The Distribution of Lifestyle Risk Factors Among Patients with Stroke in the Indian Setting: Systematic Review and Meta-Analysis

Annals of Neurosciences 30(1) 40–53, 2023 © The Author(s) 2022 Article reuse guidelines: in.sagepub.com/journals-permissions-india DOI: 10.1177/09727531221115899 journals.sagepub.com/home/aon

Biji P. Varkey¹, Jaison Joseph², Abin Varghese³, Suresh K. Sharma⁴, Elezebeth Mathews⁵, Manju Dhandapani⁶, Venkata Lakshmi Narasimha⁷, Radha Kuttan⁸, Saleena Shah⁹, Surekha Dabla¹⁰ and Sivashanmugam Dhandapani¹¹

Abstract

Background: The burden of stroke is increasing in India, but there is limited understanding of the distribution of reported risk factors in the Indian setting. It is vital to generate robust data on these modifiable risk factors to scale up appropriate strategies for the prevention of cerebrovascular diseases in this setting.

Summary: The objective of this study is to estimate the overall proportion of life style risk factors of patients with stroke in the Indian setting. We searched PubMed and Google Scholar and relevant studies published till February 2022 were included. The risk of bias assessment was considered for the study selection criterion in the meta-analysis. The publication bias was evaluated by funnel plots and Egger's test. We identified 61 studies in the systematic review and after quality assessment, 36 studies were included for meta-analysis. Random effect model was used due to the significant inconsistency among the included studies (l2 > 97%). The mean age of the participants was 53.84 ± 9.3 years and patients with stroke were predominantly males (64%). Hypertension (56.69%; 95% Cl: - 48.45 - 64.58), obesity (36.61%; 95% Cl: - 19.31 - 58.23), dyslipidemia (30.6%; 95% Cl: - 22 - 40.81) and diabetes mellitus (23.8%; 95% Cl: - 18.79 - 29.83) are the leading intermediate conditions associated with stroke. The Physical inactivity - 29.9% (95% Cl: - 22.9 - 37.1), history of tobacco use (28.59%; 95% Cl: - 22.22 - 32.94) and alcohol use (28.15%; 95% Cl: - 20.49 - 37.33) were reported as the behavioral risk factors for stroke in this setting.

Key Messages: The current meta-analysis provides robust estimates of the life style related risk-factor of stroke in India based on the observational studies conducted from 1994 to 2019. Estimating the pooled analysis of stroke risk factors is crucial to predict the imposed burden of the illness and ascertain the treatment and prevention strategies for controlling the modifiable risk factors in this setting.

Keywords

Stroke, Lifestyle, Risk factors, Patients, India

Received 20 June 2022; accepted 8 July 2022

¹ Department of Neurology, Postgraduate Institute of Medical Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India

² Department of Psychiatric Nursing, College of Nursing, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India

³ College of Nursing, AIIMS, Nagpur, India

⁴ College of Nursing, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India

⁵ Department of Public Health and Community Medicine, Central University of Kerala, Kasaragod, Kerala, India

⁶ National Institute of Nursing Education, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India

⁷ Department of Psychiatry, All India Institute of Medical Sciences (AIIMS) Deoghar, Jharkhand, India

⁸ College of Nursing, Bhopal Memorial Hospital and Research Centre, ICMR, Bhopal, Madhya Pradesh, India

- ⁹ Government College of Nursing Thiruvananthapuram, Kerala, India
- ¹⁰ Department of Neurology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India

¹¹ Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India

Corresponding author:

Elezebeth Mathews, Department of Public Health and Community Medicine, Central University of Kerala, Kasaragod, Kerala 671320, India. E-mail: dr.elezebethmathews@cukerala.ac.in

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www. creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction

Cardiovascular diseases accounted for the majority of deaths globally [18.6 million (17.1-19.7)] in both sexes combined in 2019, amongst which stroke is the second leading cause of death, 3.33 million (3.04-3.62) stroke deaths in males and 3.22 million (2.86-3.54) deaths in females.¹ Disabilityadjusted life years (DALYs) for cardiovascular diseases were 393 million (95% UI 368-417) and 143 million (95% UI 133–153) for stroke, making stroke the third-leading cause of disease burden.² In India, cardiovascular diseases attributed the highest percent of total death for all ages in which stroke was the fifth leading cause of death in the year 2016, with a mean percent change in the number of DALYs of 52.9% (40.4-66.7) between 1990 and 2016.3 Within India, a wide variation in the burden of stroke was observed across the states. To cite, a recent meta-analysis reported a one-month case fatality rate of stroke varied from 41.08% to 42.06% in the urban population and 18% to 46.3% in the rural population.⁴ This wide variation could be because of the variability in the distribution of risk factors in the population, effectiveness of health services in preventive, curative, and rehabilitative services, and data availability.5

The available empirical data reported the risk factors for stroke, such as sociodemographic, behavioral, anthropometric, clinical, and biochemical, from multiple settings in India.^{6,7} The significant lifestyle-related risk factors include hypertension, diabetes, hyperlipidemia, obesity, smoking, heart disorders, congestive cardiac failure, atrial fibrillation, left ventricular hypertrophy), and so on, and the burden of each risk factor remains unknown.⁸ The global burden of disease study (1990–2016) reported a gross variation in the risk factors for cardiovascular disease across the states of India.⁹ It is also evident that South Asians, including Indians, are highly vulnerable to cardiovascular disease because of their cardiometabolic risk profile and ethnically mediated cardiometabolic dysfunction.¹⁰

The burden of stroke is increasing in India, but there is scanty evidence on the systematic understanding of the distribution of its lifestyle risk factors in the Indian setting. It is vital to generate robust data on these risk factors to scale-up appropriate strategies for preventing cerebrovascular diseases in this setting.

Objective

The objective of this study was to estimate the overall proportion of lifestyle risk factors of patients with stroke in the Indian setting.

Materials and Methods

Search Strategy and Selection Criteria

This systematic review is reported following the PRISMA checklist.¹¹ We searched PubMed and Google Scholar, and

relevant studies published till February 2022 were included. We used the combination of Medical Subject Headings (MeSH) and keywords of the following search concepts: "stroke," "risk factors," "patients," and "India." The details of the search strategy in PubMed are given as supplementary material 1. The data search was carried out by two investigators (BPV and MD). The archives of relevant Indian journals were reviewed for maximum inclusion of available studies. No attempts are made to acquire grey/unpublished literature considering the inherent conflict of interest, which might increase the risk of bias. The screening was performed by two investigators (RK and SS) who further appraised the full texts of appropriated records to reach a common consensus regarding the inclusion and exclusion of individual studies.

Inclusion and Exclusion Criteria

Observational studies, both hospital and community-based stroke registry studies, conducted in the Indian setting reporting the risk factors of various types of strokes and published in the English language were included. Stroke registries are observational databases focusing on the clinical information and outcomes of stroke patients. Stroke is a chronic disease with an acute event, so the hospitalization rate is high. As we were not estimating any incidence or prevalence of stroke, we also included hospital-based clinical studies recognizing its limitations and inherent biases.

