potential:

after training a deep learning network to distinguish between tempo-

ral segments of forward and backward fMRI time series, Deco et al.

(Deco, Sanz Perl, de la Fuente, et al., 2022) not only observed a vari-

able AoT strength (inferred from classification accuracy on unseen

data) across cognitive states, but also between healthy subjects and

patients suffering from bipolar disorder, attention deficit hyperactivity

disorder or schizophrenia. In another study leveraging the same

framework on electrocorticography data, de la Fuente et al. (de la

Fuente et al., 2023) also revealed that deep sleep and ketamine-

induced anesthesia lowered the differences between forward time

series and their inverted counterparts, that is, decreased AoT

strength.

Our results show that the topology of the causal brain exhibits

strong differences as compared to the association brain. Specifically,

the dynamic tracking of the AoT in Figure 4a revealed how remarkably

localized it was with regard to functional activation and connectivity.

While these two common measures reflect the overall simultaneity in

activation across regions, when information has already arrived and

been locally amplified (for instance, somatomotor areas in our motor

task example), our AoT metric captures the arrival and departure of

information. It thus more finely pinpoints the spatial entry and exit

points of neural pathways, as well as their exact temporality. As a con-

sequence, time-averaged representations of the causal brain might be

harder to interpret as they destroy the rich temporal structure of

causal effects (Figure 3a). In particular, further work will be required

to efficiently characterize the causal brain, for example, through causal

networks accounting for its specificities.

4.3 | Differences with respect to popular causal
discovery approaches

Here, we wish to elaborate on how our AoT-sensitive metric differs

from existing approaches that seek to extract causal information from

neuroimaging data. For an evaluation of their ability, see References

(Smith et al., 2011). We specifically focus on Granger causality

(Barnett & Seth, 2014; Barrett et al., 2010) and the Linear Non-

Gaussian Acyclic Model (LiNGAM) for causal discovery

(Shimizu, 2014; Shimizu et al., 2006; Shimizu et al., 2011) in what fol-

lows, as direct links to our methodology exist, but conceptually similar

arguments can also be made with respect to other popular methods

(e.g., dynamic causal modeling (Friston, 2009; Friston et al., 2003)).

In short, our proposed metric exploits different time series prop-

erties, and therefore comes with a fundamentally different interpreta-

tion. Similarly to our approach, given multivariate time series xt,
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t¼1,…,T, Granger causality relies on a vector autoregressive

(AR) representation: xt ¼A �xt�1þεt. However, Granger causality is

encoded in the matrix of linear coefficients A,
1 whereas our method

focuses on the residuals εtf gt¼1,…,T (cf. Equations (1) and (2)). There-

fore, Granger causality can be considered to exclusively exploit linear

and Gaussian features of time series, whereas our approach instead

harvests their non-Gaussianity. As for LiNGAM, it exploits the non-

Gaussianity of residuals like our approach, but it does so from a struc-

tural equation model in which causal influences are hypothesized to

be instantaneous: xt ¼B �xtþεt. Furthermore, it comes with the

intrinsic limiting assumption that the causal structure of the data

obeys a directed acyclic graph (that is, that B is lower triangular).

The other key difference between Granger causality/LiNGAM

and our approach is that unlike our metric, these two methods are

insensitive to the AoT and the associated concept of irreversibility, as

they do not contrast times series to their time-reversed counterparts.

As an insightful illustration for the case of Granger causality, consider

the classical forward AR representation of a univariate Gaussian, unit-

norm and centered time series xt ¼ a �xt�1þεft , t¼1,…,T, where a is a

scalar coefficient and εft
� �

t¼1,…,T are normally distributed residuals.

When instead identified from backward time series, it can easily be

shown that the AR representation still involves the same parameter a;

that is, we have xt ¼ a �xtþ1þεbt , where εbt
� �

t¼1,…,T are again normally

distributed residuals. Two conclusions can be drawn from this exam-

ple: first, it is not possible to detect the AoT from the regression coef-

ficients of AR models. Second, the interpretation of the regression

coefficient “a” in terms of causality requires the prior knowledge of

the AoT, as xtþ1 does not cause xt. These fundamental distinctions are

summarized in Table 1. In the Supplementary Material, we also pro-

vide a network-level example in which we explicitly show that the

effects captured by Granger causality, LiNGAM and our method are

different.

