
Phys. Biol. 20 (2023) 045004 https://doi.org/10.1088/1478-3975/acd898

OPEN ACCESS

RECEIVED

3 February 2023

REVISED

2 May 2023

ACCEPTED FOR PUBLICATION

24 May 2023

PUBLISHED

12 June 2023

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Fractal dimension to characterize interactions between blood and
lymphatic endothelial cells
Donghyun Paul Jeong1,2, Daniel Montes1,3, Hsueh-Chia Chang1,2,3,4,5 and Donny Hanjaya-Putra1,2,3,4,5,∗
1 Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
2 Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
3 Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
4 Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
5 Center for Stem Cell and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: dputra1@nd.edu

Keywords: fractal dimension, morphogenesis, cell migration, blood and lymphatic endothelial cells

Supplementary material for this article is available online

Abstract
Spatial patterning of different cell types is crucial for tissue engineering and is characterized by the
formation of sharp boundary between segregated groups of cells of different lineages. The cell−cell
boundary layers, depending on the relative adhesion forces, can result in kinks in the border,
similar to fingering patterns between two viscous partially miscible fluids which can be
characterized by its fractal dimension. This suggests that mathematical models used to analyze the
fingering patterns can be applied to cell migration data as a metric for intercellular adhesion forces.
In this study, we develop a novel computational analysis method to characterize the interactions
between blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which form
segregated vasculature by recognizing each other through podoplanin. We observed indiscriminate
mixing with LEC−LEC and BEC−BEC pairs and a sharp boundary between LEC−BEC pair, and
fingering-like patterns with pseudo-LEC−BEC pairs. We found that the box counting method
yields fractal dimension between 1 for sharp boundaries and 1.3 for indiscriminate mixing, and
intermediate values for fingering-like boundaries. We further verify that these results are due to
differential affinity by performing random walk simulations with differential attraction to nearby
cells and generate similar migration pattern, confirming that higher differential attraction between
different cell types result in lower fractal dimensions. We estimate the characteristic velocity and
interfacial tension for our simulated and experimental data to show that the fractal dimension
negatively correlates with capillary number (Ca), further indicating that the mathematical models
used to study viscous fingering pattern can be used to characterize cell−cell mixing. Taken
together, these results indicate that the fractal analysis of segregation boundaries can be
used as a simple metric to estimate relative cell−cell adhesion forces between different cell
types.

1. Introduction

During embryonic development, cells bound for dif-
ferent fates grow in close proximity to each other, and
yet develop well-defined boundaries between sep-
arate tissues [1–3]. While undergoing rapid growth
and differentiation, cells also retain their pattern

forming abilities that drive morphogenesis and tis-
sue formation [4–6]. Loss of cadherin function in
embryogenesis, which is responsible for cell segrega-
tion, leads to a failure to form distinct compartments
in the embryo and therefore causes embryonic lethal-
ity, highlighting the importance of cell−cell bound-
ary formation in tissue morphogenesis [7, 8].
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Figure 1. Schematic of the overall analysis. We take the time series fluorescent images of two groups of cells migrating toward each
other and perform segmentation on the two channels. Then we generate the boundary between the two cell groups and calculate
fractality of the boundary and the boundary velocity.

In order to achieve clear boundary formation,
cells use a combination of differential adhesion,
selective avoidance, and cortical tension to form
boundaries [9, 10]. Differential adhesion is achieved
through surface receptors which selectively recog-
nize cells and form tighter bonds with them through
the cadherin family of molecules [11–13]. Cells
also develop selective repulsion through Eph-ephrin-
guided mechanism, which has also been reported to
play a role in cell segregation [14, 15]. Actomyosin
also plays a role in cell segregation throughmediation
of cortical tensionwhich affects cell cytosol to reshape
boundaries [16, 17]. These factors contribute to the
cells selectively forming tighter or looser bonds with
surrounding cells, leading to a differential in affin-
ity between cells of the same type and different type
[9]. The degree of differential in affinity determines
the crispiness of the borders between two cells types,
with higher differential affinity leading to straighter
borders [18]. Similar to two immiscible fluid−fluid
surface, high degree of selective preference for cells
of its own type leads to energetical unfavourability of
rough, fuzzy surfaces and formation of straight bor-
ders to minimize the contact with cells of the same
type [19].

