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Abstract

Read-across is a data gap filling technique utilized to predict the toxicity of a target chemical
using data from similar analogues. Recent efforts such as Generalized Read-Across (GenRA)
facilitate automated read-across predictions for untested chemicals. GenRA makes predictions of
toxicity outcomes based on “neighboring” chemicals characterized by chemical and bioactivity
fingerprints. Here we investigated the impact of biological similarities on neighborhood formation
and read-across performance in predicting hazard (based on repeat-dose testing outcomes from US
EPA ToxRefDB v2.0). We used targeted transcriptomic data on 93 genes for 1060 chemicals in
HepaRG™ cells that measure nuclear receptor activation, xenobiotic metabolism, cellular stress,
cell cycle progression, and apoptosis. Transcriptomic similarity between chemicals was calculated
using binary hit-calls from concentration-response data for each gene. We evaluated GenRA
performance in predicting ToxRefDB v2.0 hazard outcomes using the area under the Receiver
Operating Characteristic (ROC) curve (AUC) for the baseline approach (chemical fingerprints)
versus transcriptomic fingerprints and a combination of both (hybrid). For all endpoints, there
were significant but only modest improvements in ROC AUC scores of 0.01 (2.1%) and

0.04 (7.3%) with transcriptomic and hybrid descriptors, respectively. However, for liver-specific
toxicity endpoints, ROC AUC scores improved by 10% and 17% for transcriptomic and hybrid
descriptors, respectively. Our findings suggest that using hybrid descriptors formed by combining
chemical and targeted transcriptomic information can improve /n vivotoxicity predictions in the
right context.
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Introduction

The cost and duration of current animal testing approaches only permits a small fraction

of the 32,898 chemicals in commerce (US EPA, 2019) to be thoroughly evaluated for
human safety. Advances in computing resources, increased access to laboratory automation,
and development of new approach methodologies (NAMSs) have resulted in the generation
of ’big data,” and the potential for a disruptive change in the field of toxicology. In some
jurisdictions and for specific regulatory purposes in particular, there has been a concerted
uptake in the application of high-throughput /n vitro data and computational models
[8,15,46,70]. One example is the US EPA’s Endocrine Disruption Screening Program
(EDSP) which permits the use of high throughput assays and computational models to
evaluate and screen chemicals. The OECD’s IATA Case studies programme has been a
notable activity where Member Countries have submitted case studies in an effort to build
capacity and share experiences for how to apply and interpret NAM data for different
regulatory purposes. Many of the case studies submitted have been read-across orientated
demonstrating how NAM data can be used in conjunction with /n7 vivo data in a weight

of evidence approach as well as providing a means to substantiate biological/mechanistic
similarity across source analogues ([86]; see also Sakuratani et al. [87] for a summary of
the programme and the learnings gained). More recently Health Canada [1] published their
scientific approach whereby high throughput data could be coupled with predicted exposure
information to establish defined ratios akin to margins of exposure (MoE) for priority setting
and risk assessment contexts [53,62,63]. Technologies such as high-throughput and high-
content screening methods (HTS/HCS) [29], high-throughput transcriptomics data (HTTr),
high-throughput phenotypic profiling (HTPP) for cellular morphology, and high-throughput
exposure modelling are broadly referred to as NAMs, providing information about chemical
hazards and risks without using intact animals [30]. NAMs also encompass /17 silico
approaches such as (quantitative) structure-activity relationships ((Q)SARs) and read-across
[30,55].

There is renewed recognition that /n sifico approaches can provide practical alternatives

to bridge the lack of knowledge about chemical properties and their biological activities
[13,65]. In Europe, the REACH regulation calls for the use of non-animal methods to assess
chemical toxicity [71,73,74], whereas, in the U.S., the EPA created a NAMs Work Plan to
prioritize agency efforts and resources toward activities that will reduce the use of animal
testing while continuing to protect human health and the environment [57].

Read-across is a data gap filling technique whereby information from a similar (source)
analogue is used to infer the same properties for a substance of interest (target). Read-
across has been in broad use for different regulatory purposes for decades [10,38,40,41],
but its acceptance has been somewhat thwarted by how to address residual uncertainties
[2,3,5,39,45]. The approach itself has always been a subjective expert-driven one, reliant
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on domain knowledge of the toxicity endpoint of interest and the different considerations
that need to be taken on board to rationalize and justify a read-across prediction [10,66].

