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Abstract

In this study, hyperpolarized 13C MRI (HP-13C MRI) was used to investigate changes

in the uptake and metabolism of pyruvate with age. Hyperpolarized 13C-pyruvate

was administered to healthy aging individuals (N = 35, ages 21–77) and whole-brain

spatial distributions of 13C-lactate and 13C-bicarbonate production were measured.

Linear mixed-effects regressions were performed to compute the regional percent-

age change per decade, showing a significant reduction in both normalized
13C-lactate and normalized 13C-bicarbonate production with age: �7%�2% per

decade for 13C-lactate and �9%�4% per decade for 13C-bicarbonate. Certain

regions, such as the right medial precentral gyrus, showed greater rates of change

while the left caudate nucleus had a flat 13C-lactate versus age and a slightly increas-

ing 13C-bicarbonate versus age. The results show that both the production of lactate

(visible as 13C-lactate signal) as well as the consumption of monocarboxylates to

make acetyl-CoA (visible as 13C-bicarbonate signal) decrease with age and that the

rate of change varies by brain region.
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1 | INTRODUCTION

Aging is associated with well documented changes in brain physiology

and cognitive performance (L�opez-Otín et al., 2013). Cerebral blood

flow (CBF) tends to decrease in the brain with age, while the rate of

oxygen consumption (CMR02) increases slightly (Hanzhang

et al., 2011), resulting in a net decrease in venous oxygenation. Imag-

ing with fluorodeoxyglucose positron emission tomography ([18F]

FDG-PET) has demonstrated a 7% per decade decrease in FDG

uptake with age (Greve et al., 2016).

These changes in oxygen consumption versus age are consistent

with decreasing usage of glucose in nonoxidative metabolic pathways

and/or increasing usage of alternative energy substrates such as

ketones in the brain with age. Glucose can be metabolized nonoxida-

tively via lactate production as well as the nonoxidative branch of the

pentose-phosphate pathway. The degree of nonoxidative metabolism

of glucose has been estimated in vivo using the oxygen–glucose index

(OGI) (the ratio between 15O2 and 18F-FDG uptake measured with

PET). The OGI has been shown to be less than 6.0 (the value for

purely oxidative glucose metabolism) throughout much of the brain

and varies regionally (Vaishnavi et al., 2010). The OGI increases

throughout the brain as a part of physiological aging (Goyal

et al., 2017). Whether or not this change is mainly due to decreasing

lactate production in the brain, as hypothesized by Goyal et al. (2017),

is still under investigation (Drulis-Fajdasz et al., 2018).

Lactate plays an important role in the brain (Pellerin et al., 1998),

as it is involved in neuroprotection during ischemia (Castillo

et al., 2015), the formation of long-term memories (Suzuki

et al., 2011), hippocampal neurogenesis (Lev-Vachnish et al., 2019),

and signaling (Magistretti & Allaman, 2018). Current methods for

probing lactate production in the human brain, namely proton mag-

netic resonance spectroscopy (MRS) to measure the lactate pool size

or PET to measure the OGI, provide an incomplete picture. Proton

MRS can be used to measure the net lactate concentration, which

does increase locally during brain activation (Koush et al., 2019, 2021;

Mangia et al., 2006). The OGI reflects the relative rate of all nonoxida-

tive uses of glucose, which includes lactate production and other

fates.

In this study, HP-13C MRI was used to measure 13C-metabolite

signals in a cohort of 35 cognitively normal individuals to investigate

global and regional changes in 13C-metabolite production with age.

This recently developed method enables imaging of the conversion of
13C-labeled substrates into downstream 13C-labeled metabolites, such

as the conversion of 13C-pyruvate to 13C-lactate or 13C-bicarbonate.

The relative signal from each downstream 13C-labeled metabolite pro-

vides information about the chain of events that results in that down-

stream metabolite. Thus 13C-lactate signal is a marker of the

anaerobic conversion of 13C-pyruvate to 13C-lactate, while 13C-

bicarbonate signal is a marker of 13C-pyruvate conversion to acetyl-

CoA. The major rate-limiting factors for these reactions include the

transmembrane transport of pyruvate and lactate through monocar-

boxylate transporters, the local availability of the required enzymes

and co-factors, as well as the enzyme activities and pre-existing

metabolite concentrations. We hypothesized that 13C-lactate signal

would decrease with age in parallel to the decreasing OGI observed

using PET imaging (Goyal et al., 2017).

