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Abstract

Mammalian genomes possess multiple enhancers spanning an ultralong distance (>megabases) 

to modulate important genes, yet it is unclear how these enhancers coordinate to achieve 

this task. Here, we combine multiplexed CRISPRi screening with machine learning to define 

quantitative enhancer-enhancer interactions. We find that the ultralong distance enhancer network 

*Corresponding author. stanley.qi@stanford.edu.
†These authors contributed equally to this work.
Author contributions: X.L., Y.L., and L.S.Q. conceived of the concept. Y.L., X.L., S.L., and L.S.Q. planned and designed the 
experiments. Y.L. and X.L. designed the sgRNA library. Y.L. and L.W. constructed the double sgRNA library. Y.L. performed the 
CRISPRi screens. D.Z. cloned 192 plasmids in the library and helped with deep sequencing. X.X. cloned 96 plasmids in the library 
and helped with deep sequencing. X.L. analyzed the CRISPRi screen data and built the SRE model. X.L. applied the model to predict 
SREs of other genes and designed sgRNAs. Y.L. generated sgRNAs and performed qPCR experiments. S.L. performed Trac-looping, 
ATAC-seq and ChIP-seq. X.L. and Y.C. analyzed Trac-looping, ATAC-seq, and ChIP-seq data. Y.L. and Y.Z. performed imaging 
experiments and 2D image analysis. H.W. performed the 3D image analysis and generated supplementary movies. Y.L. performed 
the JQ1 experiment. X.Z. mentored X.L. on the SRE variant analysis. A.C. and X.L. developed the enhancer website. X.L., Y.L., 
and L.S.Q wrote the manuscript. M.N., H.W., M.L.R., and J.N.N. provided critical comments on the manuscript. L.S.Q initiated the 
project. W.H.W., K.Z., and L.S.Q supervised the project.

Competing interests: L.S.Q. is a founder and scientific advisor of Epicrispr Biotechnologies, and a scientific advisor of Laboratory of 
Genomics Research. The roles are unrelated to this study.

Data and materials availability: The CRISPRi functional tiling screen, Trac-looping data, ChIP-seq data, and ATAC-seq data have 
been deposited in the Gene Expression Omnibus under the accession ID GSE160768. The codes for the analysis of CRISPRi screen 
and the SRE prediction model are publicly accessible at Zenodo (51,52). The CRISPRi double sgRNA library and key plasmids will 
be available on Addgene (https://www.addgene.org/Stanley_Qi/).

HHS Public Access
Author manuscript
Science. Author manuscript; available in PMC 2023 June 12.

Published in final edited form as:
Science. 2022 September 02; 377(6610): 1077–1085. doi:10.1126/science.abk3512.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.addgene.org/Stanley_Qi/


possesses a nested multi-layer architecture that confers functional robustness of gene expression. 

Experimental characterization reveals that enhancer epistasis is maintained by three-dimensional 

chromosomal interactions and BRD4 condensation. Machine learning prediction of synergistic 

enhancers provides an effective strategy to identify non-coding variant pairs associated with 

pathogenic genes in diseases beyond Genome-Wide Association Studies (GWAS) analysis. Our 

work unveils nested epistasis enhancer networks, which can better explain enhancer functions 

within cells and in diseases.

One-Sentence Summary:

A nested synergistic and additive enhancer network confers robustness of gene expression, which 

can model disease risks.

Disease-associated genes including oncogenes are frequently associated with many remote 

enhancers spanning across a long genomic distance (>megabases, Mb) (1-4). Genome-wide 

association studies (GWAS) reveal that non-coding variants of the regulatory elements, 

including enhancers, account for >90% of the variants in diseases and can spread over a 

long distance (5-8). While individual enhancer variants may present modest clinical risks 

(9), there are examples showing that a combination of multiple variants may greatly amplify 

the effects in traits and diseases (10-12). Like gene interaction (13), these enhancers may 

interact as an epistatic network wherein the effect of an enhancer is dependent on other 

enhancers to regulate gene dosage and confer robustness. Aside from these observations, 

it remains largely unknown why multiple ultralong-distance enhancers exist for important 

genes and how their interactions modulate gene regulation and diseases.

