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As a class of vertebrates, amphibians, are at greater risk for declines or
extinctions than any other vertebrate group, including birds and mammals.
There are many threats, including habitat destruction, invasive species, over-
use by humans, toxic chemicals and emerging diseases. Climate change
which brings unpredictable temperature changes and rainfall constitutes
an additional threat. Survival of amphibians depends on immune defences
functioning well under these combined threats. Here, we review the current
state of knowledge of how amphibians respond to some natural stressors,
including heat and desiccation stress, and the limited studies of the
immune defences under these stressful conditions. In general, the current
studies suggest that desiccation and heat stress can activate the hypothala-
mus pituitary–interrenal axis, with possible suppression of some innate
and lymphocyte-mediated responses. Elevated temperatures can alter
microbial communities in amphibian skin and gut, resulting in possible
dysbiosis that fosters reduced resistance to pathogens.

This article is part of the theme issue ‘Amphibian immunity: stress,
disease and ecoimmunology’.
1. Amphibians responding to changing environments
Amphibians are ancient creatures valued by all human societies. They play critical
roles in aquatic and semiaquatic environments as important consumers or competi-
tors of insects and as prey for other animals. They share a complex neuroendocrine
system with other vertebrate species that enables them to thrive in a variety of
environments (reviewed in [1]). Given their long evolutionary history, it is likely
that some species are adapting to current climate changes, but there is a concern
that some are unable to adapt quickly enough, leading to losses of biodiversity.

The most recent technical report of the Intergovernmental Panel on Climate
Change (IPCC, the United Nations body for assessing the science related to cli-
mate change) indicates with high confidence or very high confidence that
species in all ecosystems have begun to shift their geographical ranges and
alter the timing of seasonal events in response to a warming climate
(https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/) [2].
Many species of amphibians have wet skin with higher evaporative water
loss than reptilian and mammalian skin and use the skin for both respiration
and regulation of essential ion balance (reviewed in [3]). Thus, they are likely
to be among the species most affected by climate change, with expectations
that ranges for some species will contract until no suitable habitat will
remain, especially in tropical regions and the Amazon [4,5]. Using more than
a decade of observations, Muths et al. [6] demonstrated that for temperate
amphibian species, population dynamics were influenced by climate change,
though responses were highly variable and context-dependent. In temperate
regions of the midwestern USA (Minnesota and Wisconsin), evidence suggests
that calling and breeding started earlier in some warm years compared with
historical records dating back to 1895 [7], and some western habitats are becom-
ing warmer and drier [8]. For example, Yellowstone National Park in the
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western USA has warmed significantly since 1980 [9]. Effects
of warming include lower snowfall at high elevations, which
leads to shorter amphibian habitat persistence, lower breeding
success [10] and lower overwintering survival, especially of
toads infected with the chytrid fungus Batrachochytrium den-
drobatidis [11]. Soils there and elsewhere in the western USA
have become drier, and these trends are expected to continue
[12]. In a study of Florida, USAwetlands, Greenberg et al. [13]
used 17 years of temperature, rainfall and water depth
measurements to develop a model to forecast water depths
of ephemeral wetlands out to the year 2060. Their prediction
was that only one of five amphibian species that are currently
present would thrive under these conditions. Thus, it seems
that, to survive, populations will need to continue to shift
their ranges and evolve greater tolerance to warmer, drier
conditions. Such range shifts may incur costs in terms of
immune defences. Two studies of invasive amphibian species
(Cuban treefrogs, Osteopilus septentrionalis, and cane toads,
Rhinella marina) expanding their range in the state of Florida,
USA showed that those toads at the leading edge showed
diminished activity of one key measure of innate immunity
in their plasma. Bacterial killing activity (BKA) was
decreased, suggesting poorer complement activity [14,15].
Invasive cane toads at the expanding edge of their range in
Australia also showed somewhat poorer responses in
measures of a cell-mediated lymphocyte response. Toads
from older-established populations away from the invasion
front had more circulating white blood cells and recruited
more white blood cells into toe-webbing following injection
with a plant lectin, phytohaemagglutinin (PHA), than
newer populations of toads at the expanding invasion front
[16]. Although the authors did not measure corticosterone
in the Cuban treefrog study, they suggested in the discussion
that toads at the leading edge may have had elevated corti-
costerone because of increased metabolic needs associated
with movement. This might have explained the reduced
immune functions. In another study using invasive cane
toads expanding their territories in Florida, this hypothesis
did not seem to be supported. That is, baseline levels of corti-
costerone were not different between the northernmost
populations at the leading edge. The invasive cane toads at
the northern edge of their habitat range expansion in Florida
had a poorer corticosterone response to short-term stress
whereas the warmer, more established southern populations
responded better with elevated corticosterone responses
[15]. All of these studies suggest possible trade-offs between
the need to support metabolism in marginal habitats and to
support of immune defences.