2 | MATERIALS AND METHODS

The cohort consisted of 35 individuals (male: 14, female: 21) ranging

in age from 21 to 77. All but one of the participants were screened

using the Montreal Cognitive Assessment (MoCA) to exclude individ-

uals with cognitive impairment. The study was conducted under a pro-

tocol approved by the Research Ethics Board of Sunnybrook Health

Sciences Centre and approved by Health Canada as a Clinical Trial

Application. Informed written consent was provided by all

participants.

2.1 | Scan workflow

The experimental workflow and the image postprocessing used for

data analysis is shown in Figure 1. A General Electric SPINLab polari-

zer system (GE, Waukesha, WI) was used to polarize each 1.47 g sam-

ple of [1-13C]pyruvic acid (Sigma Aldrich, St. Louis, MO) as previously

described (Lee et al., 2020). Prior to scanning, a 20-gauge intravenous

catheter was inserted into the forearm of each participant to allow for

the injection. The volume for injection was preset based on a dose of

0.43 mL/kg of the 250 mM hyperpolarized [1-13C]pyruvate solution.

Participants were positioned within a GE MR750 3.0T MRI scan-

ner (GE Healthcare, Waukesha, WI) with a custom-built 13C head coil

(26 cm diameter, 25 cm long, 8-rung lowpass birdcage). The dose of

hyperpolarized 13C-pyruvate was injected at 4 mL/s, followed by a

20 mL saline flush at 5 mL/s. Immediately following the flush, whole-

brain 13C-lactate, 13C-bicarbonate, and 13C-pyruvate images were

acquired every 5 s over a 60 s imaging window, with 1.5 cm isotropic

spatial resolution.

Each volume-timepoint was imaged using 24 excitations to

encode the 3D volume, with net tip angles of 80� for 13C-lactate, 80�

for 13C-bicarbonate, and 11� for 13C-pyruvate (Cunningham

et al., 2008; Geraghty et al., 2018). The pulse sequence also included

a slab-localized spectroscopy acquisition from a 4 cm thickness axial

slab centered on the corpus callosum, applied once each 5 s, after

each block of 13C-metabolite imaging. This spectroscopy data were

used for quality control of the metabolic image acquisitions.

After the 13C imaging and spectroscopy were collected, the par-

ticipants remained in the scanner in the same position, while the 13C

head coil was replaced with an 8-channel 1H neurovascular array

(Invivo Inc., Pewaukee, WI) to permit standard anatomical imaging

(axial fast spoiled gradient echo images, FOV 25.6 � 25.6 cm2, 1 mm

isotropic resolution, TR 7.6 ms, TE 2.9 ms, flip angle 11�). Foam pad-

ding was used to minimize head movement between the metabolic

and anatomic scans. The 13C-images were reconstructed and

resampled in Matlab (MATLAB, 2019) and saved in DICOM format for

further analysis.
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2.2 | Regional metabolite signal normalization

The regional 13C-metabolite signals were computed using the Brain-

COLOR labeling protocol (Klein & Tourville, 2012). First, the

T1-weighted images were parcellated using the SLANT (Spatially

Localized Atlas Network Tiles) method (Huo et al., 2019), providing

132 regions for each participant. The 13C-lactate images were regis-

tered to the corresponding T1-weighted images with an affine

(a)

(b)

F IGURE 1 Schematic of the
experiment workflow used. (a) Prior
to injection, [1-13C]pyruvate is
polarized for up to 3 h prior to
dissolution and release by a
pharmacy technician. (b) The 13C
image acquisition starts at the end
of injection of polarized 13C-
pyruvate and 13C-metabolite images

covering the whole brain are
acquired. Then conventional
anatomical images are acquired,
which are parcellated into
132 regions during postprocessing.
The parcellation maps are then used
to compute mean 13C-metabolite
signals for each atlas region.
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F IGURE 2 Heatmap of the log transformed lactate-to-pyruvate ratio, log(Lp), for each atlas region, with age on the vertical axis and the
BrainCOLOR atlas region across the horizontal axis.
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F IGURE 3 Heatmap of the log transformed bicarbonate-to-pyruvate ratio, log(Bp), for each atlas region, with age on the vertical axis and the
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registration using FSL (Jenkinson et al., 2002). The resulting transfor-

mation matrix was then used to register the corresponding 13C-

bicarbonate and 13C-pyruvate images for each participant. The

participant-specific parcellation map was used to compute the mean
13C-pyruvate, 13C-lactate, and 13C-bicarbonate signal for each region

in each participant.