Enhancer interactions were previously studied within a single enhancer cluster. For example, 

super-enhancers were defined as a dense cluster, which contains adjacent enhancers within 

tens of kilobases (kb) (14, 15, 16). Other enhancer clusters like super-enhancers were 

also reported, including ‘stretch enhancers’ and ‘enhancer clusters’ (17, 18). A few 

examples by perturbing local enhancers within these enhancer clusters showed they may 

interact additively or synergistically for regulatory roles (19-25). However, these short-

range enhancers organized in a cluster cannot explain the prevalence of ultralong-distance 

enhancers in the human genome.

It remains unknown how multiple enhancers interact with one another over long genomic 

distances to confer regulatory roles in gene expression and disease risks. Here, we 

hypothesize that by using ultralong-distance enhancers ( >1Mb), disease-associated genes 

have evolved high robustness to disruptive effects from genetic variations. These interactions 

likely occur via an elaborate network on the three-dimensional (3D) genome organization 

level.

High-resolution multiplexed perturbation of enhancers reveals a nested 

two-layer epistasis network

To gain insights into the ultralong-distance enhancer network for disease-relevant genes, 

we adopted a high-resolution approach to quantitatively analyze enhancer interactions in 
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gene regulation. We chose the endogenous MYC locus as a model system. As an important 

oncogene governing cancer cell proliferation, the MYC locus encompasses 7 enhancers 

(e1-e7) spanning a 1.9 Mb region in K562 erythroleukemia cells (26). The reported linear 

correlation between MYC expression and cellular growth supports its use as a model 

system to quantitatively dissect the enhancer epistatic network in ultralong distance (26, 

27). We conducted a multiplexed CRISPR interference (CRISPRi) screen (28, 29, 30), 

using a pooled library consisting of 87,025 pairs of single guide RNAs (sgRNAs) tiling 

all single and pairwise combinations of 7 enhancers (Fig. 1A, fig. S1A-B, table S1). 

We transduced the pooled sgRNA library into K562 cells stably expressing a doxycycline-

inducible nuclease-dead dCas9-KRAB fusion and cultured cells for 30 doublings.

We calculated the depletion score of each sgRNA pair by comparing the relative abundance 

before and after cell culture (Fig. 1A, fig. S2A and B, table S2, see Methods). Using the 

depletion scores to fit a linear additive model, we calculated enhancer interaction scores 

to identify epistasis interactions and generated a high-density quantitative epistasis map of 

enhancer-targeting sgRNAs (Fig. 1B, fig. S2C-E, see Methods). We confirmed the epistasis 

interaction scores were reproducible across biological replicates and different sgRNA pairs 

targeting the same enhancer pair (fig. S2F-I). We observed clusters of sgRNAs targeting 

the same pairs of enhancers showing similar patterns of synergistic or additive interactions, 

suggesting an epistatic interaction relationship between enhancer pairs (Fig. 1B, fig. S2E, 

fig. S3A).

We computed the epistasis interaction scores for each enhancer pair by averaging the 

epistasis interaction scores of the top 25% sgRNA pairs (Fig. 1C, fig. S3B, see Methods). 

We observed synergistic epistasis when perturbing distant enhancer pairs (>1Mb), with 

all four proximal enhancers (e1-e4) showing strong synergistic interactions with the other 

three distant enhancers (e5-e7) upon perturbation. In contrast, perturbation of enhancer pairs 

within the proximal or distant group mostly showed additive interactions (Fig. 1C).