Many amphibian species depend on precipitation-fed
freshwater habitats [17], which are experiencing greater fre-
quency and severity of droughts with climate change [18].
Given the persistence of water in these habitats can be vari-
able year to year, some amphibians have remarkable
adaptations to sense declining water levels to accelerate
larval development and escape the drying pond (reviewed
in [19,20]). Although plasticity can increase the chances of
surviving in variable environments, exposure to pond
drying typically results in faster development at a cost of a
smaller size at metamorphosis, leading to lower survival
and fecundity (reviewed in [21]). Because the hypothala-
mus–pituitary–interrenal (HPI) axis orchestrates both the
accelerated metamorphosis phenotype [22] and the drastic
immune system changes that occur with metamorphosis
[23], researchers have hypothesized immune trade-offs are
likely to occur (reviewed in [24]). Only a small number of
amphibian species have been studied under shortened
hydroperiod conditions (reviewed in [25,26]), and only a
few have assessed immune responses. Specifically, shorter
hydroperiods led to weaker cellular immune system
responses to PHA in wood frogs (Rana sylvatica) and north-
ern leopard frogs (Rana pipiens) [27,28]. On the other hand,
the New Mexico spadefoot toad (Spea multiplicata) did not
display carry-over effects of pond drying on immune func-
tion [29]. In two species of leopard frogs (R. pipiens and
Rana sphenocephala), carry-over effects of shorter hydroper-
iods also included changes in host-associated microbiota
[30], shifting to lower capacities to inhibit pathogen
growth [31]. Thus, the effects of pond drying on the devel-
opment of specific immune defences in postmetamorphic
amphibians have been studied in a limited number of
species, and further studies are needed.
2. Effects of heat and dehydration as stressors
on immunity in adult amphibians

In this section we examine what is known about the effects of
extreme heat and/or dehydration on the ability of adult
amphibians to mount effective immune responses. It should
be noted that amphibians are a very diverse class of animals
with variable thermal tolerance limits [32], and the effects of
extreme heat and desiccation on immune function have not
been well studied. Most studies have been conducted with
anuran species, and there are very few studies on urodeles
or caecilians. Thermal performance can also vary by popu-
lations within a species [33,34]. Species differ in their
capacity to resist evaporative water loss, and hylid frogs
with higher desiccation resistance were predicted to be able
to tolerate a higher range of temperatures [35]. As further
evidence that species differ greatly in their responses to desic-
cation, a study of five species of Brazilian toads from differing
habitats showed that larger species had higher rates of water
uptake but lower resistance to water loss [36]. Furthermore,
thermal performance curves (i.e. performance peaks at
some ‘optimal’ temperature and mortality occurs at upper
and lower limits) (reviewed in [37]) vary by age and life
stage [38]. Lertzman-Lepofsky et al. [39] emphasized the
importance of considering both elevated temperature stress
and evaporative water loss as risks for reaching the physio-
logical limits of amphibians as the Earth warms. For
example, using biophysical models based on empirical
hydrothermal performance curves, Greenberg & Palen [40]
demonstrated that both thermal and hydration physiology
need to be considered when estimating climate change
effects on amphibians. Behavioural changes that allow
amphibians to move to a warmer temperature setting have
the potential for the amphibians to avoid chytridiomycosis
caused by the chytrid fungi B. dendrobatidis and Batrachochy-
trium salamandrivorans [41,42]. However, in a natural setting
in Belgium, salamanders in the field rarely achieved the
temperature needed to resist infection by B. salamandrivorans
[42]. Thus, the need of some amphibians to remain in cool
wet environments precluded their ability to avoid disease.