In recent years, there have been more efforts that seek to better characterize what those
uncertainties might be and how to describe and document the considerations underpinning
a read-across prediction. While frameworks for the development and acceptance of read-
across have been published and extensively discussed (e.g. [5,39,75,76]), there remains a
gap in understanding how to apply some of the principles in practice [3,7,37,41,45,47,48].
In the last five years, there has been a concerted move to consider NAMs as a means

to enhance read-across. In addition to the work under the OECD IATA Case studies
programme, there has been a large programme of work under the auspices of both the

EU SEURAT and EU ToxRisk programmes exploring how NAM data can substantiate
biological similarity specific case studies [16,49]. However there are many other examples
where NAM approaches have been utilized including Brandt et al. [78] who evaluated a
WOE approach to assess the persistence characteristics of certain phenolic benzotriazoles.
Gautier et al. showcased use of a defined approach as part of a read-across for a resorcinol
case study for the skin sensitization endpoint [83]. Gelbke et al. evaluated a category of
methacrylates developed to showcase an example assessment prepared to meet the needs
of a REACH submission [82]. Grimm et al. [20] used phenotypic and transcriptomic assay
data to demonstrate bioactivity similarity in a set of glycol ethers. Pestana et al. [84]
showcased how NAM data could reduce uncertainty in the read-across within a category
of tetraconazoles to address the information requirements of a 90-day study outcome. Data
driven approaches using larger datasets have been also pursued including Sperber et al. [88]
who utilized metabolomics, also discussed in Ball et al. [81] as well as exploiting HTS
assays from PubChem or ToxCast as investigated in Firman et al. [77].

In our own work, we have also applied a data driven approach to read-across by establishing
a baseline in performance using k-nearest neighbors and a similarity weighted activity
approach based on chemical fingerprints to make /n7 vivotoxicity predictions [51]. In
subsequent analyses, we have been focused on exploring enhancements to read-across
through characterizing other similarity considerations, e.g., physicochemical properties as
a surrogate for bioavailability [26] and quantifying their relative contribution to improving
read-across performance as well as transitioning to predictions of potency [25,27-28]. As
noted earlier there have been other works which have explored the concept of biological
similarity [16,69]. Here we present a proof of concept study using targeted HTTr data to
make repeated dose study-type and liver specific toxicity (see Methods) predictions relative
to chemical structural features or a combination of both.

Whilst the use of transcriptomic data is not in of itself novel, indeed the chemical

and biological read-across (CBRA) approach, which GenRA was based on, utilized
toxicogenomic data for inferring toxicity (Low et al.). With the increasing reliability,
reproducibility and scalability of transcriptomic technologies [60]), “connectivity mapping”
[33,34] is becoming a powerful approach for inferring the bioactivity of chemicals based on
similarity between gene expression profiles. Connectivity mapping has been used to evaluate
the mode of action of drugs [31] and to evaluate their safety [54]. More recently, Wang et

al. developed “fish connectivity mapping” [59] by linking transcriptomic profiles of known
chemicals in ecologically-relevant species with untested chemicals to evaluate their putative
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mechanisms. Similarly, De Abrew et al. investigated the mode of action for 34 chemicals
using transcriptomic profiles produced in multiple cell types against a large reference
database [12]. More recently, Harrill et al. used high-throughput transcriptomic (HTTr) data
on environmental chemicals to evaluate their putative mechanisms and to estimate potency
values using a gene signature-based concentration-response approach based on the concept
of connectivity mapping [23]. Despite these advances, the application of transcriptomic data
to read-across and especially in the context of traditional read-across remain at an early
stage. How these data should be integrated with traditional data streams to make associations
with regulatory relevant endpoints for risk assessment, remains an evolving area (see [6,68]).

As a prelude to evaluating the utility of whole transcriptomic data in read-across, we
present an analysis using the expression levels measured for a targeted set of 93 transcripts
in HepaRG™ cells treated with eight concentrations of 1060 chemicals. HepaRG™ cells
express a full repertoire of xenobiotic-metabolizing enzymes, enabling more biological
response, particularly from bioactivated or metabolically detoxified chemicals. Using these
data, in addition to chemical structure data, repeat-dose toxicity outcomes, and predefined
chemical clusters [51], we evaluated predictions of 922 toxicity endpoints using the GenRA
approach [27,51] as implemented in genra-py, a new python package [52].

Materials and methods

The workflow followed in this analysis is captured in Fig. 1. Each step in the workflow,
namely, data source selection, is described in more detail in the following sections.