Studies were included if participants had a confirmed history of stroke as defined by the World Health Organization (WHO)¹² or as defined according to clinical criteria or confirmed by imaging. Global or Indian studies that exclusively estimated the prevalence, incidence, and mortality data among patients with stroke were excluded. Besides, studies with inadequate data, published as editorials or letters to the editor, conference abstracts, expert opinion, or suggestions were excluded. The lifestyle risk factors for stroke were operationally defined as the conditions and behaviors that increases the chances of an individual to have, develop, or be adversely affected by a disease process. In this study, this was categorized into behavioral risk factors and intermediate conditions. The data on the nonmodifiable risk factors of stroke, such as age, previous history of stroke, and family history of stroke, were not estimated.

Data Extraction

The data extraction was done based on the following study characteristics: author (year of publication)/study region, period of study (year), types of stroke, mean age, gender, sample size, and risk factors (hypertension, diabetes mellitus, tobacco use, alcohol use, dyslipidemia, and others). Three investigators (BPV, JJ, and AV) were involved in the data extraction after reading and discussing the full-text version of the shortlisted publications based on the eligibility criteria. The extracted data were cross-verified by the author VLN and SD. A mutual consensus resolved disagreements between the authors (BV, JJ, AV, VLN, and SD).

Quality Assessment

The Joanna Briggs Institute (JBI) critical appraisal checklist was used for the risk of bias assessment (available from https://synthesismanual.jbi.global). The assessment of each study was done based on whether it met the following eight conditions: (a) Were the criteria for inclusion in the sample clearly defined? (b) Were the study subjects and the setting described in detail? (c) Was the exposure measured validly and reliably? (d) Were objective and standard criteria used to measure the condition? (e) Were confounding factors identified? (f) Were strategies to deal with confounding factors stated? (g) Were the outcomes measured validly and reliably? (h) Was appropriate statistical analysis used? Each study was graded as 1-Yes; 0-No; UC-Unclear after rigorous review. The total scores of the included studies were considered for the study selection criterion in the metaanalysis. Three review authors independently assessed the risk of bias in the included studies (SKS, EM, and JJ). This process was performed iteratively. First, each author reviewed the studies and made the risk of bias assessment based on the criteria. A third independent reviewer (SSD) addressed discrepancies in the quality scoring of two reviewers. Disagreements were resolved by group consensus.

Statistical Analysis

The R software was used to perform this meta-analysis, and the pooled estimate of the distribution of lifestyle risk factors of stroke was estimated using inverse variance weighting methods. Assuming the significant inconsistency among the studies, a random-effects meta-analysis model was used, and I^2 statistics were calculated to measure heterogeneity among studies. The heterogeneity was considered mild, moderate, or high when the I^2 values were from 25% to 50%, 51% to 75%, and >75%, respectively. The funnel plot and Egger's test were used to assess the potential publication bias.

Results

Identification of Studies

The database search identified 1691 reports: 1130 were excluded based on title and abstract screening, and after eliminating duplicates, 561 articles were retrieved for detailed evaluation, and 500 were excluded for the reasons summarized in Figure 1. Finally, 61 eligible articles were identified after applying the inclusion and exclusion criteria and included in

the systematic review, out of which 36 were included in the meta-analysis based on the risk of bias assessment.

Characteristics of the Studies Included in the Systematic Review

We have included 61 studies in our systematic review, conducted across various states in India, estimating the various lifestyle risk factors for stroke (Table 1).^{13–73} Out of 61, 56 studies were conducted and 58 were published after 2000. In 51 studies, patients were enrolled from the hospitalbased stroke registries (HBSR) maintained in various treatment settings across India, while in 10 studies, the enrollment was using population-based stroke registries (PBSR). The sample size of included studies varied from 32 to 4989. The number of patients with ischemic stroke and hemorrhagic stroke in the included studies ranged from 19 to 3260 and 3 to 1656, respectively. Other types of strokes reported in a few studies varied from 8 to 271.

Description of Studies Included the Meta-Analysis

The characteristics of the studies included in the metaanalysis are summarized in Table 2. The meta-analysis included 36 studies, out of which two studies^{31,66} were multicentric and the remaining included data from various states of the Indian subcontinent (North: 13,13,17,20,29,33,39,49,51,54-56,69,61 South: 14,14,19,23,40,45,48,53,59,62,63,6 ^{5,68,70,71} East: 3,^{28,36,6} West: 2,^{47,57} and Central: 2^{25,41}). The majority of the studies were published in the past dec ade 13,14,17,19,20,23,25,28,29,31,36,39-41,45,47-49,51,53-57,59 Overall. 18,315 stroke patients were included, in which the predominant proportion of subjects were males (64%) compared to females (36%). The mean age of the participants was 53.84 ± 9.3 years.

The total score of risk of bias assessment according to the JBI critical appraisal checklist for analytical cross-sectional studies is eight, and the individual scores of the included studies in the systematic review ranged from two to eight. We took an arbitrary cutoff based on the mean and the median scores as there is no specified cutoff for the classification of studies for risk of bias. The mean score of the 38 studies was 5.06, and the median score was five. We considered five as a cutoff point. Finally, 36 studies were included in the metaanalysis. Most studies had credible information about the eligibility criteria, study population, setting, and outcome measures. The reporting structure of the measurement of risk factors for stroke and the influence of confounding variables was poorly followed in more than half of the studies. The details of the quality assessment of the studies using the JBI checklist are described in Table 3.

Figure 1. Flowchart of Search Strategy and Selection Process.

Table I. Characteristics of the Included Studies in the Systematic Review (N = 61).

	Period of	Study	Sample		Type of stroke					
Author (Year of Publication)/Study Region	Study (Year)	Туре	Size	Ischemic	Hemorrhagic	Other	JBI Score			
Singla et al. (2022)/Punjab ¹³	2010-2013	PBSR	2948	1890	787	271	7			
Jayadevappa and Ravishankar (2021)/Karnataka ¹⁴	2013–2014	HBSR	230	200	30	NA	5			
Ram et al. (2021)/Across India ¹⁵	2016-2017	HBSR	526	299	98	129	4			
Rathore et al. (2021)/Rajastan ¹⁶	2019	HBSR	100	72	28	NA	4			
Kumar et al. (2021)/Uttarakhand ¹⁷	2018-2019	HBSR	48	39	9	NA	5			
Ahmed et al. (2020)/Uttarakhand ¹⁸	2019–2020	HBSR	129	122	07	NA	3			
Prabhakar et al. (2020)/Telengana ¹⁹	2016-2017	PBSR	144	NM	NM	NM	8			

(Table 1 continued)

(Table 1 continued)