On a positive note, some recent publications suggest that
amphibians have both behavioural and physiological plas-
ticity that may enable them to adapt and evolve to
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changing thermal conditions ([43], reviewed in [44]). An
example may be found in plethodontid salamanders in the
Appalachian Mountains of the USA. A recent study showed
that six of fifteen species studied showed significant
reductions in body size over the last 55 years as a response
to increasing temperatures, especially at southern latitudes
with hotter drier conditions. Possible mechanisms for the
reduced body size include reduced foraging success under
suboptimal conditions resulting in reduced overall growth
[45]. Another example of decreased body sizes over many
decades was found in a study of frogs in museum collections
from Borneo that were linked with climate records spanning
more than 100 years. One conclusion of this study was that
frogs were larger under wet conditions than in dry conditions
at cool temperatures, suggesting that when resources were
limited at colder temperatures, body size was reduced [46].

(a) Effects of desiccation independent of heat stress on
immunity in adult amphibians

Free-living amphibians experience many weather-related
changes throughout their lives, and the release of glucocorti-
coid hormones owing to activation of the HPI axis is thought
to be important for energy balance during stressful and non-
stressful conditions [47]. The main glucocorticoid hormone
in amphibians is corticosterone, and the main mineralocorti-
coid is aldosterone. Both hormones are involved in normal
development, energy mobilization, and osmoregulation,
and both can inhibit lymphocyte proliferation and induce
apoptosis of lymphocytes in tadpoles and adult frogs
(reviewed in [1]).

There are limited studies of the effects of desiccation alone
on amphibians, but many studies have documented that adap-
tations used to survive dehydration can be costly in terms of
energy (i.e. increased heart rate and cardiac contractility),
taxing on cardiovascular tissues (i.e. increased blood hyperos-
molality, hypovolaemia and hyperviscosity), and cause the
release of reactive oxygen species (reviewed in [48]). In terms
of immune function under desiccation conditions, several
studies of invasive species at invasion fronts in arid climates
have demonstrated changes in immune functions of the dis-
persing populations. The expanding populations of the
guttural toad, Sclerophrys gutturalis, in South Africa showed
poorer hydration and an apparent higher BKA under field
conditions [49]. However, in ornate forest toads (Rhinella
ornata), natural desiccation resulted in elevated corticosterone
(81 and 282 ng ml−1 when dehydrated by 10 and 20%, respect-
ively). Under these stressful conditions, the numbers of
circulating lymphocytes were reduced, while the numbers of
circulating neutrophils were increased, suggesting a possible
effect of the stressful conditions on immune parameters [50].
In crab-eating frogs (Fejervarya cancrivora), which inhabit man-
grove swamps and marshes in Southeast Asia, dehydration
increased both aldosterone and corticosterone levels (approx.
20–30 pmol ml−1 aldosterone, approx. 50–85 pmol ml−1 corti-
costerone) [51]. Dehydration increased aldosterone in cane
toads (R. marina) dehydrated by lack of access to water
(40 pmol ml−1 in plasma) [52]. Likely these documented
elevations in osmoregulatory hormone levels (the mineralocor-
ticoids aldosterone and corticosterone) are protective during
periods of dehydration, but whether these hormonal changes
are immunomodulatory depends on their duration and
magnitude (reviewed in [53]).
(b) Effects of heat stress on immunity in adult
amphibians