Chemical libraries

Datasets

Chemical libraries for this study were the ToxCast Phase | and Phase Il libraries; the
“phases” here indicate the order of testing by the ToxCast program and are unrelated to
metabolism phases. Phase | of ToxCast focused on chemicals, including many pesticides,
for which there were extensive /n vivo studies for comparison. Phase Il included a
broader range of chemicals that are common in commerce and the environment. The

full list of chemicals is provided as supplemental material, S1(a). Chemical samples

were commercially procured, diluted in dimethyl sulfoxide (100% DMSO) to a stock
concentration of 20 mM, and plated by Evotec (South San Francisco, CA). Analytical QC
for the Phase | chemical inventory was performed using a combination of high-throughput
liquid and gas chromatography-mass spectrometry to determine sample purity, parent mass,
and sample stability in DMSO over time (https://www.epa.gov/chemical-research/toxcast-
chemicals). Similar methods were applied to analyzing the Phase Il library in association
with the Tox21 project and are publicly available at https://tripod.nih.gov/tox21/samples.

Transcriptomic data—The transcriptomic data used in the analysis are described in detail
in Franzosa et al. [18] and a brief outline is provided here. These data were generated

using the Life Technologies/Expression Analysis (LTEA) assay, which is part of the
ToxCast [29,43] HTS data set. The LTEA assay was designed to investigate the role of
nuclear receptor activation and key cellular events in hepatotoxicity [50] in a liver-specific

Comput Toxicol. Author manuscript; available in PMC 2023 June 12.


https://tripod.nih.gov/tox21/samples

1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Tate et al.

Page 5

in vitromodel. In the LTEA assay, HepaRG™ cells were treated with 8 concentrations

of 1060 chemicals for 24 h, and the expression levels of genes were measured using
quantitative reverse transcription-polymerase chain reaction (qQRT-PCR). Due to the format
of the assay, only a set of 93 transcripts could be concurrently measured and they were
targeted to assessing nuclear receptor activation, xenobiotic metabolism, cellular stress,

cell cycle progression, and apoptosis, which are key events in different pathways to liver
toxicity (the list of genes is provided as Supplemental Material, S2). Concentration-response
data for each of the 93 transcripts and cytotoxicity (which was assessed using lactate
dehydrogenase (LDH) assay) were analyzed using the ToxCast analysis pipeline package in
(R/tcpl) [17]. Each gene was curve-fit twice, once for up-regulation and a second time for
down-regulation. After curvefitting, the efficacy, potency (AC50), and hit-call were stored in
a MySQL database (invitroDB v3.00) [56]. The hit-call for each chemical and transcript was
assigned a binary active (1) or inactive (0) value based on level 5 data [17]. A hit-call was
also assigned an “up” or “down” direction depending on whether the efficacy was positive or
negative, respectively. The transcriptomic data for each chemical was represented using the
hit calls in two ways: firstly, as a vector comprising the binary hit-calls for the 93 genes and
secondly, as a vector consisting of the 190 directional activities of the 93 genes (i.e., each
transcript was included once for the “up” and once for the “down” direction). The former
will be referred to as ‘gene’ (ge) throughout this paper and the latter will be referred to as
‘assay’ (asy).

The 3 LTEA datasets used in the current study are publicly available from the EPA ftp
site at: ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/
Wambaugh/ToxCast_LTEA

These three data sets comprise LTEA_Inucyte Images.zip (images of each

cell culture), LTEA_ Level2 20191119.zip (the raw, unnormalized data), and

LTEA_Level5 20191119.zip (results of concentration-response curve-fitting). All other data
and analysis scripts used are included in [18] and its supplementary information files.

Chemical structure data

Morgan fingerprints (mrgn) [44], Topological Torsion (tptr) fingerprints [42], and ToxPrint
(toxp) [67] chemotypes were computed for the 1060 chemicals. These descriptors were
represented as binary (bit) vectors where the presence or absence of each structural element
was represented as a 1 or O, respectively. Mrgn and tptr fingerprints were calculated

using the freely available python RDK:it [35], whereas Tox-Prints [67]; chemotyper.org)
were downloaded using the batch search functionality (ChemoTyper format) from the EPA
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard) [64].