Our data suggested a nested two-layer architecture of the enhancer epistasis network in 

regulating genes with large-scale landscapes (Fig. 1D). In the first layer (Layer I), enhancer 

pairs (<100kb at MYC locus) behave additively after perturbation, suggesting individual 

enhancers contribute independently to gene expression. In the second layer (Layer II), 

distant enhancer pairs showed non-linear synergistic effects after perturbation, which is 

speculated to function as compensatory regulatory elements for one another to maintain the 

robustness of gene expression upon perturbation. These synergistic enhancers are distributed 

over long genomic distances, which likely reduces the chance of co-mutation and thus 

confers robustness of gene expression against mutations or chromosome perturbations. We 

define synergistic regulatory enhancers (SREs) as a pair of distant enhancers with synergistic 

effects on gene expression upon perturbation.

We experimentally validated SREs and non-SRE pairs by examining whether they can 

combinatorically perturb MYC expression and cellular growth. Using different sgRNA pairs 

targeting the same SREs (e3&e7; e4&e7), we observed synergistically decreased MYC 
expression as well as cell proliferation (Fig. 1E, fig. S4A-C, table S1). In comparison, 
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inhibiting enhancers within the same proximal or distant groups led to additive repression 

effects (Fig. 1F, table S1).

We performed H3K9me3 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-

seq) to characterize the resolution of using dCas9-KRAB for enhancer perturbation. We 

confirmed no spreading effects of KRAB on adjacent enhancers (fig. S5A and B, fig. S6A 

and B). We also knocked out pairs of enhancers by transducing sgRNAs to K562 cells that 

stably expressed the nuclease Cas9 (see Methods). We confirmed consistent synergistic and 

additive interactions between e3&e7 and e1&e4, respectively (fig. S7A and B). However, 

we also observed deletions of large chromatin regions when knocking out pairs of enhancers 

(fig. S7C-F). This observation was consistent with reports that gene editing at multiple 

sites on the same DNA can induce megabase-scale chromosome deletions, which potentially 

confounds the study of enhancer interactions (31, 32). These results together confirm that 

dCas9-KRAB is a high-resolution approach for studying multiple enhancer interactions 

without unwanted large DNA deletions.

Machine learning modeling reveals determinants of SRE synergy

We next developed a machine learning model based on an elastic-net regularized generalized 

linear model to analyze the determinants of SRE synergy (33) (Fig. 2A). We examined 

publicly available transcription factor (TF) binding profiles, histone modification (HM) 

profiles, and H3K27ac HiChIP datasets that capture DNA-DNA spatial contacts in K562 

cells (table S3, see Methods) (5). Among all features, spatial DNA contact is the most 

relevant feature, and was inversely correlated with calculated epistasis interaction scores 

(Fig. 2B and C, fig. S8A). We found that the spatial contacts between SREs were weaker 

than non-SREs, which displayed an inverse pattern with the enhancer epistasis map (Fig. 2D 

vs Fig. 1C). In addition, the co-occupancy of bromodomain-containing protein 4 (BRD4), 

a key chromatin-associated coactivator, showed a strong anticorrelation with epistasis 

interaction scores (Fig. 2B and E, fig. S8A and B).

The elastic net regression model performed better for predicting SREs compared to simple 

linear models using individual representative features (fig. S8C and D). Predicted scores of 

all enhancer pairs were correlated with observed epistasis interaction scores assessed from 

the CRISPRi screen (Fig. 2F). Altogether, our machine learning model suggests that spatial 

DNA contacts and BRD4 co-occupancy are two major determinants for predicting SREs.

The SRE model can predict synergistic enhancer interactions at other 

genomic loci

We next verified whether the SRE prediction model can be generalized to study other genes 

that possess multiple enhancers spanning an ultralong distance in different cell types (fig. 