As ectotherms, amphibian metabolism increases with temp-
erature [54], resulting in greater energetic demands which
could exceed available resources. Amphibians can respond
to extreme heat through behavioural changes such as seeking
cooler areas underground or underwater. Hypothetically, if
high metabolic costs are accrued at upper thermal limits,
less energy may be available to mount effective immune
responses, although, physiological trade-offs may prioritize
immune function in certain contexts. Further, various
immune functions likely have distinct but related thermal
performance curves [55,56]. Hotter conditions can also trigger
physiological changes mediated by the HPI axis, given that
glucocorticoids and metabolism are generally thought to
positively covary (reviewed in [57]). For example, exogenous
glucocorticoids increased metabolic rates in one study of red
legged salamanders (Plethodon shermani) [58]. An example of
a species that has a relatively high critical thermal maximum
(CTmax; [32]) is the invasive cane toad (R. marina) in Australia.
At the extreme end of their range in the Northwest Territory
of Australia, cane toads showed increased corticosterone in
blood and urine under conditions of heat stress [59–62]. A
study of cane toads in a setting in which the temperature
was naturally increasing during the day to very high temp-
eratures (shade temperatures exceeded 40°C), corticosterone
levels were highest at the time of day when the temperature
was the greatest. Increased glucocorticoids were followed by
increased evaporative water loss, suggesting cooling due to
water loss across the skin. Evaporative water loss is linked
to elevated temperatures as a means to cool the skin
(reviewed in [63]). Daily elevated corticosterone levels for
the cane toads reached on average nearly 120 ng ml−1.
When the temperatures dropped daily, the toads moved to
water sources and became hydrated. If prevented from reach-
ing water sources, the toads died [59]. Thus, elevated
glucocorticoids in this setting appear to be an adaptive
response resulting in increased evaporative water loss cooling
the toads, and the water loss would be replaced to permit
survival under these very harsh conditions. However, these
levels of corticosterone would seem to be incompatible with
lymphocyte viability [64,65]. Glucocorticoids likely play a
role in water-seeking behaviour, as seen in guttural toads
(S. gutturalis) when corticosterone levels were artificially
increased [66]. This may be an example of a trade-off between
temporary depression of immune responsiveness to permit
survival.

The microbial communities of the skin and gut of amphi-
bians are also critical for their health and survival (reviewed
in [67,68]). Depletion of skin microbes by antibiotic treatment
can increase pathogen susceptibility [69,70]. Thus, when
thinking about the effects of heat on immunity, it is important
to consider the effects of temperature changes on the micro-
biome. Two studies of red-backed salamanders (Plethodon
cinereus) suggest that elevated temperatures (20–21°C,
within survival range) altered the microbial communities of
the skin and the gut [71,72]. For the gut microbes, the elev-
ated temperature reduced the microbial diversity, leading to
reduced capacity to digest food and an increase in a poten-
tially pathogenic bacterial group [71]. Elevated temperature
also reduced the diversity of the microbial skin community,
and the diversity was further reduced when the animals
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were exposed to the pathogenic chytrid fungus B. dendrobati-
dis [72]. Because the soil environment is a natural source of
amphibian microbial communities from which the host
likely selects a subset [73,74], changes in soil temperatures
would also impact availability of protective commensal
microbes. Thus, temperature shifts toward the warmer end
of the environmental temperature tolerance may adversely
affect the microbial skin communities and resistance to
disease.
/journal/rstb
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3. Effects of natural stressors on tadpoles
Free-living tadpoles experience conditions determined by the
aquatic environment in which they are hatched from eggs.
They have no escape until metamorphosis, and thus at this
life stage, they must also adapt by either behavioural or phys-
iological mechanisms. However, their endocrine systems and
immunological systems are still developing (reviewed in
[23]). Here we discuss some examples of natural stressors
and the effects on tadpole immune responses.