This formation of straight, clear borders is
important in stem cell-based tissue engineering,
since stem cell-derived mature cells often suffer
from immaturity and lower marker expression com-
pared to their native mature counterparts [20–22].
Therefore, in tissue engineering applications requir-
ing more than one type of cell, for example in vas-
cularized tissue engineering involving the endothelial
and target tissue-specific cells, the recognition ability
of cells and the resulting differential affinity is cru-
cial for free energy-driven self-organization of cells
[23–26]. In order to predict the ability of two or
more types of human induced pluripotent stem cell-
derived cells to self-assemble into tissues, measuring
the differential affinity between different cell types

is crucial [2, 22]. Numerous studies have proposed
mathematical models to explain the collective migra-
tion and organization behavior of cells [27]. A study
byMark et al proposed a dynamic instabilitymodel to
predict cell−cell boundary formation which is solely
affected by cell shape and motility without account-
ing for chemical gradients [28]. Another study by
Kopf and Pismen proposed modeling of the cell−cell
boundary as an elastic continuum that can respond
to chemical and mechanical stimuli [29]. Here, we
put forth our mathematical model to characterize
cell−cell boundary inspired by the field of petroleum
engineering.

In this study, we propose the use of fractal
dimension of the cell−cell boundary after two cell
types are allowed to migrate towards each other
(figure 1). Fractal dimension analysis has been widely
used to study the geometric arrangements of vari-
ous substances and materials, including tissues dur-
ing development [30–33]. Some fractals are self-
similar, meaning they exhibit geometric similarity
at any scale, and there are several techniques and
mathematical approaches that can be used to gener-
ate and describe these self-similar geometries [34].
However, many natural architectures do not show
self-similarity, but instead exhibit a scale-limited sim-
ilar pattern, making them pseudo-fractals [35]. These
can also be analyzed using the same mathematical
tools as self-similar fractals [35, 36].

Pseudo-fractals are commonly observed during
the displacement of immiscible fluids in porous
media, such as in enhanced oil recovery (EOR)
processes [37, 38]. During EOR, capillary forces pro-
duce an interphase between the immiscible phases
due to interfacial tension, velocity, and viscosity
[39]. These forces can shape the boundary, resulting
in straight and clear interphases or viscous finger-
ing like patterns with pseudo-fractal behavior [40].
Similarly, the interaction of two different cell lines
during tissue development is governed by differential
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affinity and altering this affinity can create differ-
ent boundary patterns that can be analyzed using
fractal dimension analysis. For example, in our pre-
vious study we demonstrated that surface receptor
podoplanin is responsible for the distinct capillaries
formed by blood endothelial cells (BECs) and lymph-
atic endothelial cells (LECs) [41]. To further explain
the interaction between BECs and LECs, here we
showed that fractal dimension analysis can be used to
characterize BECs and LECs interactions during cell
migration, an essential step toward blood and lymph-
atic tube formation [23, 42].

2. Methods

2.1. Cell segmentation and boundary definition
We utilized the data published by Jeong et al which
included timeseries fluorescent images of BECs and
LECs stained with different membrane staining dye
and allowed to migrate towards each other [41]. We
performedmanual background subtraction by setting
lower threshold to remove the background fluores-
cence. Videos over 25 MB in size were cropped into
two separate videos to avoid problems associatedwith
handling large file sizes. The timeseries images were
segmented usingCellpose, a publicly available Python
package that uses machine learning algorithm to seg-
ment the cells [43]. We used the Cyto model with an
estimated diameter of 10 pixels to generatemasks cor-
responding to the location of each cell for both types
of cells. We then calculated the center of each mask of
the cell to generate a single location point for each cell.
The locations of cells for each timepoint were used as
input data to generate the boundary. We generated a
NumPy meshgrid of the same size as the input video
and used SciPy’s K-Neighbor Classifier for each point
to classify each point into either region 1 or 2 based on
the number of cells nearest to it. Then we defined the
boundary layer as the set of pixels in region 1 which
bordered region 2 (figure 2(A)).

2.2. Box counting method
We determined the fractality of the boundary layer
through box counting method. The image of the
boundary layer, where the boundary pixels are
assigned the value of 1 and non-boundary pixels 0,
was used as the input to the algorithm. We generated
a list of square box sizes from 2 pixels in length to half
of the width of the video. Then we calculate the num-
ber of boxes that contain at least one border pixel for
each box size, then plot the number of positive counts
against the box sizes. We used NumPy’s polyfit func-
tion to generate the slope of the log−log values of box
sizes and positive counts, which corresponds to the
Hausdorff dimension of the boundary.