Toxicity data

Toxicity data were extracted from ToxRefDB version 2.0 [61], which is accessible as a
MySQL Dump file from ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/
Animal_Tox_Data/current/. ToxRefDB describes the /in vivo effects of repeat-dose testing
for hundreds of substances observed across various species and target organs. The previous
version of ToxRefDB contained only data for positive related effects; however, recent
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refinements now enable the distinction between untested chemicals and chemicals tested
with no effects (negative endpoints) based on adherence to Office of Chemical Safety and
Pollution Prevention (OCSPP), National Toxicology Program (NTP) specifications or OECD
test guidelines. Chemicals producing significant effects for an endpoint were categorized

as positive (1), and those that did not produce significant effects were categorized as
negative (0). We found 935 chemicals were assigned with positive or negative toxicity
assignments for 252 target organs and effects in 9 guideline repeat dose testing study types
in ToxRefDB v2. Endpoints for these target organ and effects are grouped by study type,
endpoint category and endpoint type. The 9 study types were namely: chronic toxicity

(chr), subchronic toxicity (sub), subacute toxicity (sac), developmental toxicity (dev),
multigenerational reproductive toxicity (mgr), reproductive toxicity (rep), developmental
neurotoxicity (dnt), acute toxicity (acu), and neurological toxicity (neu). Toxicity studies
where a specific guideline was not reported were categorized as “other” (oth). Endpoint
categories include cholinesterase, developmental, reproductive, and systemic. For systematic
endpoint categories, endpoint types include clinical chemistry, hematological, and in life
observation. Overall, there were 922 unique toxicity study targeted effects or endpoints that
were used to evaluate the accuracy of GenRA in making /n vivo toxicity predictions.

Chemical clustering data

Chemical clusters previously generated in [51] were utilized to assign membership for

the total set of 1060 chemicals and chemical controls (i.e. induction positive controls,
cytotoxicity controls, and vehicle controls). These clusters were used to explore local
domains of chemicals where read-across based on either chemical, biological, or hybrid
descriptor performed the best. Nine hundred ninety-four (994) substances were matched by
their chemical identifier, CASRN or DTXSID, to clusters [51]. Clusters for the remaining
unassigned 71 chemicals were then determined on the basis of their Jaccard pairwise
similarity index [32] calculated using Morgan chemical fingerprints. The similarity index
helped to identify the most appropriate cluster for each unassigned chemical, i.e., the
pairwise similarity between chemicals belonging to clusters and those not belonging defined
the most likely cluster assignment. These clusters formed the basis of a ‘local’ performance
assessment of the GenRA approach (see SECTION 3.5: Comparing Local Predictive
Performance of all Toxicity Outcomes for Morgan, Gene, and Morgan and Gene Hybrid
Descriptors).

Summary of GenRA approach

The workflow underpinning the GenRA approach [27] was adapted in this study. Rather
than identifying analogues based on structural similarity, transcriptomic data (characterizing
mechanistic similarity) or a combination of transcriptomic data and chemical fingerprints
were used to identify analogues. In addition, whilst the original GenRA approach used the
Jaccard distance, two other distance metrics were explored, the Euclidean distance [11]

and the Manhattan distance [4,9]. The similarity weighted activity was calculated using
transcriptomic (bio) or chemical (chm) descriptors or a combination of the two (see Fig.

1). A 5-fold grid search cross-validation determined the appropriate number of neighbors
(ranging from 1 to 15) and the similarity metric based on the optimal performance, which
was assessed using area under the receiver operating characteristic curve (AUC). The impact
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on the performance of using these different metrics (Jaccard, Euclidean, Manhattan) for each
descriptor (bio, chm, chm + bio) combination was evaluated. For each chemical, similarity
(Jaccard, Euclidean, Manhattan) was calculated for each of the chemical (chm), biological
(bio), and hybrid chemical and biological descriptor (CB) types as listed in Supplemental
Material, S3.

Evaluating GenRA performance for different descriptor sets

The prediction accuracy of /n vivotoxicity outcomes across all chemicals was evaluated in
two ways for each of the three descriptor sets (chm, bio, and CB). 1) A ‘local’ performance
evaluation was conducted utilizing predefined clusters of structurally similar chemicals

to aggregate the predictions made for all the chemicals in the dataset (as described in
section 2.2.4). This was considered a ‘local-validity’ approach whereby the success of
read-across for these diverse descriptors was evaluated to determine if chm, bio, or CB
predictive performance was specific to certain chemical classes and/or toxicity endpoints. 2)
Additionally, an overall, ‘global’ performance evaluation was implemented on the entire data
sets to evaluate descriptor performance. For each toxicity endpoint, the AUC measured the
prediction accuracy of each descriptor for all chemicals for k-nearest neighbors. Predictive
performance for each of the different descriptor types across a neighborhood and a single
metric for other toxicity effects were compared in both the global and local analysis. The
best similarity metric and the number of nearest neighbors were determined based on the
optimal AUC performance. In order to assess the significance of AUC scores, we also
calculated empirical p-values based on permutation testing as described in [51]. Lastly,

we evaluated the statistical significance of differences between AUC values due to various
factors using analysis of variance (ANOVA). One-way ANOVA on AUC scores was used

to compare individual differences in performance for the various descriptors, followed by
multiple comparisons of mean differences using Tukey’s honest significance difference
(HSD) test.