	Period of	Study	Sample		Type of stroke		_
Author (Year of Publication)/Study Region	Study (Year)	Туре	Size	Ischemic	Hemorrhagic	Other	JBI Score
Kaur et al. (2020)/Rajasthan ²⁰	2015-2016	HBSR	360	290	70	NA	5
Somasundaran and Potty (2020)/Kerala ²¹	2014-2015	HBSR	464	335	129	NA	3
Moond et al. (2020)/New Delhi ²²	2014-18	HBSR	160	160	NA	NA	3
Karri and Ramasamy (2019)/Tamil Nadu ²³	2014-2017	HBSR	186	186	NA	NA	5
Patel and Vagadiya (2019)/Gujarat ²⁴	2014	HBSR	46	46	NA	NA	4
Panwar et al. (2019)/Madhya Pradesh ²⁵	2013-2014	HBSR	50	39	11	NA	5
Muralidharan et al. (2019)/Kerala ²⁶	2018-2019	HBSR	200	173	27	NA	4
Rajan et al. (2019)/Karnataka ²⁷	2013-2014	PBSR	150	52	05	93	4
Behera and Mohanty (2019)/Odisha ²⁸	2018-2019	HBSR	796	481	315	NA	5
Pathak et al. (2018)/New Delhi ²⁹	2012-2014	HBSR	268	169	60	39	5
Hussain et al. (2018)/Meghalaya ³⁰	2016-2017	HBSR	150	76	62	12	3
Sylaja et al. (2018)/Across India ³¹	2012-2014	HBSR	2066	NM	NM	NM	5
Diwan et al. (2018)/Maharashtra ³²	2016-2017	HBSR	70	35	35	NA	3
Kaur et al. (2017)/Punjab ³³	2011-2013	PBSR	4989	3260	1656	47	8
Kabi et al. (2017)/Odisha ³⁴	2014-2016	HBSR	367	218	149	NA	3
Chandran et al. (2017)/Kerala ³⁵	2010	PBSR	40	37	03	NA	3
Mahanta et al. (2018)/Assam ³⁶	2013-2015	HBSR	450	163	287	NA	7
Chandana and Kalyani (2017)/Andhra Pradesh ³⁷	2016–2017	HBSR	50	30	11	9	4
Jacob and Kulkarni (2017)/Karnataka ³⁸	2012-2013	PBSR	53	NM	NM	NM	3
Kumar and Rai (2017)/Uttar Pradesh ³⁹	NM	HBSR	100	NM	NM	NM	5
Manorenj et al. (2016)/Telengana ⁴⁰	2015-2016	HBSR	100	76	24	NA	7
Nayak et al. (2016)/Madhya Pradesh41	2011-2013	HBSR	104	104	NA	NA	6
Huliyappa and Kotrabasappa (2016)/ Karnataka ⁴²	2013–2014	HBSR	52	NM	NM	NA	5
Khan et al. (2015)/Chhattisgarh ⁴³	2014	HBSR	281	190	91	NA	2
Jadhav and Bondarde (2015)/Maharashtra ⁴⁴	2011-2013	HBSR	40	22	10	8	4
Subha et al. (2015)/Kerala ⁴⁵	2013	HBSR	100	71	29	NA	8
Vaidya et al. (2015)/Gujarat ⁴⁶	2012-2013	HBSR	175	175	NA	NA	4
Kawle et al. (2015)/Maharashtra ⁴⁷	2012-2014	HBSR	104	104	NA	NA	6
Shravani et al. (2015)/Karnataka ⁴⁸	2010-2011	HBSR	100	74	26	NA	7
Renjen et al. (2015)/New Delhi ⁴⁹	2004–2006	HBSR	244	244	NA	NA	7
Jan et al. (2015)/Jammu & Kashmir ⁵⁰	2011	HBSR	209	NM	NM	NA	4
Gupta et al. (2014)/Chandigarh ⁵¹	NM	HBSR	73	73	NA	NA	5
Kapoor et al. (2014)/Himachal Pradesh ⁵²	2012-2013	HBSR	32	19	13	NA	3
Sorganvi et al. (2014)/Karnataka ⁵³	NM	HBSR	100	NM	NM	NM	8
Dash et al. (2014)/New Delhi ⁵⁴	2005-2010	HBSR	440	440	NA	NA	6
Kulshrestha and Vidyanand (2013)/Uttar Pradesh ⁵⁵	2011–2012	HBSR	157	112	45	NA	5
Singh et al. (2013)/Punjab ⁵⁶	2006-2011	HBSR	1156	838	318	NA	8
Deoke et al. (2012)/Maharashtra ⁵⁷	NM	HBSR	101	86	15	NA	8
Narayan et al. (2012)/Telengana ⁵⁸	2002-2010	HBSR	428	NA	NA	428	4
Kumar et al. (2011)/Karnataka ⁵⁹	1998-2008	HBSR	109	84	25	NA	6

(Table 1 continued)

(Table 1 continued)

	Period of	Study	Sample				
Author (Year of Publication)/Study Region	Study (Year)	Туре	Size	Ischemic	Hemorrhagic	Other	JBI Score
Raju et al. (2010)/Punjab ⁶⁰	2008-2010	HBSR	162	125	37	NA	3
Kalita et al. (2009)/Uttar Pradesh ⁶¹	2004–2006	HBSR	198	198	NA	NA	6
Nagaraja et al. (2009)/Karnataka ⁶²	2005	HBSR	1174	797	148	NA	5
Sridharan et al. (2009)/Kerala ⁶³	2005	PBSR	541	311	61	169	7
Dalal et al. (2008)/Maharashtra ⁶⁴	2005–2006	PBSR	456	366	81	9	4
Lipska et al. (2007)/Kerala ⁶⁵	2002	HBSR	214	97	NM	117	8
Dalal (2006)/Across India ⁶⁶	2002–2004	HBSR	2162	1656	461	45	5
Bhattacharya et al. (2005)/West Bengal ⁶⁷	1992-1998	PBSR	128	NM	NM	NM	8
Pandiyan et al. (2005)/Tamil Nadu ⁶⁸	2003–2004	HBSR	402	NM	NM	NM	6
Mehndiratta et al. (2004)/New Delhi ⁶⁹	1988-1997	HBSR	127	109	18	NA	5
Kaul et al. (2000)/Telengana ⁷⁰	2000-2001	HBSR	893	893	NA	NA	5
Nayak et al. (1997)/Kerala ⁷¹	1988-1994	HBSR	177	125	9	43	6
Razdan et al. (1989)/Jammu and Kashmir ⁷²	1986	PBSR	91	NM	NM	NM	2
Chopra and Prabhakar (1979)/Chandigarh ⁷³	1970–1977	HBSR	251	109	64	78	3

Abbreviations: NA, not applicable; NM, not mentioned; PBSR, population-based stroke registry; HBSR, hospital-based stroke register; JBI Score, JBI critical appraisal checklist for analytical cross-sectional studies (score range: 0–8).

Table 2	. Lifest	le-Related	Risk Factor	s of Strok	e Based o	on the l	ncluded	Studies	in the	Meta-Ana	ysis ((N =	= 36))
---------	----------	------------	--------------------	------------	-----------	----------	---------	---------	--------	----------	--------	------	------	----