2.3. Boundary displacement calculations
We calculated the boundary layer velocity by estimat-
ing the average displacement of the boundary pixels

from the initial position. The initial position was
defined as the boundary layer when the cells first
made contact, as visibly confirmed through fluores-
cent images. For each y-coordinate along the bound-
ary, the absolute value of the deviation of the bound-
ary layer from the initial position at that y-coordinate
was averaged throughout the entire boundary. If there
are multiple boundary layer pixels within a given y-
coordinate, then the greatest value was taken. The
average displacement was taken as the displacement
of the boundary layer. To calculate the velocity, the
boundary layer displacements were averaged over 10
most recent timepoints to smooth out the noise in the
displacement.

2.4. Optimization of the algorithm
We optimized three parameters in our overall
algorithm: the maximum box size in the box-
counting algorithm, the coarseness of the NumPy
meshgrid, and the number of neighbors during the
K-nearest neighbors classification step. In generating
the list of different sizes of boxes to use, we found
that setting the largest box size to equal the width
of the video resulted in box counts that deviated
from the linear expectation. Therefore, we calculated
the R-squared value of the linear fit resulting from
box counting methods where the largest box size
was set to the number of pixels of the x-axis of the
image divided by box-size parameter b rounded to
the nearest integer (figure 2(B)). We found that the
optimum value of b was 2, meaning that the largest
box size in our algorithm was half of the width of
the video. We also determined the coarseness of the
meshgrid by changing the number of points in the
meshgrid each pixel would be represented by. We
tested compression factors of 0.5, 1, 2, 3, 5, and 10,
which correspond to the number of pixels each point
inmeshgrid represents.We also optimized for the dif-
ferent number of neighbors in the K-nearest neighbor
algorithm. We used two metrics for optimizing these
parameters: the difference in the average final fractal
value between the LEC−LEC and BEC−LEC condi-
tions and the average standard error for those two
conditions. We want to maximize the difference in
final fractal value and minimize the standard error
to achieve the best algorithm that can discriminate
between LEC−LEC and LEC−BEC condition while
also yielding consistent results. Based on the results,
we see that the meshgrid compression of 2 achieves
optimal balance between the two metrics, and we
observe a greater degree of discrimination and vari-
ability with lower number of neighbors (figures 2(C)
and (D)). Therefore, for all further work, we used 1
nearest neighbor and meshgrid factor of 2.

2.5. Randomwalk simulation
We generated a NumPy array of 400 cells each of
type 1 and 2, each consisting of x- and y-coordinate
bound within 30 by 50 grid. The cells were initially
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Figure 2. (A) Schematic of the algorithm and the optimization parameters. (B) Effect of the maximum box size in the
box-counting algorithm on the R2 value of the linear regression of log of box sizes and boundary-containing box counts. The
maximum box size was defined as the number of pixels of the x-axis of the image divided by the box size parameter and rounded
down to the nearest integer. (C) Optimization results based on the difference between the final fractal dimension estimate for
LEC−LEC and BEC−BEC condition and LEC−BEC condition. (D) Optimization result based on the average standard error
between the estimated fractality of each timeseries image of the same condition.

organized in a block pattern, occupying 8 columns of
50 cells along the two edges of the grid. We designed a
modified Gillespie algorithm by defining the relative
probability of a cell moving into each of the four adja-
cent spaces. The simulation incorporated five para-
meters: pm1, pm2, al1, al2, and ad. Parameters pm1 and
pm2 defined the probability of a cell moving within
a given timeframe, and for all simulations they were
set to 0.95 for both cell types. Parameters al1 and al2
defined the effect of a cell of the same type on the
probability of the cell moving to the adjacent space
respectively for cell type 1 and 2. Parameter ad defined
the effect of the opposite cell type on the probability of
cell movement. The cumulative effect of the like and
dislike cells was calculated by multiplying the indi-
vidual effects together. Therefore, a value greater than
1 indicates affinity between two cells, while a value of
less than 1 indicates repulsion. We did not incorpor-
ate the impact of an immediately adjacent cell on the
probability of the cell moving within a timepoint. A
cell was forbidden frommoving into a space that was
already occupied by another cell or off the grid. For
our simulation, we assumed no cell division or death.
The overall probability of a cell of type 1 moving in
direction i is therefore represented as

pi, cell1 = pm1

(
qk∑3
j=0 qj

)

qj = anll1a
nd
d r

where nl and nd respectively represents the number of
same and opposite type of cells adjacent to the space
the cell mightmove to, and r is a binary value which is
equal to 0 if the spot is occupied or exists at the edge,
and 1 if available. Calculations for q was performed
for each of the four spaces a cell can move into.