S9A, see Methods). We examined the enhancer profiles of four disease-relevant genes: 

BCL9 and KTN1 in K562 cells, and COX6C and FOXP1 in Jurkat cells, all of which 

possess multiple enhancers spreading over a large genomic distance (3.3Mb, 0.8Mb, 1.1Mb, 

and 0.5Mb, respectively) (Fig. 3A-D, see Methods). We used the SRE prediction model to 
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calculate putative SREs and non-SREs and designed sgRNA pairs to target each SRE and 

non-SRE.

We observed synergistic changes of gene expression when targeting the predicted SRE 

pairs (Fig. 3A-D, fig. S9B-E), as well as additive effects when targeting the non-SRE 

pairs (fig. S9B and C). These data suggested that our machine learning model can predict 

functional interaction between enhancers (SRE or non-SRE) that regulate different genes 

spanning an ultralong distance in different cell types. We further developed a website 

(http://enhancer.stanford.edu/) by exploring all 4,835 putative networks of ultralong distance 

enhancers (>=5 enhancers; >200kb inter-distance) across 6 cell types (GM12878, K562, 

Jurkat, A549, HUVEC, and HCT116), which reports many predicted SREs and associated 

epistasis interaction scores.

Inhibition of SREs leads to synergistic reduction of local spatial contacts 

and BRD4 condensation

To experimentally examine the predicted determinants of the SRE model, we performed 

Trac-looping assays on CRISPRi-perturbed samples targeting a SRE pair e3&e7 to measure 

both spatial contacts and chromatin accessibility (fig. S10A) (34). We observed inhibition 

of individual enhancers decreased spatial contacts only between the targeted enhancer 

and other elements, while simultaneous inhibition of e3&e7 led to synergistic reduction 

of the spatial contacts at the MYC locus (Fig. 4A and B), which is consistent with the 

observed epistatic effects on MYC expression and cell growth (Fig. 1E, fig. S4A and B). In 

comparison, simultaneous inhibition of a non-SRE pair e1&e4 led to additive reduction of 

spatial contacts (fig. S10B). We also observed that inhibition of SREs showed no significant 

difference from the additive effects on chromatin accessibility (fig. S10C-E), suggesting that 

chromatin accessibility is less involved in synergistic interactions.

Perturbation of the distant enhancer e7 increased spatial contacts among the proximal 

enhancers and the promoter (e.g., e1-e3, e1-e4, e2-e3, e2-e4, e3-promoter and e4-promoter) 

(Fig. 4A and B). Similarly, perturbing e3 or e4 led to increased spatial contacts among 

the distant enhancers (Fig. 4A and B, fig. S10B). These observations imply a possible 

compensation mechanism on the spatial DNA contact between the SREs, which likely 

confers robustness of gene expression upon genome disruption (e.g., mutations or loss of 

DNA-TF interactions).

We next investigated the relationship between enhancer interactions and BRD4 localization. 

Clustered coactivator condensates mediated by BRD4 can assemble the transcription 

apparatus at enhancers to drive robust gene expression (35-37). Our machine learning model 

predicted that the SREs were associated with distinct BRD4 clusters (Fig. 2E, fig. S11A). 

We examined this relationship by studying BRD4 colocalization at the MYC locus via 

immunostaining and fluorescence in situ hybridization (FISH) confocal imaging.

Compared to wildtype K562 cells, inhibiting individual enhancers (e3 or e7) resulted in 

a small reduction of colocalization between BRD4 and MYC loci, whereas simultaneous 

inhibition of e3&e7 synergistically decreased the colocalization (49.0%) and the percentage 
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of cells showing colocalization (66.7%) (Fig. 4C and D). Similar results were observed for 

another SRE pair e4&e7 (fig. S11B and C). We also performed 3D FISH to better quantify 

the fluorescent intensity of the BRD4 condensate at the MYC locus. While individual 

enhancer perturbation slightly decreased the BRD4 intensity (27.2% and 5.4% for e3 and 

e7, respectively), simultaneous perturbation led to synergistic BRD4 reduction (62.8%) 

(Fig. 4E and F, Movie S1-S4). In comparison, simultaneous inhibition of non-SRE e1&e4 

led to additive decrease of colocalization between BRD4 and MYC loci (fig. S11D). We 

further used a BRD4 inhibitor, JQ1, to investigate whether BRD4 condensation was involved 

in maintaining the synergistic interaction of SRE (38). Consistently, with increasing JQ1 

concentrations, the synergistic effect from SRE perturbation decreased and then disappeared, 

implying the importance of BRD4 condensation for enhancer synergy (fig. S11E and F).

