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Background

Lamotrigine (LTG) is an antiseizure drug (ASD) which was approved by the US Food and 

Drug Administration (FDA) in 1994 to treat focal (partial) seizures, primary generalized 

tonic-clonic seizures, and generalized seizures of Lennox-Gastaut syndrome in both children 

and adults. It was evaluated for several mood disorders and subsequently also approved 

for maintenance of bipolar disorder in adults [1-5]. LTG was originally synthesized at 

Wellcome Laboratories as an antifolate analog, but screening in animal seizure models 

revealed potent activity and it was developed to improve upon existing antiepileptic drugs 

for refractory patients with a better safety and drug interaction profile [6]. LTG is a 

2,5-diamino-triazine ASD which blocks voltage-gated sodium channels (VGSCs) [7-12] 

and voltage-gated calcium channels (VGCCs) [7, 13-15] both of which may contribute to 

the antiseizure activity of this drug. The common adverse effects for LTG are dizziness, 

diplopia, headache, ataxia, blurred vision, nausea, somnolence, vomiting, and hypersensitive 

skin rashes including severe reactions such as Stevens-Johnson syndrome (10% rash 
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incidence) [16, 17]. Risk of severe cutaneous adverse reactions (Stevens-Johnson syndrome/

Toxic Epidermal Necrolysis) due to LTG is related to HLA-B polymorphisms, including 

HLA-B*15:02 mostly in Asian (Han Chinese) population (p<0.05) [18-22]. Further, one 

study reported that HLA-B*15:02 allele was present in 33.3% of lamotrigine-induced 

SJS/TEN cases whereas 9.4% in lamotrigine-tolerant controls (P < 0.05,), however the 

sample size was small [23].

In this article we review the metabolic pathways and mechanism of action of LTG, along 

with a comprehensive summary of polymorphisms in pathway genes contributing to the 

inter-individual variability in LTG clearance and response.

Pharmacokinetics

A schematic representation of LTG disposition within the body is provided in Figure 1. 

The mechanism by which LTG crosses the blood-brain barrier (BBB) is not completely 

understood, but studies have implicated a role for organic cation transporters (OCT) [24, 

25]. An in vitro study showed that LTG is a substrate for SLC22A1 (also known as OCT1) 

[24], and polymorphisms in the SLC22A1 gene have been associated with concentration 

differences in Chinese patients with epilepsy [25].

Although controversial, a current hypothesis for pharmaco-resistant epilepsy implicates 

overexpression of efflux transporters at the BBB [26]. There is conflicting evidence for 

the role of the ATP-binding cassette (ABC) superfamily of transporters in LTG efflux, 

specifically P-glycoprotein (P-gp), encoded by the ABCB1 (MDR1) gene [26-28] and 

ABCG2 (BCRP), both located on the apical capillary endothelial membrane [25, 28-31]. 

Romermann and colleagues recently reported that LTG showed a ABCG2 mediated 

transport, where LTG exhibited a significant difference in the absence and presence of 

ABCG2 inhibition (P < 0.0001) [29]. Mechanistic study of Löscher and others reported 

that LTG was an efficient BCRP (ABCG2) substrate in transfected MDCK cells [29, 56]. 

A comprehensive literature review concluded that LTG was a P-gp substrate based on a 

combination of data from in vitro, in vivo, and predicted structure-activity relationship 

studies [26, 27, 32]. Therefore this drug is the first ASD which was identified as a dual 

substrate of the two major human efflux transporters at the BBB (synergistic or cooperative 

role of P-gp and ABCG2 in the efflux of dual substrates at the BBB) [29]. In contrast, 

Nakanishi et al. reported no difference in total brain-to-plasma concentration ratios of 

LTG in Mdr1a/1b/Bcrp triple-knockout mice [31]. Despite inconsistencies in model system 

results, correlations have been identified between polymorphisms in these genes and LTG 

concentrations in plasma; thus, transporters may play an important role for differential drug 

response [33-38]. Additionally, polymorphisms in ABCC2 (MRP2) are associated with drug 

resistance in different populations, which indicates this transporter may also play a role in 

drug efflux [39-41].