For each timepoint, the probability for each cell
was calculated, and a random number generator
determined themovement of each cell. For cells which
could not move to any space in a given timepoint,
the q values were all set to 0. The calculations were
performed sequentially, where the previous cell was
allowed to finish its movement before the probability
was calculated for the next cell in order to prevent the
probability of two cells moving into the same space.
The order of the cells were randomly shuffled at each
timepoint. The updated cell locations were saved as
a NumPy array of x- and y-coordinates and used for
subsequent fractal analysis using the same boundary
defining and box counting methods described above.
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3. Results

3.1. Lower differential affinity results in higher
final fractality value
We used the data we previously published in the
journal Cellular Molecular and Bioengineering, where
we reported that podoplanin is responsible for the
selective cell−cell interaction between BECs and
LECs [41]. The LECs and BECs preferentially form
tight junctions with only the cells of their own
kind during capillary formation, allowing the sep-
aration of the blood and the lymph. We found that
this recognition is dependent on the expression of
podoplanin in LECs, which is consistent with previ-
ous observations [44–46]. Therefore, we found that
podoplanin-knockout LECs (referred to as ∆LEC)
act somewhat similarly to BECs and are recognized
as pseudo-BECs.

As previously described, we performed migration
assays with BECs and LECs stained in two differ-
ent live cell tracking fluorescent dyes [41]. We seeded
BECs on one side and either LECs, BECs, or ∆LECs
on the other side and allowed the gap to close by
cells migrating toward each other. We segmented the
cell data and defined the boundary between the two
groups of cells and calculated the fractality over time
(figure 1). We found that the fractality of the bound-
ary between two like cells, which exhibit no preference
towards cells of its own side, increases to around 1.25,
while the fractality of the two opposite cells remains
around 1.05 (figures 3(A) and (B)). We only calcu-
lated the fractality after 8 h of migration when the
gap fully closed, and the cells came into contact with
each other. We also performed a similar analysis on
the knockout condition and found the final fractal
value to be around 1.15 (figure 3(C)). The fractal val-
ues correspond with the known affinity of BECs to
other BECs versus LECs. We also expect the pseudo-
LECs which express some BEC-like characteristics to
have affinity for BECs that is between LECs and BECs,
which also corresponds to the fractal values. However,
it is challenging to measure the exact affinity of BECs
to other BECs and LECs, which means the exact dif-
ferential affinity is not measured. All in vitro cell
migration assays were performed for 24 h at most,
since beyond that point, cells will begin to undergo
division and therefore the resulting fractality is not
only a function of differential affinity, but also cell
proliferative potential [42, 47].

3.2. Randomwalk simulation
In order to measure the effect of differential affinity
on fractality, we designed a random walk simulation
to model the movement of the two types of cells. We
tested five conditions: for all conditions, the probab-
ilities of movement for both cells were set to 0.95, and
the attractive force between the two like cells were set
to 1.5 for both cells. For ad values, we tested 1.5 to sim-
ulate the BEC−BEC condition and 0.5, 0.2, 0.1, and

0.05 to simulate varying levels of differential affin-
ity between BECs and LECs (supplemental figure 1).
We ran the simulation for 80 timepoints and found
that the gap is mostly closed by timepoint 30. We
have empirically determined that 80 timepoints is the
minimum timepoints required for all tested condi-
tions to reach approximately zero boundary velocity
when averaged over 5 consecutive timepoints. From
timepoint 30–80, we performed the fractality ana-
lysis and found that greater differential affinity results
in significantly lower fractality value (figures 4(A)–
(C)). For ad value of 1.5, the fractal value reached
close to 1.30, similarly to our BEC−BEC condition,
and for 0.05, the fractal value remained close to 1.05,
analogous to BEC−LEC condition. For ad value of
0.2, the fractal dimension reached approximately 1.15
similarly to our BEC−∆LEC condition. We also cal-
culated the boundary layer displacement for each of
these conditions and found that higher differential
adhesion led to lower boundary layer displacement as
expected (figures 4(D)–(F)).