Author (Year of Publication)/Study	Mean Age ±		Sample			Tobacco	Alcohol	Dyslipid-	IHD/	RHD/		
Region	SD (Years)	Male/Female	Size#	HTN	DM	Use	Use	emia	CAD	VHD	AF	Others
Singla et al. (2022)/Punjab ¹³	NM	1811/1137 (2948)	1736	1506	777	417	887	347	203	58	184	Postpartum-7
Jayadevappa and Ravishankar (2021)/Karna- taka ¹⁴	59.6 ± 6.1	140/60	200	32	12	44	80	132	NM	NM	NM	D & H-120,T & A-80
Kumar et al. (2021)/Uttara- khand ¹⁷	55.25 ± 1.32	44/4	48	33	NM	24	15	NM	NM	NM	NM	Hyperhomocyste- inemia-12
Prabhakar et al. (2020)/Telen- gana ¹⁹	61.63	100/44	144	92	24	53	83	NM	NM	NM	NM	Obesity-50
Kaur et al. (2020)/ Rajastan ²⁰	60.46 ± 14.84	217/143	360	189	68	73	NM	93	27	-	-	Anemia-29
Karri and Rama- samy (2019)/Tamil Nadu ²³	38.9 ± 5.74	I 37/49	186	69	55	92	88	105	29	NM	NM	Hyperhomocyste- inemia-23
Panwar et al. (2019)/Madhya Pradesh ²⁵	31.70 ± 7.42	29/21	50	16	12	20	16	NM	I	NM	NM	Overweight-8 Ho- mocystinaemia-6
Behera and Mohanty (2019)/ Odisha ²⁸	61.4 ± 13.1	287/194	481	336	57	140	67	249	I	2	3	D & H-46, CKD- 105, Anemia-128
Pathak et al. (2018)/New Delhi ²⁹	50.3	200/60	260	169	60	88	64	NM	NM	NM	NM	Myocardial infarc- tion-38
Sylaja et al. (2018)/Across India ³¹	58.3 ± 14.7	1389/699	2066	1257	737	668	707	298	349	115	82	NA

(Table 2 continued)

Author (Year of Publication)/Study Region	Mean Age ± SD (Years)	Male/Female	Sample Size#	HTN	DM	Tobacco Use	Alcohol Use	Dyslipid- emia	IHD/ CAD	RHD/ VHD	AF	Others
Kaur et al. (2017)/ Punjab ³³	59 ± 15	3124/1865 (4989)	3330	2849	1564	573	1835	631	344	53	352	Postpartum-13
Mahanta et al. (2018)/Assam ³⁶	54.3 ± 13	273/177	450	163	52	319	242	NM	3	Ι	4	NM
Kumar and Rai (2017)/Uttar Pradesh ³⁹	NM	59/41	100	51	12	36	4	NM	4	3	4	NM
Manorenj et al. (2016)/Telen- gana ⁴⁰	54	69/3 I	100	83	34	43	61	59	13	NM	NM	Obesity-21, Physi- cal inactivity-28
Nayak et al. (2016)/Madhya Pradesh ⁴¹	NM	73/31	104	70	29	8	11	NM	5	NM	NM	NM
Subha et al. (2015)/Kerala ⁴⁵	65.30 ± 12.80	55/45	100	83	49	41	21	24	48	10	10	Physical inactiv- ity-37
Kawle et al. (2015)/Maharash- tra ⁴⁷	NM	73/31	104	70	29	8	11	NM	5	NM	NM	NM
Shravani et al. (2015)/Karna- taka ⁴⁸	50	73/27	100	70	27	24	20	22	15	NM	NM	NM
Renjen et al. (2015)/New Delhi ⁴⁹	57.1 ± 1.7	165/79	244	139	85	95	NM	58	44	NM	13	NM
Gupta et al. (2014)/Chandi- garh ⁵¹	59.9 ± 11.2	49/24	73	64	42	21	NM	63	17	NM	4	Obesity-40
Sorganvi et al. (2014)/Karna- taka ⁵³	62.8	59/41	100	62	38	49	32	66	NM	NM	NM	Obesity-84
Dash et al. (2014)/ New Delhi ⁵⁴	38.9 ± 7.1	NM	440	196	61	42	42	115	24	56	29	Cardiomyopa- thy-12
Kulshrestha and Vidyanand (2013)/ Uttar Pradesh ⁵⁵	NM	92/65	157	26	14	6	NM	9	NM	I	I	D & H-23,Ane- mia-54
Singh et al. (2013)/Punjab ⁵⁶	57.3 ± 13.8	650/506	1156	734	454	246	832	220	NM	NM	96	NM
Deoke et al. (2012)/Maharash- tra ⁵⁷	59.30 ± 12.44	65/36	101	47	23	61	20	NM	14	NM	NM	Physical inactiv- ity-25, Over- weight-16
Kumar et al. (2011)/Karna- taka ⁵⁹	NM	74/35	109	79	59	76	53	56	NM	NM	NM	Obesity-53, Ho- mocystienemia-7,
Kalita et al. (2009)/Uttar Pradesh ⁶¹	53.5 ± 15.9	162/36	198	109	49	61	57	23	NM	NM	NM	Overweight-57
Nagaraja et al. (2009)/Karna- taka ⁶²	54.5 ± 17.0	787/387	1174	563	271	383	295	NM	NM	NM	114	D & H-217
Sridharan et al. (2009)/Kerala ⁶³	67 (Median)	262/279	541	450	271	70	NM	138	NM	NM	42	NM
Lipska et al. (2007)/Kerala ⁶⁵	NM	141/73	214	102	47	79	NM	66	NM	NM	NM	NM
Dalal (2006)/ Across India ⁶⁶	NM	1576/586	2162	611	88	NM	NM	NM	82	NM	NM	D & H-391, D & H and CAD-154

(Table 2 continued)

(Table 2	continued)
----------	------------

Author (Year of Publication)/Study Region	Mean Age ± SD (Years)	Male/Female	Sample Size [#]	HTN	DM	Tobacco Use	Alcohol Use	Dyslipid- emia	IHD/ CAD	RHD/ VHD	AF	Others
Bhattacharya et al. (2005)/West Bengal ⁶⁷	61	60/68	128	40	18	72	NM	NM	17	NM	NM	NM
Pandiyan et al. (2005)/Tamil Nadu ⁶⁸	61.7 ± 13.4	265/137	402	289	200	95	NM	105	136	14	13	Anemia-40
Mehndiratta et al. (2004)/New Delhi ⁶⁹	31.97	61/66	127	25	8	29	5	36	9	16	NM	Homocysten- emia-I
Kaul et al. (2000)/ Telengana ⁷⁰	56.9	NM	893	553	250	25	NM	NM	NM	NM	NM	NM
Nayak et al. (1997)/Kerala ⁷¹	34.7 ± 8	135/42	177	32	13	64	30	18	NM	NM	NM	NM

Note: #Calculated based on the analysis of risk factors.

Abbreviations: PHo/S, previous history of stroke; FHo/S, family history of stroke; NM, not mentioned; HTN, hypertension; DM, diabetic mellitus; CAD/ IHD, coronary artery disease/ischemic heart disease; CKD, chronic kidney disease; AF, atrial fibrillation; RHD/VHD, rheumatic heart disease/valvular heart disease; D & H, diabetes and hypertension; T & A, tobacco and alcohol use.

Table 3. Risk of Bias Assessment of Included Studies.