ABCC3 (MRP3) is located on the sinusoidal membrane of hepatocytes separating the 

cytosol from the bloodstream, and transports glucuronides from the liver cells into the 

bloodstream for elimination by the kidney [42, 43]. Since 80% of LTG glucuronides are 

eliminated in urine and the 2-N quaternary ammonium glucuronide is not able to cross 
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membranes, ABCC3 or ABCC4 (MRP4) are likely responsible for transport from the liver to 

the blood [42-45]. In contrast, ABCC2 (MRP2) effluxes glutathione adducts from the liver 

cell out to the bile [46, 47]. Glucuronides may also be excreted by ABCC2 into bile, but the 

major route of excretion is via the urine. Given the ongoing disagreement in results, further 

research is needed for complete understanding of the actual role of efflux transporters in 

ASD treatment.

Previous studies mentioned that LTG is extensively metabolized, with over 80% of the total 

dose recovered in the urine [48-50]. Three main metabolites of LTG have been observed in 

humans: LTG-2-N-glucuronide, LTG-5-N-glucuronide, and a minor LTG-N-oxide [51-54]. 

Another minor metabolite, LTG-N-methyl, was also detected in human urine and in dogs 

but is a minor metabolite in human urine [51]. LTG-2-N-glucuronide is the major metabolite 

eliminated from the body with some 5-N-glucuronide, making up 80-90% of the drug 

recovered in urine; N-oxide was also detected in patients taking LTG along with the parent 

drug [50, 51, 55]. LTG-2-N-glucuronide is an inactive metabolite primarily formed by 

UDP-glucuronosyltransferase (UGT) 1A4 (UGT1A4) [52, 53, 56, 57]. Additional studies 

suggest that UGT1A3 (minor compared to 1A4) and UGT2B7 (based on in vitro inhibition 

with zidovudine [56]) may also play a role in the metabolism of LTG, though contradictory 

evidence exists because glucuronidation was not confirmed with cloned, expressed UGT2B7 

[53]. However, there are studies reported that polymorphisms (such as UGT2B7_−161C>T, 

UGT2B7 372 GG) in UGT2B7 have been associated (p< 0.05) with LTG concentration-

to-dose ratio and clearance which suggests a possible influence of UGT2B7 in LTG 

metabolism [58-61].

Previous studies have also reported a minor pathway of LTG bioactivation to a reactive arene 

oxide on the dichlorophenyl ring [55, 62]. The P450 isoenzymes mainly responsible for the 

formation of the arene oxide are CYP2A6 and CYP2D6 [54, 55, 62]. Chen et al. identified 

a glutathione conjugate in human and rat liver microsomal incubations in the presence of 

NADPH and glutathione (GSH) [62]. Four radiolabeled metabolites were identified and 

quantified radiometrically in rat bile (biliary metabolites) by HPLC; of these four, the most 

polar metabolite was the protonated molecule of a glutathione adduct of LTG (i.e. the 

primary thioether addition product of an arene-oxide). Glutathione-derived adducts produced 

thioether conjugates, such as a cysteinyl-glycine adduct of LTG and a cysteine adduct 

of LTG. [55, 62]. However, glutathione-derived N-acetylcysteine conjugates (mercapturic 

acids) have not been measured in human urine [55, 62]. The enzyme likely responsible for 

formation of mercapturic acids from cysteine S-conjugates has been identified as NAT8 [63]. 

Formation of reactive metabolites (formed from the arene oxide) has also been observed 

in keratinocytes and may be responsible for mild skin rashes and more severe cutaneous 

reactions observed with LTG administration [46, 62].