3.3. Relationship with the capillary number
To determine if our analysis of the fractal dimen-
sion is analogous to viscous fingering, we analyzed the
relationship between capillary number and fractality
in our simulations. It has been previously reported
that in viscous fingering, Ca is negatively correlated
with fractality [48]. In biological applications, unlike
in petroleum engineering, the capillary number does
not vary by large magnitudes, therefore, we assume
local linear relationship between fractality and capil-
lary number

f =−mCa+ b=−m
µV

σ
+ b

where V represents boundary velocity, σ is the inter-
facial tension, µ is the viscosity, and m and b repres-
ents constants. We expected to see that the fractal-
ity of the boundary would be close to 1 when the
cells are moving rapidly to close the gap, which is
when the cells are moving at their maximum speed
in absence of obstacles. At point of initial contact,
when the boundary is essentially a one-dimensional
straight line, the velocity would also equal Vmax if we
assume continuity of velocity. Effectively, we observe
that boundary velocity acts as a proxy for time, trans-
itioning from initial Vmax to final velocity of 0 as
cells lose the driving force behind migration as the
cell density reaches equilibrium. Therefore, we expec-
ted fractal value to be close to 1 at maximum velo-
city, which is at initial timepoint, which allowed us to
make the following prediction:

lim
V→Vmax

f = 1.

Likewise, we can assume that the viscous fingering
will reach equilibrium at distant timepoint, which is
when the boundary velocity will reach 0. At this point,
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Figure 3. BEC and LEC migration fractality. Fractality of the (A) BEC−BEC, (B) BEC−LEC, and (D) BEC−∆LEC conditions
over time. Fractality was calculated after the gap had closed at around 8 h after the initial timepoint. Standard error is shown in
blue. Standard error was calculated based on two experimental replicates which were segmented into smaller videos for ease of
analysis.

Figure 4. Random walk simulation results. Fractality of the (A) ad = 0.05, (B) ad = 0.2, and (C) ad = 1.5 conditions over time.
The pm and al values were kept constant at 0.95 and 1.5 respectively. Fractality was calculated after the gap had closed at around
iteration 30. Boundary displacement calculations from the initial boundary position at iteration 30 with fractality of the
(D) ad = 0.05, (E) ad = 0.2, and (F) ad = 1.5 conditions over time. Each condition was repeated three times. Standard error is
shown in blue.

the fractality would no longer change, meaning this
would be our final fractal value. Therefore, we gener-
ate another prediction:

lim
V→0

f = ffinal.

Therefore, we see that if for all conditions, as V
approaches Vmax the fractality must approach 1. This
means we can express fractality as

f =−m
µV

σ
+ 1+m

µVmax

σ
,

where m is a constant. We can therefore predict
that the final fractal value will have the following
relationship:

ffinal =m
µVmax

σ
+ 1∝ 1

σ
.

We also predicted that the rate of change of
fractality with velocity to be approximately

− df

dV
=m

µ

σ
∝ 1

σ
.

Based on this, we estimated that the final fractal
value would be inversely proportional to the differ-
ential affinity or surface tension, and that the rate
of change of fractality with velocity would be neg-
atively correlated with differential affinity. Using the
simulated cells, we found that these relationships are
indeed shown to be true. For the model paramet-
ers, we held constant the viscosity µ, analogous to
the pm1,2 parameter in our model, and estimated that
interfacial tension σ would be analogous to al/ad.
This means that lower ad value indicates stronger
repulsion by the other cell type and therefore res-
ults in higher surface tension. In our simulations, we
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Figure 5. The relationship between σ and fractality/velocity. (A) Plot of the model estimate of interfacial tension versus the
absolute value of rate of change of fractal dimension of the boundary with respect to the boundary velocity. (B) Plot of the model
estimate of interfacial tension versus the final fractal value at iteration 80 in the simulations. The inverse function fit using
nonlinear least squares curve fitting method is shown in red. Five conditions were tested at various ad values while al and pm were
held constant.

found that both the final fractal value and the slope of
fractal-velocity plot were both inversely proportional
to σ. We fit the data we derived from the random
walk simulations with inverse proportion equation
through non-linear least squares fitting method and
derived the following relations:

ffinal =
1.2737

σ+ 3.7595
+ 1

− df

dV
=

0.7181

σ+ 2.1533
+ 0.0447.