(a) Effects of oxygen or food deprivation on aquatic
larval stages

Aquatic larval stages could be exposed to lower levels of dis-
solved oxygen and food when temperatures increase. Both
limited oxygen in the water and limited food sources may
compromise tadpole investment in immunity. Some, but not
all, species are capable of increasing oxygen uptake through
aerial respiration or gulping air at the water surface [75].
This response can come at a cost of energy expenditure to
swim to the surface as well as increased predation risk.
There are many examples in the literature demonstrating the
immunosuppressive effects of oxygen deprivation in fish
[76], though we could find none on larval amphibian immu-
nity. One study simulated future climate conditions for
developing Polypedates cruciger (common hourglass frog) tad-
poles through increasing CO2 and subsequently decreasing
pH, which resulted in lower white blood cell counts in circula-
tion (relative to red blood cells). However, oxygen levels were
not measured in this study [77]. While amphibian larvae may
have higher tolerance to hypoxia than fish, given the potential
for warming and excess nutrients to increase hypoxia risk in
certain ecosystems, more research is warranted here.

In a study of short-term food deprivation on western spa-
defoot toads (Spea hammondii), Crespi & Denver [78] showed
that food deprivation of premetamorphic (Gosner stage 31) or
prometamorphic (Gosner stage 36) tadpoles resulted in elev-
ated corticosterone to a whole body level that would be
incompatible with circulating lymphocytes [64] whereas post-
metamorphic juveniles (nine months postmetamorphosis)
decreased the release of corticosterone following food depri-
vation in favour of reduced activity. Loss of lymphocytes in
tadpoles would be replaced when food resources return
because the lymphocyte populations are expanding in
waves during larval development [79,80]. The decreased
activity in postmetamorphic toads was thought to be a strat-
egy to conserve energy until food would become available
again, but a secondary benefit, is that corticosterone was
not elevated, and lymphocyte activity would not be affected
in the juvenile frogs at a time when lymphocyte populations
are rapidly expanding [79–82].
(b) Effects of heat stress on aquatic larval stages
In general, there are very few published studies of the effects
of heat stress on immune defences of tadpoles. However,
some recent studies have examined the effects of elevated
temperatures on immune cells in the blood of metamorphos-
ing tadpoles and on the larval microbiomes.

In addition to the study of the effects of elevated CO2 that
affects pH and white blood cell counts cited above [77], the
authors examined the effects of temperatures elevated by 3
or 5°C (from 29 to 32 or 34°C) on survival and blood cell
numbers in developing P. cruciger (common hourglass frog)
tadpoles at the conclusion of metamorphosis. Both elevated
temperatures reduced survival, and all the tadpoles at 34°C
died before reaching metamorphosis. The tadpoles at 32°C
experienced high mortality after metamorphosis in compari-
son with controls. At the conclusion of metamorphosis, the
tadpoles at 32°C also had reduced numbers of total white
blood cells relative to red blood cells in comparison with con-
trol frogs, and the proportions of lymphocytes, monocytes
and neutrophils among the white blood cells were increased
in comparison with control frogs. This study suggests that
elevated temperatures in this tropical frog added additional
stress to the haemopoietic cell compartment during the criti-
cal period of metamorphosis when lymphocyte numbers in
the thymus and spleen are reduced by the glucocorticoid
and thyroid hormone-driven events of metamorphosis
(reviewed in [23]). This reduction in immune cells likely
made the newly metamorphosed froglets highly vulnerable
to infection, and in this study, many died immediately after
metamorphosis.