One study reported that concomitant administration with UGT-inducing antiseizure drugs 

such as phenytoin, phenobarbital, or carbamazepine, the elimination half-life of LTG 

decreases by ~40-50% [64]. In contrast, another study reported that valproic acid 

(VPA) inhibits LTG metabolism, increasing half-life linearly (from 24 h to ~72 h) with 

increasing dose [65]. Addition of VPA may counteract the change in kinetics caused by 

co-administered UGT-inducing antiseizure drugs [64]. In vitro studies with VPA have shown 
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the increased area under the LTG plasma-concentration time curve to be due to competitive 

inhibition of UGT1A4 or UGT2B7 by VPA. [56]. VPA has higher affinity for UGT2B7, 

but it is also a substrate of UGT1A4, albeit with a higher Km of 3.1 mM, compared to 1.2 

mM for UGT2B7 [53, 66]. Thus, the LTG-VPA interaction may be mediated by competitive 

binding to these two UGT isoforms.

Decreased LTG plasma concentrations caused by an increase in drug clearance have 

been reported during pregnancy [67-71]. A population pharmacokinetic study identified 

two subpopulations of women who experience different changes in LTG clearance during 

pregnancy, which may indicate that a genetic mutation is responsible for these differences 

[61, 72]. It is hypothesized that the increase in 17β-estradiol during pregnancy results in 

activation of estrogen-receptor-α (encoded by the ESR1 gene) in the liver, resulting in 

upregulation of UGT1A4 expression and increased LTG clearance [73]. However, evidence 

for direct binding of estradiol to estrogen response elements in the UGT1A4 promoter is 

lacking, but an indirect effect of ERα on the SP1 transcription factor (specificity protein-1) 

is more likely responsible for the induction observed during pregnancy [73]. Furthermore, 

many studies showed similar increases in LTG clearance occurs with concomitant use 

of oral contraceptives containing estrogen [74-76], but not in progesterone-only based 

contraceptives [77]. An additional piece of evidence includes the observation that UGT1A4 
& UGT2B7 expression correlate with ESR1 expression [78, 79].

Expression of genes in the UGT1A and UGT2B families are also induced by activators of 

two nuclear receptors pregnane-X-receptor (NR1I2, also known as PXR), and constitutive 

androstane receptor (NR1I3, also known as CAR) [79-81]. Many studies showed that, 

UGT1A4 specifically has been shown to be co-regulated by CAR, PXR, and aryl 

hydrocarbon receptor (AhR) [78, 81-84], while UGT2B7 is co-regulated by CAR and 

PXR [78, 79, 81, 85]. Carbamazepine, phenytoin, and phenobarbital are prototypical CAR 

activators e.g. leading to induction of CYP2B6, and these drugs increase LTG when co-

administered for epileptic seizures [57].

Pharmacodynamics

A stylized depiction of the potential mechanism of action of LTG is provided in Figure 1. 

The exact mechanism through which LTG elicits its therapeutic effect is unknown; however, 

a likely mechanism is through antagonizing type 2 voltage-gated sodium channels (VGSCs; 

encoded by the SCN gene family) [7-9], similar to the mechanism of the older antiseizure 

drugs phenytoin and carbamazepine [8, 86]. VGSCs are large membrane-spanning proteins 

consisting of a large alpha subunit, which sometimes interacts with a smaller regulatory 

beta subunit. At resting potential, the ion pore exists in the closed state, but once neuronal 

membranes containing VGSCs are sufficiently depolarized (typically by an action potential), 

there is a structural change in the protein causing the ion pore to open. Within milliseconds 

the inactivation loop moves to block the flow of ions through the pore, during which point 

the channel is said to be inactivated. LTG preferentially binds to the inactivated state of 

VGSCs, acting as an antagonist [10, 87, 88]. The binding site for LTG is located on the 

extracellular side of the alpha subunit and is shared by carbamazepine and phenytoin [11].
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LTG also acts as an antagonist to high-voltage-activated N-, P-, and Q-type calcium channels 

(VGCCs; encoded by the CACN gene family) [7, 13-15, 89], which may be an additional 

mechanism through which LTG elicits its antiseizure properties. VGCCs are structurally 

similar to VGSCs, however they do not have the intracellular inactivation loop present in 