Importantly, it should be emphasized that a precise delineation of

the forms of causality detected by different approaches is far from

trivial, as illustrated by recent controversies on the topic

(Grassmann, 2021). In the present work, we stick to a high-level over-

view of salient points, but leave an exact characterization for

future work.

All in all, the sensitivity of our metric to the AoT thus bears the

promise to capture causal effects to which more classical alternatives,

such as Granger causality, are blind. Toward this aim, the exploitation

of non-Gaussian features from time series is a critical asset, since

causal effects cannot be determined in a Gaussian setting (Dodge &

Rousson, 2001; Fischl et al., 2002). In fact, it is tempting to draw a

conceptual parallel with the advent of independent component analy-

sis (ICA) in the extraction of functional brain networks (Damoiseaux

et al., 2006): functional time courses were assumed to result from a

linear mixture of independent sources, and according to the central

limit theorem, this mixture would tend toward a Gaussian distribution.

Thus, the maximization of independence (implemented in practice,

among other choices, through the maximization of non-Gaussianity)

enabled the extraction of the sources and kick-started a new chapter

of fMRI analysis (Calhoun & Adali, 2006). Similarly, one may hope that

relying on non-Gaussianity in causal frameworks could help unravel

the pith and marrow of brain causal effects, compared to Gaussian

frameworks that would instead capture a more indistinct mixture of

intermingled interactions.

4.4 | Limitations and further considerations

The proposed characterization of causal effects comes with the

assumptions and limitations of the modeling framework in Equa-

tions (1) and (2). In particular, we limit our assessment to linear and

non-Gaussian causal effects. This is motivated by the indeterminacy

inherent to linear-Gaussian assessments (Shimizu et al., 2006), but

does not mean that causal effects cannot be Gaussian. In future work,

it will be important to address to what extent non-Gaussianity of the

residuals is related to nonlinearity of the system.

A good strategy to generalize our framework could be to harvest

inspiration from the technical improvements that have been intro-

duced for popular causal discovery approaches: for example, Granger

causality has been extended to the nonlinear case (Marinazzo

et al., 2011; Runge et al., 2019; Wismüller et al., 2021), while LiN-

GAM's application was made feasible on chain graphs (Kawahara

et al., 2010), in nonlinear settings (Zhang & Hyvärinen, 2009), and in

parallel on different datasets sharing the same causal ordering

(Shimizu, 2012). Other possible ways forward could be to generalize

our autoregressive modeling strategy to a structural vector autore-

gression model (Hyvärinen et al., 2010), or to consider convergent

cross mapping (Sugihara et al., 2012) as an alternative to characterize

causal influences.

Robustness to violation of causal sufficiency, that is, the presence

of non-observed variables, would also need to be further assessed

(Runge, 2018; Zhang, 2008), potentially by including additional experi-

mental variables of interest such as a record of the visual cue or elec-

trophysiological variables. Then, comparisons across paradigms must

be interpreted with caution as while the total number of samples was

the same, the length of the paradigms was different. Thus, a distinct

number of subjects contributed to the estimates in each case. This

directly relates to the question of individual as opposed to

TABLE 1 Main differences between our method (Equations (1)
and (2)), Granger causality and LiNGAM.

Our method Granger causality LiNGAM

Autoregressive

model

Autoregressive

model

Structural equation

model

Exploits model

residuals

Exploits model

coefficients

Exploits model

residuals

Non-Gaussian

framework

Gaussian framework Non-Gaussian

framework

Sensitive to the

AoT

Insensitive to the

AoT

Insensitive to the

AoT

1Precisely, xk is said to Granger cause xl if and only if Al,k is non-zero (Lutkepohl, 2005).
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population-wise causal effects, and further work will explore the

potential of the causal brain as a subject-level marker (Finn

et al., 2015; Van De Ville et al., 2021). Finally, our framework is

directly applicable to other neuroimaging modalities, for example,

electro- or magneto-encephalography, but also outside of neuroimag-

ing to any multivariate time series dataset.

5 | CONCLUSION

Together, our findings suggest that a causal assessment of neuroimag-

ing data indeed provides new insights into the neural mechanisms

underlying brain function. More precisely, our mapping of the causal

brain hints at key differences as compared to association paradigms of

brain function during rest and task, for example, in terms of spatial

and temporal localization. In light of this, brain imaging studies have

an opportunity to move beyond classical association paradigms and

unveil information contained in neuroimaging data to which current

metrics are blind.
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