	Study										
Author (Year of Publication)	Design	QI	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total	Meta-Analysis
Singla et al. (2022)	PBSR	I	I	UC	Ι	I	I	Ι	I.	7	Included
Jayadevappa and Ravishankar (2021)	HBSR	Ι	I	UC	I	Ι	0	Ι	0	5	Included
Kumar et al. (2021)	HBSR	Ι	Ι	UC	Ι	Ι	0	Ι	0	5	Included
Prabhakar et al. (2020)	PBSR	I	I	I	I	Ι	Ι	I	I	8	Included
Kaur et al. (2020)	HBSR	Ι	Ι	UC	Ι	Ι	0	Ι	0	5	Included
Karri and Ramasamy (2019)	HBSR	Ι	Ι	UC	I	Ι	0	Ι	0	5	Included
Panwar et al. (2019)	HBSR	Ι	Ι	UC	Ι	Ι	0	Ι	0	5	Included
Behera and Mohanty (2019)	HBSR	Ι	Ι	Ι	Ι	0	0	Ι	0	5	Included
Pathak et al. (2018)	HBSR	Ι	Ι	Ι	I	0	0	Ι	0	5	Included
Sylaja et al. (2018)	HBSR	Ι	Ι	Ι	I	0	0	Ι	0	5	Included
Kaur et al. (2017)	PBSR	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	8	Included
Mahanta et al. (2018)	HBSR	Ι	Ι	UC	I	Ι	Ι	Ι	I	7	Included
Kumar and Rai (2017)	HBSR	Ι	Ι	0	I	Ι	0	Ι	0	5	Included
Manorenj et al. (2016)	HBSR	UC	Ι	Ι	I	Ι	Ι	Ι	I	7	Included
Nayak et al. (2016)	HBSR	Ι	Ι	Ι	Ι	Ι	0	Ι	0	6	Included
Subha et al. (2015)	HBSR	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	8	Included
Kawle et al. (2015)	HBSR	Ι	Ι	Ι	I	Ι	UC	Ι	0	6	Included
Shravani et al. (2015)	HBSR	I	I	0	I	Ι	Ι	I	I	7	Included
Renjen et al. (2015)	HBSR	Ι	Ι	0	Ι	Ι	Ι	Ι	Ι	7	Included
Gupta et al. (2014)	HBSR	Ι	Ι	Ι	I	0	0	Ι	0	5	Included
Sorganvi et al. (2014)	HBSR	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	8	Included
Dash et al. (2014)	HBSR	Ι	Ι	UC	I	Ι	Ι	Ι	0	6	Included
Kulshrestha and Vidyanand (2013)	HBSR	Ι	Ι	I	Ι	0	0	Ι	0	5	Included

(Table 3 continued)

luble 5 commuca)											
Singh et al. (2013)	HBSR	I	Ι	Ι	I	I	I	Ι	I	8	Included
Deoke et al. (2012)	HBSR	Ι	Ι	I	I	I	I	Ι	I	8	Included
Kumar et al. (2011)	HBSR	Ι	Ι	I	I	I	UC	Ι	UC	6	Included
Kalita et al. (2009)	HBSR	Ι	Ι	I	I	I	UC	Ι	UC	6	Included
Nagaraja et al. (2009)	HBSR	Ι	Ι	I	L	0	0	Ι	0	5	Included
Sridharan et al. (2009)	PBSR	Ι	Ι	I	I	I	I	Ι	UC	7	Included
Lipska et al. (2007)	HBSR	Ι	Ι	I	I	I	I	Ι	I	8	Included
Dalal (2006)	HBSR	Ι	Ι	I	L	UC	UC	Ι	UC	5	Included
Bhattacharya et al. (2005)	PBSR	Ι	Ι	I	I	I	I	Ι	I	8	Included
Pandiyan et al. (2005)	HBSR	Ι	Ι	I	Ι	UC	UC	Ι	I	6	Included
Mehndiratta et al. (2004)	HBSR	Ι	Ι	I	L	UC	UC	Ι	0	5	Included
Kaul et al. (2000)	HBSR	Ι	Ι	UC	I	I	0	Ι	0	5	Included
Nayak et al. (1997)	HBSR	I	Ι	I	Ι	Ι	UC	Ι	0	6	Included

Note: Mean, 5.06; Median, 5.

Abbreviations: PBSR, population-based stroke registry; HBSR, hospital-based stroke register; UC, unclear.

Lifestyle Risk Factors for Stroke

Stroke being an end-stage disease, we distributed the risk factors for stroke as behavioral risk factors and intermediate conditions (Figure 2). Hypertension (56.69%; 95% CI [48.45, 64.58]; n = 36 studies), obesity (36.61%; 95% CI [19.31, 58.23]; n = 8 studies), dyslipidemia (30.6%; 95% CI ^{[22,} 40.81]; n = 23 studies), and diabetes mellitus (23.8%; 95% CI [18.79, 29.83]; n = 35 studies) were identified as the leading intermediate conditions associated with stroke. The presence of various forms of anemia was associated with 13.3% (95% CI [7.0, 21.2]; n = 9 studies) of the patients with stroke. The occurrence of ischemic heart disease or coronary artery diseases was reported in 8.46% (95% CI [5.07, 13.80]; *n* = 22 studies) of the study subjects, and 2.82% (95% CI [1.19, (6.54]; n = 11 studies) of the participants had rheumatic heart disease or valvular heart disease. An ECG diagnosis of atrial fibrillation was identified for 4.66% (95% CI [2.87, 7.46]; n = 15 studies) of patients. Approximately 4% (3.94%; 95%) CI [2.0, 6.0]) of the patients experienced an episode of stroke during postpartum period.

The physical inactivity–29.9% (95% CI [22.9, 37.1]), history of tobacco use, both smoking and smokeless forms (28.59%; 95% CI [22.22, 32.94]), and alcohol use (28.15%; 95% CI [20.49, 37.33]) were the behavioral risk factors for stroke in this setting.

We used the DerSimonian and Laird method of randomeffects models to calculate the pooled estimates as there was a significant heterogeneity in the outcome measures (hypertension– $I^2 = 98.8\%$, tau squared = 0.92, Q = 2932.05, P < .001; diabetes– $I^2 = 97.9\%$, tau squared = 0.74, Q = 1641.78, P < .001; dyslipidemia– $I^2 = 97.6\%$, tau squared = 1.03, Q = 909.22, P < .001; atrial fibrillation– $I^2 = 90.9\%$, tau squared = 0.70, Q = 154.50, P < .001; tobacco– $I^2 = 97.3\%$, tau squared = 0.09, Q = 1238.27, P < .001; alcohol–P = 98.2%, tau squared = 1.02, Q = 1422.63, P < .001; IHD/ CAD–P = 96%, tau squared = 1.40, Q = 525.33, P < .001; RHD/VHD–P = 94.5%, tau squared = 1.50, Q = 182.64, P < .001; obesity–P = 94.3%, tau squared = 1.04, Q = 122.53, P < .001; previous history of stroke–P = 96%, tau squared = 0.61, Q = 447.43, P < .001; family history of stroke–P = 92.6%, tau squared = 0.70, Q = 162.83, P < .001). The pooled analysis of the proportion of individual risk factors and heterogeneity are depicted in supplementary materials (Figure S1.1–S1.9)

With the exception of the proportion of studies that estimated diabetes (P = .01), dyslipidemia (P = .02), alcohol (P = .01), and atrial fibrillation (P = .01), Egger's test revealed no publication bias in the outcome measures (hypertension: P = .53; tobacco: P = .39; RHD/VHD: P = .52; IHD/CAD: P = .39; previous history of stroke P = .12; family history of stroke P = .44). The funnel plot regarding the publication bias of individual risk factors based on the included studies is presented in supplementary materials (Figure S2.1–S2.9).