VGSCs. As such, VGCCs can only exist in an open and closed state, and they are normally 

closed at the resting membrane potential [90, 91]. The blockade of voltage-gated sodium 

and calcium channels modulate the release of neurotransmitters. Studies consistently show a 

reduction in release of the excitatory neurotransmitter, glutamate, upon LTG administration 

[92-97]. However, LTG has been reported to elicit both increased [92, 98] and decreased 

[7, 93-95] release of the inhibitory neurotransmitter GABA. The role of calcium as a 

second messenger within the cell may also lead to multifactorial changes as a result of 

altered ion flux. For example, an in vitro study using primary mouse neuronal cultures 

found CaM kinase II activity to be affected as a result of LTG administration, leading to 

altered intracellular calcium concentrations [99]. Further studies may fully elucidate the 

downstream effects of LTG administration and their role in the observed antiseizure activity.

Pharmacogenomics

Metabolizing enzyme variants

Inter-individual variability in clinical efficacy or adverse effects following treatment with 

LTG has been shown to be associated with genetic variants within drug metabolizing 

enzymes, drug transporters, and drug targets [59, 100, 101]. As LTG is metabolized 

by UGTs, single-nucleotide polymorphisms (SNPs) in UGT1A4 and UGT2B7 may play 

a role in the inter-individual variability in LTG metabolism [100, 102]. Two promoter 

polymorphisms in UGT1A4, −219C>T (rs3732219) and −163G>A (rs3732218), have been 

associated with altered LTG pharmacokinetics [103]. Several studies reported that these 

two promoter SNPs in the 5’-untranslated region of UGT1A4 (rs3732219, rs3732218) are 

in high linkage disequilibrium with rs2011425 (Leu48Val) with a minor allele frequency 

(MAF) of 0.082 in Europeans, 0.226 in East Asians and 0.102 in Africans (gnomAD, 

dbSNP) [103-105].Further, studies showed that these polymorphisms are associated with 

lower enzymatic activity (p<0.05) as well as significantly higher LTG concentration 

(p<0.01) as compared to wild-type [103, 106]. Mechanistic study showed that, the two 

UGT1A4 promoter polymorphisms (rs3732218 −163G>A allele and rs373221 −219C>T 

allele) have been associated with a reduction in basal UGT1A4 luciferase reporter 

activity by 40-50% in MCF7 breast cancer cells and 30-40% in HepG2 hepatoma 

cells. [106, 107]. Additionally, UGT1A4 142T>G (rs2011425) in the coding region was 

significantly associated with increased LTG concentrations, lower LTG clearance, and 

better efficacy in treating epilepsy for patients with the TT genotype compared to GT and 

GG genotypes [101, 108-111]. Further, in vitro studies with cloned, expressed UGT1A4 

variant enzymes with either the 142 A>G (Leu48Val, UGT1A4*3) or the Pro24Thr 

(UGT1A4*2) mutation had approximately 50% reduced intrinsic clearance (Vmax/Km) 

compared to the wild-type enzyme [110]. Several studies reported that pregnancy increases 

LTG clearance by >50% and UGT1A4 rs2011425 (UGT1A4*3) was associated with 

reductions in the LTG concentration-to-dose ratio (C/D ratio) during pregnancy [61, 68, 

73]. The rs2011425 polymorphism also showed significant effects on efficacy in pediatric 
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epilepsy patients treated with LTG [112]. Mechanistic study described that, individuals 

who are homozygous for the rs2011425 GG genotype show higher glucuronidation activity 

compared to individuals with the TT genotype using human liver microsomes isolated 

from 80 genotyped livers [83, 113].The minor allele frequency of rs2011425 is 0.082 in 

Europeans, 0.101 in Africans, and 0.213 in East Asians (gnomAD, dbSNP). Saeki et al. 