The microbial communities that inhabit the gut and skin
of larval amphibians are different from those of adults of
the same species [83,84]. Elevated temperatures can alter
those communities at the larval stages. For example, leopard
frog tadpoles (R. pipiens) raised at an elevated temperature of
28°C (slightly higher than the medium preferred temperature
of 20–25°C) [85] had strikingly different microbial commu-
nities from those raised at 18°C, and the warm tadpoles
had a greater abundance of members of the potentially patho-
genic genus Mycobacterium ([86], reviewed in [87]). A shift in
the gut microbiome was also detected within a very short
time (1–4 days) in tadpoles of green frogs (Rana clamitans)
and American bullfrogs (Rana catesbeiana) when the acclim-
ation temperature of 24°C was shifted to 29°C [88].
Additional studies of green frog tadpoles showed that
reduction of the gut microbiome by rearing in sterile water
reduced the thermal tolerance and survival of microbe-
depleted tadpoles in comparison with tadpoles raised in
water containing microorganisms [89]. Another more natural
study of the gut microbiota of tadpoles of a bromeliad plant-
specialist frog species found in Brazil (Ololygon perpusilla)
showed that elevated temperatures (about 6°C above ambi-
ent) led to significant changes in the gut microbiome that
were characterized as dysbiosis. The tadpoles were in compe-
tition with other invertebrates, including mosquito larvae.
The warming temperatures altered the environmental bac-
terial community and the arthropod community such that
bacterial communities in the tadpole gut changed, resulting
in stunted tadpole growth [90]. All of these studies show
that temperature can have a dramatic effect on the gut
microbial community necessary for food digestion,
adaptation to temperature changes, and survival.
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Amphibian larvae are susceptible to infection by trema-
todes (mainly Ribeiroia and Echinostoma genera) and
ranaviruses (family Iridoviridae). For example, the Pacific
treefrog (Pseudacris regilla) is infected by cercariae of the tre-
matode Ribeiroia ondatrae shed by the intermediate-host
snail. Several studies suggest that warmer temperatures
have differing effects on the parasite and host. A warm temp-
erature of 26°C resulted in fewer cercariae surviving after
being shed by the snail and fewer encysted parasites in the
tadpoles, but this temperature accelerated development of
the tadpoles. The authors attributed this greater resistance
of the frog host to a possible shortening of susceptible
larval stages or to enhanced immunity, including develop-
ment of more eosinophils and lymphocytes [91]. The
temperature of 26°C is well within the temperature tolerance
of the host tadpoles [92] but had adverse effects on snail sur-
vival [93]. While immunity was not measured, larvae of
several species are more likely to die from ranavirus infection
when exposed at warmer temperatures, though studies found
considerable interspecific variation [94,95]. More research is
needed to assess how antiviral responses vary with tempera-
ture to explain differences among species.
20132
4. Concluding remarks
Amphibian species at all life stages continue to be vulnerable
to population declines owing to multiple interacting factors
such as habitat loss, disease, environmental chemicals, inva-
sive species, overuse by humans, and emerging diseases
(reviewed in [96]). Among the newest threats is global climate
change. Unpredictable temperatures and rainfall resulting
from climate change will exacerbate the effects of the other
factors. It is likely that some species will find ways to adapt
and evolve, but other species in specialized niches or with
small reproductive capacity may not adapt quickly enough.
Studies of the effects of climate change on the immune
system of amphibians are very limited, but they suggest
that the stresses of extreme heat and drought will impact
the vulnerability of amphibians to diseases such as chytridio-
mycosis and ranavirus outbreaks. One area that would
benefit from additional research mentioned in this review is
the need to understand the effects of shorter hydroperiods
on developing amphibians and resulting effects on develop-
ment of immunity. Another is the effect of reduced oxygen
levels in aquatic environments on tadpoles and adults,
which need to expend more energy to survive, and the effects
of hypoxia on immunity. Most of the studies we have been
able to access were from the USA or North America. How-
ever, effects of climate change on amphibians in tropical
areas will likely be different, and more studies are needed
from these vital tropical habitats. It is also the case that
most studies of heat stress on immunity in amphibians
have been conducted with anuran species (frogs and
toads). More studies should also be conducted on urodeles,
which seem to be especially vulnerable to the chytrid patho-
gen B. salamandrivorans [42,97,98]. Not only do we need to
better understand the effects of changing environments and
a changing climate on amphibian immunity, but also future
research should focus on ways to mitigate climate change
impacts and prioritize vulnerable species.
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