Data analysis and code

Results

Data processing and analysis were conducted in both the R (Version 3.6.1) and Python
programming (Version 3.8.2) languages. Specifically, transcriptomics data was retrieved
from the EPA Center for Computational Toxicology MySQL invitrodb (Version 3.0) using
the tcpl package in R [17] and pre-processed for analysis in python. The RDKit package
[35] was used to generate chemical fingerprints or downloaded from the EPA CompTox
Chemicals Dashboard, and genra-py [52] was utilized for all toxicity predictions. Jupyter
notebooks for the entire analysis workflow are provided on GitHub [https://github.com/
i-shah/genra-ltea]. The input data files are provided as Supplemental Material, S1(b—e) from
the journal website.

We first conducted a global analysis of all chemicals to determine the optimal choice of
GenRA parameters and input descriptor types for classifying all toxicity outcomes. We
then conducted the same analysis at a local level using the predefined chemical clusters
(described in section 2.2.4) to identify chemistry domains where GenRA performed better
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(or worse) than on a global level. For the sake of brevity, we refer to all descriptors by their
abbreviations (which are listed in the List of Abbreviations).

Predicting toxicity endpoints by optimum metric and nearest neighbors

The classification accuracy of GenRA for each toxicity endpoint depends on the type

of descriptor (chm, bio, and CB descriptors), the choice of similarity metric, and the

number of nearest neighbors. We used genra-py to systematically explore the relationship
between these parameters for every toxicity endpoint. The optimum metric and number of
nearest neighbors for each of our descriptors for chronic liver toxicity is shown in Table 1.
Although there was no consensus on the optimum number of neighbors across all descriptor
types, many of the individual sets of descriptors (biological or chemical structure) and the
combined (CB) descriptors performed better with the Jaccard similarity metric. The best
performance was observed for MG using the Jaccard metric with ten nearest neighbors.
Since the chronic liver toxicity endpoint had the most positive and negative examples among
all liver endpoints in our data set, we chose the same GenRA parameters (Jaccard similarity
metric with 10 nearest neighbors) that resulted in the best performance outcome for all other
toxicity classes.

Comparing global predictive performance of liver toxicity outcomes for different

descriptors

The global accuracy of GenRA for predicting liver toxicity outcomes was evaluated using
several types of descriptors, and their performance across /n vivo outcomes in liver toxicity
endpoints, along with statistical significance by permutational testing, shown in Table 2.
For all chm, bio, and CB descriptors, the average predictive AUC score for each toxicity
endpoint, the number of chemicals with positive and negative study level effects, and the
number of chemicals with available toxicity information were calculated. The average AUC
scores for all descriptors and study types were close to 0.5, suggesting poor performance
overall but there were exceptions. On average, ‘all chemical descriptors combination’ (CC)
descriptor outperformed (AUC = 0.61) other descriptors (individual and combinations)

by 9%, 15%, and 27% when compared to hybrid descriptors, biological and individual
chemical descriptors, respectively. For chronic, developmental, sub-acute, and sub-chronic
liver outcomes, the TTG (AUC = 0.7, p < 0.05), MG (AUC = 0.64, p 0.05) and TTG (AUC
=0.74, p < 0.05) hybrid descriptors resulted in the highest respective significant predictive
performance scores. The CC descriptors resulted in the best prediction performance (AUC
= 0.68, p < 0.05) for multigenerational reproductive liver endpoints. Although the individual
topological torsion chemical descriptors (tptr) most accurately predicted reproductive liver
endpoints (AUC = 0.78), this result was not statistically significant. Lastly, none of the
approaches produced significant AUC scores for developmental neurotoxicological hepatic
effects. Despite the low average AUC scores, biological descriptors produced a modest
10% improvement over chemical descriptors. Hybrid descriptors generated an overall 16%
increase in predictive performance than individual chemical descriptors and a 6% increase
relative to biological descriptors.
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Comparing global predictive performance of all toxicity outcomes for different descriptors