Discussion

Reducing the burden of stroke in the Indian population requires the identification of modifiable risk factors, and the current meta-analysis provides an aggregate of the distribution of various lifestyle-related risk factors for patients with stroke in the Indian setting. We identified that hypertension (56.69%), obesity (36.61%), dyslipidemia (30.6%), and diabetes mellitus (23.8%) are the leading intermediate conditions associated with stroke. However, physical inactivity (29.9%), history of tobacco use (28.59%), and alcohol use (28.15%) were reported as the behavioral risk

(Table 3 continued)

Figure 2. The Distribution of Lifestyle Risk Factors Among Patients with Stroke in India.

factors for stroke in this setting. Referring to some previous studies, there are conflicting results regarding pooled estimates of the risk factors for stroke across Asian countries.⁷⁴ Hypertension remains the most common vascular risk factor for stroke in the Asian population^{74–76} which is consistent with current study findings.

However, the comparisons of the aggregate estimate of the lifestyle risk factors of stroke in this setting should be interpreted based on several contextual factors. First, the high or low frequencies of the occurrence of the risk factors for the noncommunicable disease of a country need to be considered while estimating the specific risk factors for stroke in other countries. For example, a high prevalence of hypertension is seen in Mongolia and Pakistan, which is low in Korea and Singapore.⁷⁴ Therefore, a countrywide comparison would be made based on the magnitude of the risk factors predisposing stroke. Second, most of the information on the risk factors among stroke patients was derived from HBSR studies in which data were collected at differing time points with varying definitions limiting its generalization for the estimation of risk factors across countries.77,78 It is worth noting that estimating stroke risk based on valid risk scoring

systems is of pivotal importance for better understanding risk factors to maximize the efficacy of risk reduction efforts.⁷⁹

Currently, the burden of stroke is increasing in India,⁸⁰ and the findings of this meta-analysis reflect a comprehensive report on the trends of risk factors for stroke in India over a long period. Although several HBSR and PBSR studies were conducted in different parts of India, there is a dearth of evidence of a systematic summary of the risk factor profile of stroke in this setting. This study provides robust estimates of the lifestyle risk factor of stroke in India from 1994 to 2019. The mean age of the participants was 53.84 ± 9.3 years, and a predominant proportion of subjects were males (64%). In contrast to our findings, earlier epidemiological studies in India have found hypertension, diabetes, and cigarette smoking as the leading lifestyle risk factors for stroke.⁸¹ One of the reasons for this change in the risk factor profile for stroke might be because of the varied epidemiological transition among the different states of India.82 The current findings emphasize that, although the proportion of risk factors for stroke varied considerably across the states of India, the prevalence of hypertension remains the pivotal risk factor across all state groups since 1994. The burden of stroke

in the developing world is likely to increase substantially, partly because of ongoing demographic changes, including the aging of the population and health transitions in these countries.⁸³

The current meta-analysis indicates an urgent need for controlling the vascular and lifestyle risk factors of stroke by focusing more on the public campaign to build the protective factors against cerebrovascular diseases in this setting. There was a significant inconsistency among the included studies as the level of heterogeneity was high ($I^2 > 94\%$). The risk of bias assessment of the included studies has implications for the generalization of our findings. Therefore, we exclusively selected stroke epidemiological studies with a low risk of bias conducted in the Indian setting. The current findings provide an evidence base to successfully meet the challenges while devising appropriate strategies to curtail the strategies targeted for risk factor modification.

Strength and Limitations

The primary uniqueness of this study is the novelty of a metaanalysis reflecting the pooled estimate of the proportion of various risk factors of stroke from an Indian perspective. There are certain limitations to generalizing our findings. The results are purely based on observational studies with methodological limitations, such as sampling bias and respondent bias. The level of heterogeneity of the included studies was high because of differences in the study contexts. There might be a chance of contamination of the study subjects, as our estimation is based on the pooled analysis of both hospital and population-based studies, including stroke register studies. The data on clustering risk factors for stroke were not estimated as it was poorly reported in most studies. Despite the limitations, the current meta-analysis provides robust estimates of the lifestyle-related risk factor of stroke in India based on the observational studies conducted from 1994 to 2019.

Conclusion

The present meta-analysis elucidates the overall estimates of lifestyle risk factors for patients with stroke in India. Estimating the pooled analysis of stroke risk factors is crucial to predict the imposed burden of the illness and ascertain the treatment and prevention strategies for controlling the modifiable risk factors in this setting.

Acknowledgement

Elezebeth Mathews would like to thank DBT, India for the Clinical and Public Health Early Career Fellowship (grant number IA/CPHE/17/1/503345).

Authors' Contribution

BPV: conceptualization, data search, data extraction; JJ: data extraction, risk of bias assessment and manuscript drafting; AV: data extraction; EM: risk of bias assessment and intellectual revision including manuscript drafting; MD: data search and editing; RK and SS: screening of the potential references according to the inclusion and exclusion criteria; VLN and SD: cross-verification of data extraction; SKS: risk of bias assessment; SSD: risk of bias assessment (third independent reviewer).

Statement of Ethics

Not applicable.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Elezebeth Mathews is supported by a Clinical and Public Health Early Career Fellowship (grant number IA/CPHE/17/1/503345) from the DBT India Alliance/Welcome Trust-Department of Biotechnology, India Alliance (2018–2023).

Supplemental Material

Supplemental material for this article is available online.

ORCID iDs

Jaison Joseph (b) https://orcid.org/0000-0002-6628-2165 Abin Varghese (b) https://orcid.org/0000-0002-6274-3876 Suresh K. Sharma (b) https://orcid.org/0000-0003-1214-8865 Venkata Lakshmi Narasimha (b) https://orcid.org/0000-0001-9111-8714

References

- Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. *J Am Coll Cardiol* December 22, 2020; 76(25): 2982–3021.
- Masaebi F, Salehi M, Kazemi M, et al. Trend analysis of disability adjusted life years due to cardiovascular diseases: Results from the global burden of disease study 2019. *BMC Public Health* 2021; 21: 1268.