These results together confirmed that SRE perturbation synergistically reduced spatial DNA 

contact and BRD4 condensation at the target genomic locus, which led to synergistic 

changes of gene expression (Fig. 4A-F, Fig. 1E). Based on computational and experimental 

analysis, we propose a speculative model (Fig. 4G): while perturbing individual enhancers 

modestly reduces spatial contacts and BRD4 condensation, perturbation of two distant 

enhancers dramatically alters the 3D chromosome organization and BRD4 condensation to 

confer synergistic regulatory roles.

Synergistic interactions between predicted SRE variants influence gene 

expression and disease risk

We evaluated whether SRE genetic variants spanning the ultralong distance can alter gene 

regulation and disease risks in an epistatic manner (fig. S12A). We examined the effect of 

our validated SREs within the MYC locus using an acute myeloid leukemia (LAML) patient 

database containing genomic and transcriptomic data. In LAML patients, we observed that 

e4&e6 SRE variants interacted more frequently to alter MYC expression than expected 

by chance, additive effect, and non-SRE variants (Fig. 5A, fig. S12B-D, see Methods, 

Supplementary Text). A large difference in MYC expression levels was observed in two 

patient groups stratified by the genotype combinations of e4&e6 SRE variants, while there 

were no dynamic changes when considering the genotypes of individual SRE variants (Fig. 

5B).

We further examined the epistatic effect of MYC SRE variants on gene regulation in 

B-lymphoblastic cells. We named the enhancers in GM12878 B lymphoblastoid cells as Be 

and used the SRE model to predict the interaction network among seven enhancers and 

rank SREs (Fig. 5C). We examined the interactions of variants across predicted SREs in a 

database of B-lymphoblast genomic variants and transcriptomes (39). While there was no 

difference of MYC expression by looking at the genotypes of single enhancer variants, a 

significant difference of MYC expression was observed when combinatorically considering 

the genotypes of SRE variants at Be1&Be7 (Fig. 5D and E, fig. S12E-G, Supplementary 

Text), or Be6&Be7 (fig. S12H and I).

Next, we applied the predicted SREs to investigate the association of MYC SRE variants in 

B-cell-associated diseases, acute lymphoblastic leukemia (ALL) and Crohn's disease (CD) 
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patients (40-44). In the top four predicted SRE pairs, we identified two SRE instances, 

Be1&Be7 and Be2&Be7, where the SRE variant pairs can synergistically influence the 

clinical risk, including ALL relapse risk and CD disease risk (fig. S13A-E, Supplementary 

Text). Particularly, when we stratified case and control population based on SRE variants, 

the odds ratio was significantly higher than the odds ratio determined by individual SRE 

variants alone or additively (Fig. 5F and G, fig. S13F and G, Supplementary Text).

We also predicted SREs in other gene loci in GM12878 cells and observed the 

epistatic influence of SRE variants in gene expression and clinical risks, including the 

leukemogenesis-associated CHD7 locus and B-cell antigen CD180 locus (45) (Fig. 5H 

and I, fig. S13G, fig. S14, fig. S15, see Methods), which both possess enhancer networks 

spreading ultralong genomic distance (0.4Mb and 1.2Mb, respectively).