defined the UGT1A4*3a haplotype (containing rs3732219, rs3732218, rs2011425 together 

with the synonymous SNPs 448T>C (L150L), 804G>A (P268P) and IVS1+43C>T) with a 

frequency of 12.5%, whereas the rare UGT1A4*7a haplotype (MAF = 0.002) is comprised 

of rs3732219, rs3732218, rs2011425 plus 448T>C, 804G>A and 1VS1+43C>T together 

with the non-synonymous 271C>T (R91C) [105, 114]. Although information on SNPs 

and haplotypes of UGT1A4 is available {https://www.pharmacogenomics.pha.ulaval.ca/

ugt-alleles-nomenclature/}, unfortunately, the impact of the different haplotypes on LTG 

pharmacokinetics has not been comprehensively investigated. UGT1A4 70C>A (Pro24Thr, 

rs6755571), located at the end of the signal peptide with an MAF of 0.052 in Europeans, 

0.000 in East Asians, and 0.015 in Africans (gnomAD, dbSNP), was associated with higher 

LTG serum concentrations and lower clearance in vitro even during pregnancy [61, 101, 

109, 110]. The rare UGT1A4 1091C>T SNP (rs34946978, Pro365Leu) located in the 

UDPGA binding region of all UGT1A isoforms was associated with a general reduction in 

glucuronidation activity of the entire UGT1A family (MAF = 0.011 in East Asian, <0.0002 

in Africans and Europeans) [115, 116].

Contradictory evidence exists for a role for UGT2B7 in the formation of the 

major metabolite LTG-2-N-glucuronide [56]. No activity with commercial cloned, 

expressed UGT2B7 in Supersomes® was found (RP Remmel, personal communication). 

Polymorphisms in this gene may play a role in inter-individual variability in LTG 

concentrations and dose in patients with epilepsy [100, 102]. In a study (n = 53), the 

SNP −161C>T (rs7668258) SNP in UGT2B7 was found to be significantly associated with 

lower LTG concentration-to-dose ratios in epilepsy patients with the TT genotype compared 

to patients with the CC genotype [58]. These findings were corroborated by another small 

study from Thailand (n = 75) that found that the TT and CT genotypes had on average 

18% lower clearance than patients carrying the CC genotype [59]. Patients with epilepsy 

on stable dosing with LTG with the UGT2B7 −161G>T (rs7668258) TT genotype had a 

reduced clearance compared with the GT and GG genotypes. Clearance was 247% higher 

in Slovenian epilepsy patients with the UGT2B7 −372A>G GG genotype as compared to 

the AA genotype [60]. Furthermore, a case study of a 38-year-old woman treated with LTG 

suggests that the UGT2B7 −372A>G polymorphism may have a role in body rash and 

multi-organ failure [117]. A recent study reported that UGT2B7 802C>T (rs7439366) was 

associated with reductions of LTG concentration-to-dose ratio (C/D ratio) during pregnancy 

[61].

Transporter variants

ATP-binding cassette efflux transporters are overexpressed at the BBB, where they reduce 

the penetration of ASDs into the brain. ABCB1 and ABCG2 have been implicated to play a 

key role in LTG transport. This would suggest that genetic variants of drug transporter genes 
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associated with functional variations in efflux activity may contribute to the inter-individual 

variation in ASD drug resistance [33, 35, 118-120].

Polymorphisms in transporter proteins have indeed been shown to significantly influence 

pharmacokinetics and bioavailability of many drugs. There is several evidence that ABCB1 
1236 C>T (rs1128503), 2677 G>T/A (rs2032582), and the synonymous, high frequency 

3435 C>T SNP (rs1045642) influence LTG serum concentration (1236C-2677G-3435C 

carriers had higher LTG concentrations than 1236T-2677G-3435T carriers followed 

by 1236T-2677T-3435C carriers) and drug response in patients [33-35, 38, 121]. 