GenRA'’s global predictive performance for all outcomes in all studies was evaluated with
various chemical, biological, and hybrid descriptors. A comparison of the performance for
each of these descriptors is shown in Tables 3a and 3b. The columns in both tables denote
the individual and hybrid combinations of biological and chemical descriptors, and the rows
represent the toxicity endpoints and study types. For Table 3a, each element consists of the
AUC (mean and standard deviation (SD)) of each study type for the various descriptors. In
addition, we also calculated statistical differences between the AUC scores for descriptors
using Tukey’s HSD post hoc test after ANOVA (p < 0.05 are signified with an asterisk).
Because average AUC scores were quite low on average, each element within Table 3b
includes the number and percentage of instances for all study types where the descriptor
AUC greater than 0.70 (which is the same threshold as used in our earlier study [51])).

For all study types CC had the greatest average performance (AUC = 0.53, p < 0.05))
compared to all other descriptors (Table 3a). Likewise, the CC descriptor most frequently
predicted toxicity for all study/effect types, producing AUC values greater than 0.70 for

8% of the endpoints (Table 3b). Significant differences in AUC score (p < 0.05) were

found to be study type specific. in performance were found for chronic, sub-acute, and
sub-chronic study types. Individually, biological descriptors had higher mean performance
scores than the single chemical descriptors for all study types; however, these difference
were not significant.. The CB descriptors exceeded the mean prediction performance for

all study types compared with the individual sets of descriptors, resulting in a minimal
6.25% increase in mean performance values overall. These significant differences were also
chronic, sub-acute, and sub-chronic study type specific. Of the hybrid descriptors, the tptr +
asy class more often accurately predicted toxicity overall for all study types (Table 3b) yet
resulted in similar mean AUC scores to the other hybrid descriptors (Table 3a).

Comparing global predictive performance of all toxicity outcomes for Morgan, Gene, and
Morgan + Gene hybrid descriptors

A summary of GenRA predictions for selected chemical, biological, and hybrid descriptors
is given in Table 4. These descriptors, mrgn and ge, were chosen to compare the baseline
GenRA approach from [51], which utilizes mrgn fingerprints and bioactivity assay data
(821 HTS assays from ToxCast Phase | and Il compounds), and the chemical-biological
hybrid to make /n vivotoxicity predictions. Similar to [51], the hybrid (mg) descriptor

class outperformed the others (number and percent of mg > B & C = 376 | 44%,
respectively), resulting in a higher average performance value of 0.51 (SD 0.11) and more
total cases (46 | 5.9%) in which study types were predicted with AUC > 0.7. In general,

the hybrid descriptor generated a 4% increase in the average prediction score for all toxicity
endpoints over biological descriptors and 6.25% over chemical descriptors. The mean AUC
scores were statistically significant (p < 0.05) for chronic, developmental neurotoxicity
(mrgn-mpg), sub-acute, and sub-chronic study types. While on average biological descriptors
displayed greater performance than chemical descriptors, chemical descriptors more often
outperformed biological descriptors (C > B & CB in comparison to B > C & CB) and
accurately predicted study type toxicity (27 total >0.70 vs. 18 total >0.70). Chemical
descriptors were able to predict study type toxicity more often consistent with the results
generated with a comparison of all descriptors and types (Table 3b). Based on Tukey’s HSD
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post hoc analysis, overall differences mean performance score across all study types was
statistically significant (p < 0.05). Likewise, significance was also study type specific (for
chr and sub study types).

Comparing local predictive performance of all toxicity outcomes for Morgan, Gene, and
Morgan + Gene hybrid descriptors

For each cluster containing two or more chemicals, the accuracy of GenRA for predicting
toxicity outcomes was evaluated utilizing various descriptor types. The best overall
performing descriptors for each cluster are available as supplemental material, S1 (f) and

S1 (g). A summary of GenRA local predictions for the mrgn, ge, and hybrid descriptor types
is given in Table 5 for cluster 67. This cluster comprises many phenyl containing chemicals
such as biphenyl, 2-phenylphenol, and ethyl 3 phenylglycidate. Similar to the previous
tables, the columns in Table 5 show the study types and the number of endpoints for the
cluster within each study class; the average AUC performance scores and SD for each