- Dandona L, Dandona R, Kumar GA, et al. Nations within a nation: Variations in epidemiological transition across the states of India, 1990–2016 in the global burden of disease study. *Lancet* December 2, 2017; 390(10111): 2437–2460.
- Khurana S, Gourie-Devi M, Sharma S, et al. Burden of stroke in India during 1960 to 2018: A systematic review and metaanalysis of community based surveys. *Neurol India* 2021; 69: 547–559.
- Dalal PM and Bhattacharjee M. Stroke epidemic in India: Hypertension-stroke control programme is urgently needed. J Assoc Physicians India 2007; 55: 689–691.
- 6. Pandian JD and Sudhan P. Stroke epidemiology and stroke care services in India. *J Stroke* 2013; 15: 128.
- Katan M and Luft A. Global burden of stroke. Semin Neurol 2018; 38: 208–211.
- Prabhakaran D, Jeemon P, Sharma M, et al. The changing patterns of cardiovascular diseases and their risk factors in the states of India: The global burden of disease study 1990–2016. *Lancet Glob Health* December 1, 2018; 6(12): e1339–e1351.
- Hankey GJ. Nutrition and the risk of stroke. *Lancet Neurol* 2012; 11: 66–81.
- Singh V, Prabhakaran S, Chaturvedi S, et al. An examination of stroke risk and burden in South Asians. *J Stroke Cerebrovasc Dis* 2017; 26: 2145–2153.
- 11. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ (Online)* 2009; 339: 332–336.
- Hatano S. The experience from a multicentric stroke register: A pre¬liminary report. *Bull World Health Organ* 1976; 54: 541– 543.
- 13. Singla M, Singh G, Kaur P, et al. Epidemiology of young stroke in the Ludhiana population-based stroke registry. *Ann of Indian Acad Neurol* January 1, 2022; 25(1): 114.
- Jayadevappa G and Ravishankar SN. Risk factors and clinical profile of ischemic stroke patients attending emergency care facility in Bangalore city. *Sch J App Med Sci* April 2021; 4: 572–577.
- Ram CV, Kumar S, Renjen PN, et al. Risk factors predisposing to acute stroke in India: A prospective study. *J Hypertens* November 1, 2021; 39(11): 2183–2189.
- Rathore K, Choudhary R, Sankhla N, et al. An observational study to analyze the risk factors associated with stroke in West Rajasthan, India. *Natl J Physiol Pharm Pharmacol* 2021; 11.(11): 1225–1228.
- Kumar R, Kataria N, Radhakrishnan DM, et al. Clinicoepidemiological profile of stroke patients in the Himalayan Subcontinent: A retrospective study. *Natl J Physiol Pharm Pharmacol* 2021;11(01): 17–22
- Ahmed T, Kumar R, and Bahurupi Y. Factors affecting quality of life among post-stroke patients in the Sub-Himalayan region. *J Neurosci. Rural Pract* October 2020; 11(04): 616–622.
- Prabhakar S, Suravarapu S, Mathai D, et al. Risk factors for stroke in rural population of Telangana state of India, an unmatched case control study. *J Neurosci Rural Pract* July 2020; 11(03): 448–453.
- Kaur G, Samar N, Sharma J, et al. A study of clinico-radiological and socio-demographic profile of patients with stroke in a tertiary care hospital of South West Rajasthan. J Assoc Physicians India March 1, 2020; 68(3): 54–58.

- Somasundaran A and Potty SN. Epidemiological profile of stroke in central Kerala. *Int J Sci Study* 2020; 8(4): 61–65.
- 22. Moond V, Bansal K, and Jain R. Risk factors and subtyping of ischemic stroke in young adults in the Indian population. *Cureus* November 9, 2020; 12(11): e11388.
- Karri M and Ramasamy B. Risk factors, etiology, and clinical outcome of ischemic stroke in young adults admitted in a tertiary care hospital in India. *J Stroke Med* June 2019; 2(1): 32–39.
- Patel V and Vagadiya A. Clinical profile of acute ischemic cerebrovascular stroke. Int J Contemp Med 2019; 6(10): J10–J13.
- Panwar Y, Shivde P, Piplewar P, et al. Aetiology, clinical profile and risk factors in young stroke in central India. *J Evid Based Med Health* 2019; 6(40): 2671–2675.
- Muralidharan PC, Babu B, Chitra G, et al. Quality of life in stroke survivors in central Kerala. JMSCR 2019; 7(6): 986–995.
- Rajan B, Pruthvish S, Lalitha K, et al. Assessment of quality of life among stroke survivors: A longitudinal study. *Int J Community Med Public Health* 2019; 6: 1316–1323.
- Behera BP and Mohanty SP. An observational study from a new tertiary care hospital in North Odisha: Clinical and etiological profile of acute ischemic stroke patients. *Int J Adv Med* 2019; 6: 1605–1610.
- Pathak A, Kumar P, Pandit AK, et al. Is prevalence of hypertension increasing in first-ever stroke patients?: A hospital-based cross-sectional study. *Ann Neurosci* 2018; 25(4): 219–222.
- Hussain M, Sharma SR, and Jamil MD. A hospital-based study of stroke in young from North East India. *Ann Indian Acad Neurol* 2018; 21: 184–187.
- Sylaja PN, Pandian JD, Kaul S, et al. Ischemic stroke profile, risk factors, and outcomes in India: The Indo-US collaborative stroke project. *Stroke* January 2018; 49(1): 219–222.
- Diwan G, Diwan A, Barde P, et al. Risk factors determinants for prognosis of stroke patients in Tertiary Care Institute. *MVP J Med Sci* June 2018; 1: 92–95.
- Kaur P, Verma SJ, Singh G, et al. Stroke profile and outcome between urban and rural regions of northwest India: Data from Ludhiana population-based stroke registry. *Eur Stroke J* December 2017; 2(4): 377–384.
- 34. Kabi S, Padhy R, Panda BN, et al. A study on clinical and laboratory profiles of hemorrhagic and ischemic strokes in an Eastern Indian teaching Hospital. *Int J Res Med Sci* 2017; 5: 2419–2421.
- Chandran P, Shenoy D, Thavody J, et al. Assessment of quality of life of stroke survivors in a rural area of North Kerala, India. *Int J Community Med Public Health* 2017; 4: 841–846.
- Mahanta BN, Mahanta TG, and Gogoi P. Clinicoepidemiological profile of stroke patients admitted in a tertiary care hospital of Assam. *Clin Epidemiol Glob Health* September 1, 2018; 6(3): 122–1229.
- Chandana VV and Kalyani N. Clinical profile of stroke among young adults. *Int J Contemp Med* 2017; 4(11): 2280–2283.
- Jacob GP and Kulkarni MM. Risk factors of stroke in coastal villages of Uttara Kannada district, Karnataka, India: A case control study. *Int J Community Med Public Health* 2017; 4: 3145–3149.
- Kumar A and Rai ON. Study of risk factors among stroke patients in a tertiary hospital of Northern India. *Int J Adv Med* 2017; 4: 446–449.