To normalize for the variable polarization of the 13C-pyruvate

substrate at the time of delivery, each regional 13C-metabolite signal

was integrated over the 12 timepoints and divided by the time inte-

gral of the 13C-pyruvate in the same region, giving the lactate-to-

pyruvate ratio (LP), bicarbonate-to-pyruvate ratio (BP), and lactate-to-

bicarbonate ratio (LB) for each region and participant.

The spectroscopy data were phased and baseline corrected using

the SAGE spectral processing package (GE Healthcare). The 12 time-

points were summed together to produce spectra for comparison to

the imaging data.

2.3 | Statistical analysis

The analysis was performed on the logarithm transform of LP, denoted

as log(Lp), to produce a more homoscedastic residual distribution, (see

e.g., Figure S12). This was also done for BP.

Initial mixed-effects ANOVAs were performed for dependent var-

iables log(Lp) and log(Bp) with age categorized as “young” or “old”
(below or above the median age), and brain region and age–region

interaction as the independent variables to establish that these effects

were significant.

Post hoc pairwise comparisons of estimated marginal means

(Lenth, 2022) were done between the “young” and “old” groups for

each of the 132 brain regions. The false-discovery rate method

(Benjamini & Hochberg, 1995) was used to adjust the threshold for

significance, accounting for the 132 comparisons. Brain regions with a

significant p-value after this procedure are listed in Tables S6 and S7.
lo
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F IGURE 5 Heatmap of the log transformed lactate-to-bicarbonate ratio, log(LB), for each atlas region, with age on the vertical axis and the
BrainCOLOR atlas region across the horizontal axis.
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To further explore the details of lactate dependence on age and

region, log(Lp) and log(Bp) were also analyzed with linear mixed-effects

regression in R (version 3-3 using the nlme package [R Core Team

et al., 2013]). This form of regression was chosen because multiple

measurements from each individual were being analyzed. The regres-

sion was repeated for log(Bp).

The independent variables were added one by one, with models

of increasing complexity compared using ANOVA to test whether

each independent variable accounted for any additional variance. Bio-

logical sex and body weight were not found to explain any additional

variance and were thus not included (see Tables S2 and S3). The ran-

dom effect (participant ID) term was included to account for baseline

metabolite levels on administration and other between-participant dif-

ferences. An age–region interaction term was included to explore

how the regional age effect differed from the mean age effect, and

was found to be a statistically significant source of the observed

variance.

Once fit, the mixed-effects regression coefficients were used to

compute regional percent change per decade for LP and BP (see Sup-

porting Information for equation) and are color coded from lowest to

highest in Figure 7 and 8. Note that color-coding of the LP rendering

matches the BP rendering, and BP showed more extreme changes

than LP.

An apparent increase in log(Lp) and log(Bp), and decrease in log(LB)

was observed for subjects aged 25–30. This was tested for statistical

significance with a secondary mixed-effects ANOVA on the subgroup of

participants with age ≤30 years (N = 20). Fixed effects in the ANOVA

were brain region, and age, categorized as younger (age ≤25) and older

(age = 26–30). Participant ID was designated a random effect.

3 | RESULTS

3.1 | Lactate

The log of the LP ratio is plotted versus region and age in Figure 2. In

the plot, there is a notable reduction in log(Lp) with increasing age, but

with an apparent temporary increase for individuals in their late

twenties.

The initial mixed-effects ANOVA for log(Lp) with age categorized

as “young” or “old” (below or above the median age), brain region and

age–region interaction as the independent variables showed that all

three were significant (see Table S4). The corresponding box plots are

shown in Figure 4a–c.