study type (3-4); the number and percentages of study/endpoint types that can accurately
(AUC > 0.70) be predicted by each of the three sets of descriptors (6-8); and the number
and percentage of cases in which biological descriptors outperformed the others (B > C &
CB), chemical descriptors outperformed the others (C > B & CB), and hybrid descriptors
outperformed all others (CB > B & C) (columns 9-11). While not practical to discuss the
results of utilizing GenRA local analysis to each cluster, we have selected several examples
in which each of the descriptor types may outperform the others. Table 5 is an illustrative
example, in which the biological (gene-level) descriptor outperforms both chemical structure
(mrgn) and hybrid (ge + mrgn). Compared to the mrgn chemical structure descriptors for
this cluster, the gene-level biological descriptor more often accurately predicted toxicity
with 6 out of 13 endpoints prediction values greater than 0.70 (compared to 3 of 13 for
chemical) and a total 23% increase in average AUC value. Of the 13 endpoint predictions,
biological descriptors more often outperformed the chemical and hybrid descriptors 7 times
as compared to 4 and 3 times. Thus overall, for a chemical in cluster 67, the biological gene-
level based descriptors were more accurate than the chemical structure or hybrid descriptors.
According to Tukeys HSD however, these results were not significant when broken down by
study type and for the overall mean across study types. This is also true when comparing

the local performance of all other previously discussed descriptors. Supplemental material
S4a and S4b reflect the consistent pattern for cluster 67 in which both biological descriptors
(asy and ge) result in higher average predictive values (S4a) and a greater percentage of
prediction score above 0.70 (S4b), yet differences in mean remain insignificant.

There are several examples of clusters where chemical structure and/or hybrid descriptors
outperformed the biological descriptors, and two examples are provided in Supplemental
Material Tables S5 and S6. The summary table in Supplemental Material S5 is an example
in which the performance of the chemical structure descriptor class exceeds other descriptor
types in predicting toxicity for chemicals in this cluster. This table shows cluster 19 results
consisting of several benzene-containing chemicals such as 4-aminoazobenzene, sodium
benzoate, benzyl alcohol, and benzyl acetate. In this particular cluster, we found that the
chemical structure descriptors outperformed the biological and hybrid descriptors for 8 of
the 15 toxicity endpoints and more often accurately predicted (AUC > 0.70) development
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(dev), developmental neurotoxicity (dnt), and subacute (sac) effects as compared to the
other descriptors. The comparison of performance for all descriptors for cluster 19 in
Supplemental Material S6 also shows chemical structure descriptors outperforming others.
Mrgn and toxp chemical descriptors displayed greater overall performance scores as seen in
Table S6a, and toxp chemical descriptors more often accurately predicted study type toxicity
(S6b). Similar to cluster-67, Tukey’s HSD determined these differences are not significant.

In cluster 1 the hybrid mrgn + ge (MG) descriptors performs better than the singular
descriptors (Supplemental Material S7). This cluster contains a diverse set of chemicals,
including folpet, warfarin, fluridone, and salicylamide. For cluster 1, the MG hybrid
descriptor generated the best average performance for all toxicity endpoints. MG also

more often accurately predicted toxicity outcomes relative to the individual biological

and chemical structure descriptors, which both predicted outcomes correctly for 2 of 12
endpoints. Performance scores for other descriptors in cluster 1 are in Supplemental Material
Tables S8a and S8h. Overall, the hybrid descriptors, including mrgn + asy (MA), mrgn + ge
(MG), and the CA and CB descriptors, performed best in comparison the all other descriptor
types (S8a). The MA hybrid also more often accurately predicting toxicity across all study
types (S8b); however, difference in mean performance scores were not significant.

While we identified clusters in which each of the descriptor types outperformed the others,
the local GenRA predictive performance using gene descriptors exceeded the chemical
(mrgn) and hybrid (mg) descriptors, as seen in Fig. 2. When broken down into cluster

and study into organ specific liver targets (Table 6b), differences in performance were

not statistically significant. When broken down by study-type and across aggregated study-
types significant differences were observed for chr and sub study types, where gene
descriptors produced best performance (Table 6a). Additionally, significant differences in
performance were observed for rep study-type where mrgn performed the best. Overall,

out of the 48 clusters containing more than 2 chemicals with toxicity data, the biological
descriptor outperformed the other descriptors’ predictive performance for about 60% (28/48)
of the cases. The same was true when stratifying by effect type where the performance

of biological descriptors exceeded the others at predicting toxicity endpoints within each
cluster (Supplemental Material S9). Overall, of the 13 descriptors evaluated, both individual
biological descriptors (asy and ge) outperformed the other descriptor types in 51% of the
cases (shown in Supplemental Material S10).