The SRE model better identifies epistatic influence of genome-wide non-

coding variants on disease risk

Finally, we applied the SRE prediction model to the genome-wide analysis in GM12878 

cells to link multiple enhancer variants to disease risk. Among >900 genes containing 

ultralong distance enhancers networks, we focused on 70 immune- or cancer-related and 

highly expressed genes (fig. S16A-B, fig. S17, Supplementary Text). Notably, the predicted 

SRE scores correlated well with the epistatic effects of non-coding variants on the clinical 

risk for ALL relapse patients (Fig. 6A, Supplementary Text). Specifically, 27.9% of 

predicted SREs targeting 55.7% of genes showed epistatic effects on ALL relapse risk 

via our SRE model, which is significantly higher than the non-SRE pairs (Fig. 6B and C). 

Furthermore, the SRE model also identified significantly more ALL-associated pathogenic 

genes compared to the traditional locus-by-locus model (Fig. 6D). For example, among 

22 literature reported ALL-associated pathogenic genes (table S4, Supplementary Text), 

our SRE model recovered 10 genes, whereas the locus-by-locus model showed only 2 

genes (Fig. 6D, Supplementary Text). Therefore, the SRE prediction model can effectively 

elucidate the epistatic influence of multiple non-coding variants on associated clinical risk.

Discussion

Our work is different from previous studies on interactions (<100kb) within enhancer 

clusters (e.g., super-enhancer) (19-25, 46). While small-scale perturbations revealed additive 

(21, 22, 46) or synergistic (23, 25) interactions within these enhancer clusters, it remained 

unknown if enhancers distributed on a very large scale (>1Mb) play interactive roles for 

gene regulation. Our results demonstrate that the observed nested synergistic interactions 

over the long distance and additive interactions in the short distance are important for 

an integrated function in the enhancer network: while the additive effects ensure a high 

expression level, the synergistic effects confer robustness against perturbations. Additional 

quantitative interaction mapping at more genomic loci in more cell types (e.g., diploid cells 

to rule out aneuploidy effects) should allow for the derivation of distance requirements 

for ultralong distance enhancer networks and a universal prediction model for enhancer 

networks. It should also help elucidate whether strong versus weak inhibition effects of 

individual enhancers determine if they are SREs or non-SREs.
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Our analysis showed that SREs are prevalent in the mammalian genome. The identification 

of SREs is consistent with evidence from studies in the 1000 Genomes Project, which 

showed that enhancer regions can be deleted without obvious phenotypic alterations (47, 

48). Theoretically, long-distance enhancers are less likely to be mutated at the same time, 

which avoids co-mutagenesis and thus provide compensation effects on important gene 

expression against mutations. Our website that comprehensively explores genome-wide 

SREs provides a resource to study enhancer interactions for gene regulation and multiple 

non-coding variants for diseases.

Since perturbations of individual enhancers may exhibit modest effects on gene expression, 

multiplexed perturbation of enhancers in the native chromatin context is crucial to fully 

elucidate their roles. we observed clusters of sgRNA pairs showing similar patterns 

of synergistic or additive interactions within an enhancer (fig. S3A), suggesting a high-

resolution (~300bp) sub-enhancer interaction mapping capability. We note that due to 

dCas9-KRAB spreading effects (500bp~1kb estimated by H3K9me3 peaks) (fig. S5A and 

B), results from dCas9-KRAB should be validated using the Cas9 nuclease knockout for 

very close enhancers (<1kb). Nevertheless, our analysis among 15 cell lines showed >90% 

of enhancers have inter-distance >1kb. On the other hand, since the Cas9 nuclease may 

induce unwanted DNA deletions when perturbing multiple enhancers (fig. S7C-F) (31, 32), 

dCas9-KRAB offer a technology for high-throughput study of enhancer interactions with a 

high resolution and minimal side effects.