We achieved the square norm of the residual val-
ues of 0.0007 and 0.0025 respectively for the σ vs
final fractal value and σ vs negative of slope values
(figures 5(A) and (B)). To confirm that the calculated
values are best fit by the inverse function, we also fit
the data to linear, second-order polynomial, expo-
nential decay and confirmed that the inverse function
yields the lowest norm of the residual (supplemental
figure 2). These results indicate that our fractal ana-
lysis responds similarly to fractality of viscous finger-
ing systems. Since there is a strong inverse relation-
ship between the final fractal value and the interfacial
tension, this suggests that fractal dimensionmeasure-
ment of the cell−cell boundary can be used as a relat-
ive measure of cell−cell adhesion.

4. Discussion

In this study, we have used fractality of the boundary
between two types of cells to estimate the differential
affinity between them. We modeled the cells as a sys-
tem consisting of two partially miscible fluids allowed
to move toward each other in a 2D surface, which
can result in viscous fingering pattern. It is import-
ant to note that as the cells from single monolayers,
we do not expect the vertical dimension to affect our

conclusion. While random walk simulations can eas-
ily be modified to be run in 3D, the agreement in
fractal dimension with the 2D imaging suggests that
a 2D model is sufficient. Similar to how the fractal
dimension of the fingering pattern is correlated with
the capillary number, we have determined that the
fractality of the fingering-like patterns visible in the
cell migration patterns also follow the similar rela-
tionship between fractality and parameters analogous
to capillary number [36]. Therefore, we estimate that
the differential affinity, which is roughly analogous to
the interfacial tension in a fluid−fluid boundary, is
inversely correlated with the fractal dimension of the
cell−cell boundary layer.

Our findings suggest that the differential affinity
between cells of different origins play a crucial role
in cell organization and boundary formation, which
seems to suggest differential adhesion hypothesis
(DAH) first introduced by Twones and Holtfreter in
their landmark 1955 study [49]. Since then, numer-
ous studies have reported on the effects of differ-
ential adhesion on the formation of cell aggregate
boundaries, which can be modeled to be liquid-like.
Varying the cadherin levels in L cell aggregates have
affected the segregation and sorting of cells guided by
free energy of cell−cell binding [9]. In another study,
Toll1, a transmembrane protein that plays a role in
intercellular adhesion, has been shown to correct dis-
tortions in Drosophila pupa epidermal epithelium,
further supporting the DAH [50]. However, DAH
has been a controversial subject in the field of tissue
engineering and developmental biology, with some
studies disputing the validity of modeling cell aggreg-
ates as immiscible fluids and suggesting dynamic
factors in addition to differential adhesion may play
a significant role in cell organization [51, 52]. Our
findings endorses the validity of DAH in the self-
organizing behavior of BECs and LECs as well as
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put forth a new mathematical approach to model the
cell−cell boundary behavior. Future studies should
explore the use of various grid coarseness in our
random walk simulations to fully confirm that the
cell−cell boundary can be modeled accurately as a
continuum similarly to partially miscible fluids des-
pite the significantly larger size of each ‘particle’.

Overall, our findings indicate that the fractality
measurement can be a simple tool to estimate the dif-
ferential affinity in two groups of cells, which is useful
in co-cultured tissue engineering where two or more
types of cells must self-organize to form structures
[2, 22]. Future studies could explore the use of this
tool in various types of cells that may exhibit differ-
ential affinity, for example in tumor cells that attract
endothelial cells for vessel formation [53, 54]. Our
random walk simulation model could also be applied
to predict the formation of blood vessels in vascular-
ized organoids, where mobile endothelial cells invade
a less mobile group of cells to form perfusing vessels
[55, 56]. Taken together, our fractality tool is a novel
approach to measure the differential affinity between
cells that does not require protein level analysis, which
can have a broad application in cell development and
tissue engineering.

Future studies should explore the limitations and
potential sources of error in the methods used in this
study. While box-counting method is a widely used
method for estimating fractal dimensions, it suffers
from quantization error, which stems from variab-
ilities in grid orientation and placement as well as
scaling range [57]. In order to reduce the effect of
the errors in box-counting method, we determined
the linear region over various box scaling ranges, but
improvements on the box counting method such as
pattern search which have higher computational cost
could be applied in future studies [58]. Additionally,
we included five variable parameters in the random
walk simulations in order to potentially model the
variabilities in cell motility characteristics, but for the
simplicity of our mathematical derivations we only
tested the effect of varying ad which subsequently var-
ies our simulated interfacial tension. Future studies
using our random walk simulation could explore the
effects of varying migration potential and the al para-
meters to fully capture the dynamics between various
cell lines.
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