The mixed-effects regression of log(Lp) with age as a continuous

variable gave a global age beta coefficient of �0:007�0:003 (p¼ :02)

for log(Lp) which corresponds to a �7%�2% change per decade. All

reported plus/minus values are based on the standard errors from the

regression.

3.2 | Bicarbonate

The log of the BP ratio is plotted versus region and age in Figure 3.

There is a visible reduction in log(Bp) with increasing age, again with

an apparent increase for individuals in their late twenties.

The initial mixed-effects ANOVA for log(Bp) with age categorized

as “young” or “old” (below or above the median age), brain region and

age–region interaction as the independent variables showed that all

but the age–region interaction were significant (see Table S5). The

corresponding box plots are shown in Figure 4d–f.

The mixed-effects regression of log(Bp) with age as a continuous

variable gave a global age beta coefficient of �0:01�0:004 (p¼ :01)

for log(Bp) which corresponds to a �9%�4% change per decade.

Figure 5 displays log(LB) versus atlas region for all subjects, show-

ing no notable change in this ratio with age, which was supported by

the results of the corresponding regression. However, a regional varia-

tion in the lactate-to-bicarbonate ratio can be observed in this plot

and thus will be explored in future experiments.
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F IGURE 7 The fitted regression model was used to compute a
percent change in LP per decade for each region, displayed as a color
on the rendering.

 -10
 

-18
 

 1
 

Left hemisphere Right hemisphere

% change per decade 

F IGURE 8 The fitted regression model was used to compute a
percent change in BP per decade for each region, displayed as a color
on the rendering.
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3.3 | Regional differences

The mixed-effects regression models provided coefficients for the

fitted change per year for each of the 132 brain regions. The coeffi-

cients were used to compute the regional percent change per decade.

The region with one of the greatest percent changes per decade in log

(Lp) and log(Bp), the right medial precentral gyrus, and the region with

the smallest percent change per decade in both log(Lp) and log(Bp), the

left caudate nucleus, are plotted versus age in Figure 6. Comparison

of the region plots highlights the region–age interaction effect that

gives different slopes against age for different regions. The map of

regional change with age in log(Lp) and log(Bp) are shown in Figures 7

and 8, respectively. Overall, a similar pattern of region-dependent

change versus age was observed for both LP and BP, with matching

regions showing fast and slow change.

Comparing hemispheres, the right medial precentral gyrus

showed a �12%�4% change in LP per decade and �16%�7%

change in BP versus the left medial precentral gyrus with �8%�3%

per decade in LP and �12%�6% per decade in BP. The left caudate

showed a change of 1%�1% in LP per decade and 1%�1% in BP ver-

sus the right caudate with �4%�1% per decade in LP and �4%�2%

per decade in BP.

Example images from a mid-saggital slice in a younger and older

subject are shown in Figure 9. Note that, the raw (non-normalized)

signal from 13C-lactate and 13C-bicarbonate is significantly lower in

the older subject, while the 13C-pyruvate signal is similar. The raw
13C-metabolite signal and log transformed 13C-metabolite ratios mea-

sured from the summed whole-brain data are plotted versus age in

Figure 10 and are in agreement with the overall decrease measured

from the parcellated 13-metabolite data.

3.4 | Spectroscopy

Representative spectroscopy data from a single participant are shown

in Figure 11. Besides the metabolites that are typically observed in

the brain in studies utilizing [1-13C]pyruvate, [1-13C]aspartate

(SNR > 5) was also measurable in 26 of the 35 participants, and

[4-13C]aspartate was measurable in 8 participants after summing the

spectra from all 12 time points. To our knowledge, these data repre-

sent the first observation of pyruvate carboxylation in humans using

hyperpolarized 13C MRI.