Polymorphisms in ABCG2 (rs2231142 and rs3114020) were found to be significantly 

associated with LTG concentration dose-normalized by body weight [29, 38]. A patient’s 

cohort study with 131 LTG monotherapy patients reported that presence of ABCG2 421C>A 

(rs2231142) resulted in modestly lower LTG trough concentration (CI-95%) compared 

to wild type [122]. Further, ABCG2 rs2231142 was also shown to be responsible for 

approximately 4.8% of the variability in LTG trough concentration variation in Chinese 

epilepsy patients [25, 38]. Additionally, ABCC2 −24C>T (rs717620) polymorphism in exon 

1 was reported to be associated with resistance to LTG (P<0.001) and other ASDs (VPA, 

phenobarbital, carbamazepine, and oxcarbazepine) in a German-Caucasian as well as an 

Asian patient cohort, hypothesized to be a result of compensatory upregulation of ABCB1 
[39, 41]. Further, linkage disequilibrium (LD) test showed that the ABCC2 rs717620 were 

in strong LD with rs2273697 (D'= 0.694) and rs3740066 (D'= 0.699) and frequencies of 

haplotypes (ABCC2 −24C>T/ABCC2 1249G>A/ABCC2 3972C>T) in resistant patients 

was significantly higher (P < 0.05) in Chinese epilepsy patients (n=537) [41] .However, 

ABCC2 −24C>T was not associated with drug resistance in Han Chinese, Croatian, or 

Austrian-Caucasian epilepsy patients [123-125].

Opposing the force of efflux transporters are influx transporters that act to carry LTG across 

the BBB into the brain. One such transporter is SLC22A1. A study of Chinese epilepsy 

patient’s cohort (n= 112) found an association between plasma concentrations of LTG 

and SLC22A1 1A>G (rs628031) genotype, GG genotype having significantly lower LTG 

dose-normalized concentrations in plasma (P<0.05) which indicated that polymorphisms in 

the SLC22A1 gene may have association with LTG concentration differences [25].

Pharmacodynamic variants

The primary hypothesis for the antiseizure effect of LTG is through binding to voltage-

gated sodium channels [7-9]. Voltage-gated sodium channels are heteromeric complexes 

that regulate sodium exchange between intracellular and extracellular spaces. The alpha 

subunits are encoded by the SCN gene, of which there are four predominant isoforms in 

the human brain: SCN1A, SCN2A, SCN3A, and SCN8A. A polymorphism in SCN1A, 

1G>A (rs3812718), was significantly associated with effective dose of LTG. Peak plasma 

concentrations corresponded to effective doses were almost half for wild type compared to 

variant [126]. At the time of writing, polymorphisms in the SCN gene and their influence on 

ASDs including LTG had not been not well investigated.

Although not thought to be a direct target of LTG, GABA receptors are the principal 

inhibitory receptor in the central nervous system (CNS), and heterogeneity in the 
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ionotropic GABAA receptor is associated with epilepsy [127]. Several antiseizure drugs 

like barbiturates and benzodiazepine-like agents bind to GABAA and cause alteration in 

receptor subunits to regulate drug response [128]. Polymorphisms of the genes encoding 

different subunits of GABAA receptors may be associated with ASD response and 

resistance. GABRA1 rs6883877, GABRA1 rs1157122, GABRA1 rs6892782, GABRA1 
rs10068980, GABRA2 rs511310, GABRA3 rs4828696, and GABRA3 rs1112122 were all 

found to be significantly associated with resistance to LTG, along with other ASDs such as 

carbamazepine, phenytoin, and VPA [129]. However, due to a lack of studies, the influence 

of variations in GABA receptors is not well understood, therefore they are not represented in 

Figure 1.

Variants associated with adverse effects

Drug-induced skin injuries, Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis 

(TEN), and drug-induced hypersensitivity syndrome (DIHS) are all reported LTG-related 

adverse events [130-138]. SJS/TEN in LTG-treated pediatric patients (n=486) was reported 

in many studies and 97% of cases occurred within 8 weeks of initiation of LTG therapy, 

with a median time to onset of 15 days [139]. Human leukocyte antigen (HLA) genes 

produce proteins which identify foreign particles in the immune system [140]. The 

complex of drug antigen/metabolite-human leukocyte antigen (HLA)-T cell receptor (TCR) 

initiates immune reactions for SJS/TEN. Specific HLA alleles or variant predisposition 

and interaction with a drug allow the presentation of drug-bound HLA to the TCR, which 

further triggers the activation of CD8+ cytotoxic lymphocytes and a series of specific 

immune reactions which ultimately cause keratinocyte apoptosis and severe drug-induced 

skin injuries [141-145]. HLA-B genotypes and LTG-induced cutaneous adverse drug 

reaction (LTG-cADR) associations have been described in several reports. HLA-B*15:02 
is associated with SJS in response to LTG administration in multiple populations [18-23]. 