We provided a speculative model that links the 3D genome and BRD4 interaction to the 

ultralong distance enhancer network (Fig. 4G). In this model, large BRD4 condensates are 

formed by smaller distinct BRD4 clusters at individual enhancers (49), which connects these 

enhancers across ultralong distances to create ‘weak’ 3D spatial contacts (50). This model 

is consistent with our quantitative mapping of enhancer networks that showed an inverse 

correlation between spatial contacts and synergistic interactions. Although the inverse 

correlation may be partly derived from the genomic distance, our experimental validation 

demonstrated the 3D genome organization at SREs is casually linked to the synergistic 

interactions.

With more whole-genome DNA sequencing data available in patients, the SRE model can 

be applied to infer the biological roles of SRE variants in cancer and other diseases and 

interpret the interactive influence of non-coding elements on disease risk to aid diagnosis 

and therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. High-resolution multiplexed CRISPRi perturbation of ultralong-distance enhancers at the 
MYC locus reveals a nested two-layer epistasis network.
A, Top: The MYC locus regulated by multiple enhancers distributed over an ultralong 

distance (~1.9Mb). Bottom: Diagram showing the multiplexed CRISPRi screening for 

high-resolution dissection of enhancer interactions. K562 cells expressing the doxycycline 

(Dox)-inducible dCas9-KRAB are transduced by a pooled sgRNA library targeting single 

or double MYC enhancers. Cells are harvested to sequence the pairwise sgRNA enrichment 

before and after 30 doublings. sgT, targeting sgRNA; sgC, control sgRNA.

B, A quantitative epistasis map of sgRNA pairs targeting all enhancer combinations in 

the MYC locus. Each dot represents the epistasis interaction score of a pair of sgRNAs 

smoothed by adjacent sgRNAs.

C, A quantitative enhancer epistasis map at the MYC locus.
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D, A nested two-layer model for the enhancer epistasis network.

E,F, qRT-PCR of MYC mRNA expression for perturbing SREs e3&e7 or e4&e7 (E), or 

non-SREs e1&e4 or e5&e7 (F). P=0.02, 1.13E-05, 0.13, 0.61, for e3&e7, e4&e7, e1&e4, 

e5&e7, respectively. Data are represented as individual biological replicates (dots) and the 

mean value (black bar). The purple area indicates the expected additive effect by plotting 

mean ± one standard derivation. P values are calculated by t-test.
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Fig. 2. A machine learning model for analyzing determinants of the SRE synergy.
A, An elastic net regularized linear regression model for predicting epistasis interaction 

scores. We selected features including the chromatin spatial interaction (SIij) and co-

occupancy (COij,k) of 38 TFs and 8 HM profiles.

B, The relative importance of each feature group for predicting epistasis interaction scores. 

The representative feature has the highest correlation in that group (fig. S8A). m.s.e., mean 

squared error.

C-F, Correlation between epistasis interaction scores and Z-scores normalized spatial 

contact (C) and BRD4 co-occupancy (E). D, Heatmap of normalized HiChIP interaction 

intensity between enhancers. F, Correlation between predicted SRE scores and observed 

epistasis interaction scores. In C, D, F: red, SREs; blue, non-SREs. The Pearson correlation 

coefficient (R) and P value are shown.
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Fig. 3. Experimental validation of predicted SREs at other genomic loci in different cell types.
A-D, Prediction and validation of SREs at BCL9 (A) and KTN1 loci (B) in K562 cells, and 

COX6C (C) and FOXP1 loci (D) in Jurkat cells. Top: Diagram showing multiple enhancers 

spanning an ultralong distance at each genomic locus. Bottom left: Rank of predicted SREs 

using the model. Dashed line represents the empirical threshold from the MYC locus. 

Orange dots indicate the validated SREs. Bottom right: qRT-PCR of mRNA expression for 

each gene when perturbing the predicted SREs. Data are represented as individual biological 

replicates (dots) and the mean value (black bar). The purple area indicates the expected 

additive effect by plotting mean ± one standard derivation. P values are calculated by t-test.
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Fig. 4. Perturbation of SREs leads to synergistic reduction of spatial contacts and BRD4 
condensation at the genomic locus.
A-B, Spatial contacts between the promoter and enhancers measured by Trac-looping for the 

MYC locus upon perturbation of e3, e7, and e3&e7. Colors represent the log2 fold change of 

spatial contacts normalized to the wildtype cells. Black boxes in (B) indicate synergistically 

decreased (more than additive) spatial contacts of e3&e7 pair perturbation.