3.5 | Subjects ≤ 30 years old

The mixed-effects regression on the subgroup of participants with

age ≤ 30 (N = 20) showed no significant age effect in log(Lp), log(Bp),

13C-lactate 13C-lactate

13C-bicarbonate 13C-bicarbonate

72 y.o
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F IGURE 9 Representative
mid-saggital slice from a younger
(23 years old [y.o.]) and older
(72 y.o.) subject. The color overlay
indicates the raw (non-
normalized) 13C-lactate (upper
row), 13C-bicarbonate (middle
row), or 13C-pyruvate (lower row)
signal. Lower signal is apparent
for both 13C-lactate and 13C-
bicarbonate in the older subject
(note the color scale), whereas the
13C-pyruvate signal is similar. The
bright object (arrows) is the 13C-
urea reference used for prescan
calibration.
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or log(LB). However, log(Bp) and log(LB) had a significant age–region

interaction term (p¼ :0002 and p< :0001, respectively), suggesting

that opposing directions of change among different brain regions may

have caused a crossing effect, producing no net age on average.

4 | DISCUSSION

In this study, hyperpolarized 13C-MRI was used to measure 13C-

lactate and 13C-bicarbonate production in 132 brain regions versus

age. Evidence of decreasing 13C-lactate and 13C-bicarbonate produc-

tion was found, as reflected by significant negative regression coeffi-

cients for both Lp and Bp versus age, with significant differences in

this aging effect between brain regions.

The observed reduction in 13C-lactate production with age is con-

sistent with the decreasing FDG uptake and glucose to oxygen ratio

versus age observed with PET (Goyal et al., 2017). With both

methods, regions of the cerebral cortex like the medial precentral

gyrus were among the fastest decreasing regions, while regions of the

striatum like the left caudate had minimal change with age.

Reduced CBF with aging (Hanzhang et al., 2011), which would

cause reduced vascular 13C-pyruvate signal and/or reduced 13C-

pyruvate delivery to the brain, does not explain an age-related

decrease in LP or BP because 13C-pyruvate signal is in the denomina-

tor. It is possible that an age-related increase in blood–brain barrier

permeability contributed to increased 13C-pyruvate uptake in some

older subjects (Verheggen et al., 2020). However, raw 13C-lactate and
13C-bicarbonate signal showed a decrease with age (Figure 10).
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The conversion of 13C-pyruvate to 13C-lactate has been shown

to be dominated by the “exchange-of-label” effect in some condi-

tions, where the steady-state lactate pool size prior to the 13C-

pyruvate is injected is the main determinant of the observed 13C-

lactate signal (Day et al., 2007). However, the steady-state lactate

concentration in the human brain measured by proton spectroscopy

is low (0.3–1 mM) (Merboldt et al., 1992; Prichard et al., 1991) and

increases with age (Grachev & Apkarian, 2000). Thus, any lactate

pool-size effect would be expected to increase with age and does

not explain the observed reduction in 13C-lactate production. Nor

does it explain the age-associated reduction in 13C-bicarbonate,

which is produced in an irreversible reaction within mitochondria

(Merritt et al., 2007) and thus not subject to the exchange

phenomenon.

The fact that 13C-bicarbonate production decreased with age in

most brain regions largely in proportion to the reduction in 13C-

lactate production was not anticipated. A hypothesis for why these

two signals change in tandem is that the reduction in 13C-lactate and
13C-bicarbonate production with age are caused by a change in a

common pathway involving lactate production and matched

consumption.

The limitations of the study include the spatial resolution of the
13C-metabolite images, which was relatively coarse (isotropic 1.5 cm

voxels), causing partial-volume errors for the smallest regions in the

BrainCOLOR atlas. It is likely that the age-associated variation in 13C-

metabolite signal in some smaller regions was deemed statistically

insignificant due to this source of error. The parcellation was per-

formed automatically without human input and may contain errors.

Neither of these issues would change the main findings. The sub-

analysis of participants of age ≤30 years showed that neither 13C-lac-

tate, nor 13C-bicarbonate production change with age during this spe-

cific timeframe. However, this may be an artifact of the limited

sample size.

5 | CONCLUSIONS

Hyperpolarized 13C MRI was used to measure regional 13C-lactate

and 13C-bicarbonate production in a healthy aging cohort. A signifi-

cant global decrease in both 13C-lactate and 13C-bicarbonate produc-

tion with age was observed. A mixed effects linear regression analysis

identified regions that were changing with a significantly higher or

lower rate with age than the mean global change. These findings are

in agreement with the PET literature showing decreasing glucose

uptake and nonoxidative glucose consumption with increasing age

and supports the hypothesis that this is due to decreasing lactate pro-

duction in the brain with age.
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