Another study reported that HLA-B*38:01 was significantly associated with LTG-related 

SJS/TEN in a Spanish Caucasian population (p<0.001) [146]. HLA-DRB1*04:05 and 

HLA-DQB1*04:01 alleles occurred in a higher frequency in Japanese patients with LTG-

cADRs. These two alleles are in linkage disequilibrium in this population, along with 

HLA-DQA1*03:03, which is also associated with LTG-cADRs [147]. Studies in Korean 

populations assume a relationship between HLA-B*44:03 and LTG-induced SJS/TEN (odds 

ratio: 12.75; CI 1.03-157.14; p=0.053), however the number of patients for these study 

was very low (n=9, n=5 respectively) [148, 149] and further detailed study is need to 

explore the role of HLA-B*44:03 in LTG induce SJS/TEN. HLA-A*24:02 allele and LTG-

induced maculopapular eruptions (MPE) (OR 3.949, p=0.005) [150, 151]. Additionally, 

HLA-A*24:02 showed significant association with DRESS (drug reactions with eosinophilia 

and systemic symptoms), in a Spanish Caucasian population (p<0.001, n=12) [146]. 

Furthermore, a recent study reported HLA-A*24:02 was also associated significantly with 

SJS induced by LTG in a southern Han Chinese population (p = 0.005, n=91) [151]. Two 

other novel SNPs, rs12668095 near CRAMP1L/TMEM204 and rs79007183 near TNS3, 

were associated (P=4.89×10(−7), P=3.15×10(−10) respectively) with LTG-induced MPE 

in a Korean population (n=34 discovery cohort and n=59 validation cohort) [152]. HLA-
A*02:01:01/-B*35:01:01/-C*04:01:01 haplotypes were also associated with LTG-induced 

MPE in a Mexican Mestizo population (p<0.0001, though n=21) [153]. A recent study 
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in Thai patients reported that HLA-A*02:07 and HLA-B*15:02 allele carriers were 

significantly higher in the LTG-induced skin injuries group than in tolerant controls. 

Additionally, HLA-A*33:03, HLA-B*15:02, and HLA-B*44:03 were significantly higher 

in the LTG-induced MPE group (though the study only included a small group of patients), 

and the authors note that these alleles could be useful screening markers for preventing 

drug-induced skin injuries before LTG treatment in Thai patients [154]. Another recent 

study found that frequency of the HLA-A*31:01 allele was significantly higher (p<0.001, 

n>50) in the LTG-induced SCAR (severe cutaneous adverse reactions) group compared to 

the LTG-tolerant group in Korean population. Therefore, HLA-A*31:01 might be a risk 

allele for LTG-induced SCAR in Korean population [155].

Conclusions

There are several pharmacogenomic studies that reveal important aspects of 

pharmacokinetics, pharmacodynamics, and mode of action of LTG; however, complete 

understanding of PK/PD and mechanism of action of LTG through further research 

is still necessary to improve its therapeutic efficacy. The primary motive for utilizing 

pharmacogenetics in administration of LTG lies in the ability to understand the influence 

of genetic polymorphisms in the pharmacokinetics and pharmacodynamics of the drug being 

metabolized. This will allow physicians to optimize therapeutic doses for patients to provide 

maximum efficacy and optimal seizure control. We have outlined likely gene candidates in 

this article, but further studies need to be done to identify a specific set of clinically relevant 

gene signatures.
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Stylized diagram showing lamotrigine metabolism in the liver and its mechanism of action at 

neurons. A fully clickable version of this figure can be found at https://www.pharmgkb.org/

pathway/PA166183755.
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