- Manorenj S, Inturi S, Jyotsna B, et al. Prevalence, pattern, risk factors and outcome of stroke in women: A clinical study of 100 cases from a tertiary care center in South India. *Int J Res Med Sci* 2016; 4: 2388–2393.
- Nayak AR, Shekhawat SD, Lande NH, et al. Incidence and clinical outcome of patients with hypertensive acute ischemic stroke: An update from Tertiary Care Center of Central India. *Basic Clin Neurosci* October 2016; 7(4): 351.
- 42. Huliyappa D and Kotrabasappa K. Risk factors and outcome of stroke in young in a tertiary care hospital. *Int J Community Med Public Health* 2016; 3: 323–327.
- Khan Y, Dua A, Pandey S, et al. Study of stroke patients in Chhattisgarh Institute of Medical Sciences (CIMS), Bilaspur Chhattisgarh, India. *IOSR J Pharm (IOSR-JDMS)* 2015; 14(8): 4–8.
- Jadhav YL and Bondarde SA. Study of risk factors and clinical profile of stroke in young adults. *MVP J Med Sci* 2015; 2(1): 15–19.
- 45. Subha PP, Geethakumari SM, Athira M, et al. Pattern and risk factors of stroke in the young among stroke patients admitted in medical college hospital, Thiruvananthapuram. *Ann Indian Acad Neurol* January 2015; 18(1): 20.
- Vaidya CV and Majmudar DK. A clinical study of ischemic stroke from capital of Gujarat, India. *Sahel Med J* October 1, 2015; 18(4): 177.
- Kawle AP, Nayak AR, Lande NH, et al. Comparative evaluation of risk factors, outcome and biomarker levels in young and old acute ischemic stroke patients. *Ann Neurosci* April 2015; 22(2): 70.
- Shravani K, Parmar MY, Macharla R, et al. Risk factor assessment of stroke and its awareness among stroke survivors: A prospective study. *Adv Biomed Res* 2015; 4.
- Renjen PN, Beg MA, and Ahmad K. Epidemiological study of incidence and risk factors of ischemic stroke subtypes according to trial of ORG 10172 in acute stroke treatment criteria: A 3 years, hospital-based study. *Int J Public Health* 2015; 5(1): 50–54.
- Jan R, Gupta RK, Singh P, et al. Risk factors for stroke: A hospital based descriptive study in North India. *Int J Stroke* 2015; 3: 1–5.
- Gupta A, Prabhakar S, Modi M, et al. Vitamin D status and risk of ischemic stroke in North Indian patients. Indian *J Endocrinol Metab* September 2014; 18(5): 721.
- 52. Kapoor D, Dhiman A, Sharma R, et al. Clinical profile, risk factors and aetiology of young stroke: A tertiary care hospital based study from the Sub-Himalayan region in North India. *Int J Res Med Sci* 2014; 2: 1355–1399.
- Sorganvi V, Kulkarni MS, Kadeli D, et al. Risk factors for stroke: A case control study. *Int J Cur Res Rev* 2014; 06(03): 46–52.
- Dash D, Bhashin A, Kumar PA, et al. Risk factors and etiologies of ischemic strokes in young patients: A tertiary hospital study in North India. *J Stroke* September 2014; 16(3): 173.
- 55. Kulshrestha MV and Vidyanand. An analysis of the risk factors and the outcomes of cerebrovascular diseases in northern India. *J Clin Diagn Res* January 2013; 7(1): 127–31.
- Singh JK, Ranjan P, Kumari A, et al., Types, outcome and risk factors of stroke in tribal patients. *Int J Stroke* December 2013; 8(8): 675–680.

- Deoke A, Deoke S, Saoji A, et al. Profile of modifiable and nonmodifiable risk factors in stroke in a rural based tertiary care hospital: A case control study. *Glob J Health Sci* May 2012; 4(3): 158.
- Narayan D, Kaul S, Ravishankar K, et al. Risk factors, clinical profile, and long-term outcome of 428 patients of cerebral sinus venous thrombosis: Insights from Nizam's Institute Venous Stroke Registry, Hyderabad (India). *Neurol India* March 1, 2012; 60(2): 154.
- Kumar HH, Kalra B, and Goyal N. A study on stroke and its outcome in young adults (15–45 years) from coastal South India. *Indian J Community Med* January 2011; 36(1): 62.
- 60. Raju RS, Sarma PS, and Pandian JD. Psychosocial problems, quality of life, and functional independence among Indian stroke survivors. *Stroke* December 1, 2010; 41(12): 2932–2937.
- Kalita J, Kumar G, Bansal V, et al. Relationship of homocysteine with other risk factors and outcome of ischemic stroke. *Clin Neurol Neurosurg* May 1, 2009; 111(4): 364–367.
- Nagaraja D, Gururaj G, Girish N, et al. Feasibility study of stroke surveillance: Data from Bangalore, India. *Indian J Med Res* October 1, 2009; 130(4): 396.
- Sridharan SE, Unnikrishnan JP, Sukumaran S, et al. Incidence, types, risk factors, and outcome of stroke in a developing country: The Trivandrum Stroke Registry. *Stroke* April 1, 2009; 40(4): 1212–1218.
- Dalal PM, Bhattacharjee M, Vairale J, et al. Mumbai stroke registry (2005-2006)-surveillance using WHO steps stroke instrument-challenges and opportunities. *JAPI* September 2008; 56: 675–680.
- Lipska K, Sylaja PN, Sarma PS, et al. Risk factors for acute ischaemic stroke in young adults in South India. J Neurol Neurosurg Psychiatry September 1, 2007; 78(9): 959–963.
- Dalal PM. Burden of stroke: Indian perspective. Int J Stroke 2006; 1: 164–166
- 67. Bhattacharya S, Saha SP, Basu A, et al. A 5 years prospective study of incidence, morbidity and mortality profile of stroke in a rural community of eastern India. *J. Indian Med Assoc* December 1, 2005; 103(12): 655–659.
- Pandiyan U, Arjundas G, and Arjundas D. Risk factors and stroke outcome: An Indian study. *Hypertension* 2005; 289: 71–79.
- Mehndiratta MM, Agarwal P, Sen K, et al. Stroke in young adults: A study from a university hospital in North India. *Med Sci Monit* August 20, 2004; 10(9): CR535–CR5341.
- Kaul S, Venketswamy P, Meena AK, et al. Frequency, clinical features and risk factors of lacunar infarction (data from a stroke registry in South India). *Neurol India* April 1, 2000; 48(2): 116.
- Nayak SD, Nair M, Radhakrishnan K, et al. Ischaemic stroke in the young adult: Clinical features, risk factors and outcome. *Natl Med J India* May 1, 1997; 10(3): 107–102.
- Razdan S, Koul RL, Motta A, et al. Cerebrovascular disease in rural Kashmir, India. *Stroke* December 1989; 20(12): 1691–1693.
- Chopra JS and Prabhakar S. Clinical features and risk factors in stroke in young. *Acta Neurol Scand* November 1979; 60(5): 289–300.
- Venketasubramanian N, Yoon BW, Pandian J, et al. Stroke epidemiology in South, East, and South-East Asia: A review. J Stroke September 2017; 19(3): 286.

- 75. Tan KS, Navarro JC, Wong KS, et al. Clinical profile, risk factors and aetiology of young ischaemic stroke patients in Asia: A prospective, multicentre, observational, hospital-based study in eight cities. *Neurol Asia* 2014; 19(2): 117–127.
- Venketasubramanian N and Mannan M. Stroke burden and stroke services in Bangladesh. *Cerebrovasc Dis Extra* 2021; 11(2): 69–71.
- 77. Li F, Yang L, Yang R, Xu W, et al. Ischemic stroke in young adults of Northern China: Characteristics and risk factors for recurrence. *Europ Neurol* 2017; 77(3–4): 115–122.
- Bhowmik NB, Abbas A, Saifuddin M, et al. Ischemic strokes: Observations from a hospital based stroke registry in Bangladesh. *Stroke Res Treat* 2016; 2016: 5610797.
- Yeboah J, Young R, McClelland RL, et al. Utility of nontraditional risk markers in atherosclerotic cardiovascular disease risk assessment. *J Am Coll Cardiol* 2016; 67: 139–147.

- Jones SP, Baqai K, Clegg A, et al. Stroke in India: A systematic review of the incidence, prevalence, and case fatality. *Int J Stroke* 2021; 17(2): 132–40.
- Kaul S. Stroke in India: Are we different from the world? Pak J Neurol Sci 2007; 2(3): 158–164.
- Collaborators. India State-Level Disease Burden Initiative Nations within a nation: Variations in epidemiological transition across the states of India, 1990–2016 in the global burden of disease study. *Lancet* 2017; 390: 2437–2460.
- Donkor ES. Stroke in the 21st Century: A snapshot of the burden, epidemiology, and quality of life. *Stroke Res Treat* 2018; 2018: 3238165.