C-F, DNA-FISH colocalization between BRD4 and the MYC locus of representative K562 

cells for 2D (C-D) and 3D image analysis (E-F) upon perturbation of e3, e7, and e3&e7. 

In (C&E), red, BRD4 immunofluorescence (IF) staining; green, DNA-FISH at the MYC 
locus; blue dashed line, nuclear periphery determined by DAPI staining (not shown); scale 

bars, 5μm. The rightmost column in (C) shows insets in the yellow boxes. Scale bars, 500 

nm. Quantification of BRD4 and the MYC locus colocalization are shown for 2D (D) and 
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3D image analysis (F). In (D), percentage of loci with colocalization is shown on the top 

and percentage of cells (≥ 2 colocalization loci) is shown on the bottom; data is represented 

as mean ± standard error of the mean. In (F), each dot represents an individual locus. n = 

total loci, N = total cells. **** P < 0.0001 in Fisher’s exact test (D) or t-test (F) versus the 

expected additive effect (dashed line).

G, A model to explain the synergy between SREs.
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Fig. 5. Synergistic interactions between predicted SRE variants influence gene expression and 
disease risk in an epistatic manner.
A-B, Analysis of predicted SRE variants at the MYC locus in K562 cells for influence 

on gene expression. A, quantile-quantile (QQ) plot showing the distribution of P values 

for the epistasis influence on MYC expression between e4&e6 variants (red) in LAML 

patients, compared to random permutations (grey); P value in Kolmogorov–Smirnov (KS) 

test. B, MYC expression in LAML patients stratified by e4&e6 SRE variants. * P < 0.05 in 

Wilcoxon test.

C-G, Analysis of predicted SRE variants at the MYC locus in GM12878 cells for influence 

on gene expression and associated disease risk. C, Diagram showing the rank of predicted 

SREs; orange dots show top SREs. D, QQ plot showing the distribution of P values for the 

epistasis influence of Be1&Be7 variants (red) on MYC expression in the B lymphoblasts 

of 373 European individuals, compared to random permutations (grey). P value in KS test. 

E, MYC expression in the B lymphoblasts from individuals stratified by Be1&Be7 variant. 

** P < 0.01 in Wilcoxon test. F-G, Calculated odds ratio on the relapse risk in acute 
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lymphoblastic leukemia (ALL) (F) and Crohn's disease (CD) (G). Odds ratios are calculated 

by considering the genotypes of individual variants or both SRE variants. Colors represent 

the odds ratios.

H-I, Analysis of predicted SRE variants at the CHD7 locus in GM12878 cells for influence 

on ALL. H, Diagram showing the rank of predicted SREs; orange dots show top SREs. I, 

Calculated odds ratio on the relapse risk in ALL. Odds ratios are calculated by considering 

the genotypes of individual variants or both SRE variants. Colors represent the odds ratios.
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Fig. 6. Genome-wide analysis of epistatic influence of SRE variants on disease risk.
A, Percentage of enhancer pairs with observed epistatic effects on ALL relapse risk for 

predicted SREs and non-SREs.

B-C, Percentage of enhancer pairs (B) and genes (C) exhibiting interactive effects on ALL 

relapse risk. SRE pairs: enhancer pairs with top 40% SRE predicted score; non-SRE pairs: 

enhancer pairs with bottom 10% SRE predicted score.

D, Comparison of identified ALL pathogenic genes between the SRE model and the 

traditional locus-by-locus model at different odds ratio levels.

In all figures, *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001 in Fisher’s exact 

test.
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