Case example of GenRA toxicity predictions using diethyl phthalate

We illustrate the impact of biological similarities on GenRA read-across performance

using Diethyl phthalate, a member of cluster-80. The biological and chemical descriptors
performed equally well overall. Fig. 3 illustrates the neighborhood for diethyl phthalate
based on the application of biological, gene-level descriptors (Fig. 3a), mrgn chemical
structure descriptors (Fig. 3b), and hybrid descriptors (Fig. 3c) for toxicity predictions. For
each descriptor class, 10 source analogues were identified, comprising cluster-80 chemicals.
The membership of the neighborhood varied slightly depending on the descriptor used either
in terms of the pairwise similarities themselves or the chemicals.
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While the similarity scores for each descriptor neighborhood varied, the chemical descriptor
neighborhood more often yielded similarity scores greater than 0.50. The biological
descriptors yielded a perfect similarity score (1.0) for diisobutyl phthalate. Overall, this
example illustrates that the neighborhoods and the similarity values generated between
‘neighboring’ chemicals depend on the type of descriptors utilized. Similarity scores appear
to be comparable to average performance scores for each descriptor in 3d which displayed
insignificant differences that varied overall. Likewise, no significant study-type differences
were detected. Lack of coverage across sufficient endpoints may account this outcome.
There is still merit however in utilizing a combination of biological and chemical descriptors
as we saw significant differences in performance with more coverage within study types for
both the local and global approaches.

Discussion

The Strategic Plan for NAMs [58] provides an impetus to transition from animal testing to
in vitroand in silico approaches. Generation of NAM data has opened the door for a host
of computational approaches, including data-driven read-across predictions of hazard and
risk [41,55]. Traditionally, read-across relies on chemical similarity to identify candidate
source analogues; however, numerous studies demonstrate the utility of characterizing
biological similarity with other NAM /n vitro data to make read-across predictions of
toxicity [19,20,21,22,25,36,51,69]. Here, we used the genra-py package to investigate the
role that targeted transcriptomic bioactivity descriptors play in identifying source analogues
and predicting hazard in outcomes compared to chemical structure fingerprints and hybrid
fingerprints. In all, we systematically evaluated the performance of GenRA using thirteen
different types of biological, chemical, and hybrid descriptors to predict 252 apical effects
across 10 different guideline study types. We employed two main approaches to summarize
read-across performance: 1) a global approach in which we aggregated performance across
all chemicals in our data set; and 2) a local approach where performance was aggregated
by categories defined by chemical structure clusters. Although average global performance
for all descriptors and study types was poor (with AUC = 0.51), we were able to

identify specific contexts in which automated read-across performed well with chemical,
transcriptomic, or hybrid fingerprints (see Fig. 3b and Supplemental Material, S1(h)).

The global and local performance results for all toxicity endpoints suggest that utilizing a
small targeted set of transcriptomic descriptors for read-across predictions can provide only
a modest advantage singly or in combination with chemical structure fingerprints. Globally,
this is evident in Table 3a and Table 4, where individual biological and hybrid descriptors
outperform the individual chemical descriptors on average for all toxicity target studies.
However, it is worth noting that combining all chemical descriptors (CC) is advantageous for
global read-across analysis, as shown in Tables 3a and 3b. For accurate predictions, CC more
often accurately predicted toxicity than all descriptor types (Table 3b) and retained higher
average AUC scores amongst the various toxicity study types. One reason for this could be
that the much larger number of CC fingerprints (4825 descriptors) provides a more detailed
representation of chemicals versus biological or dual hybrid descriptors (See Supplemental
Material S3). Increasing the number of individual biological descriptors may be necessary
for a fairer comparison. The CC descriptor also outperformed the CB descriptor, which
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incorporated all individual chm and bio descriptors (a total of 5109 descriptors). Despite an
increase in the number of descriptors for CB, there were still fewer biological fingerprints
than chemical fingerprints in our analysis. This highlights the importance of expanding the
bioactivity data to improve the performance of hybrid read-across predictions or alternative
what feature selection procedures might be warranted to target more relevant fingerprints.

It is also noteworthy to consider that while CC had the greatest overall average performance
scores for all aggregated study-types and all aggregated liver-specific endpoints, hybrid
descriptors more often accurately predicted liver toxicity (Table 2). Since the biological
descriptors utilized here were derived from HepaRG cells, which are liver-derived, higher
prediction scores for the liver toxicity endpoints (chr_liver, dev_liver, sac_liver, and
sub_liver) by biological or hybrid descriptors may be a result of this specificity. Therefore,
the biological relevance of the liver-derived targeted transcriptomic descriptors may also
explain why the performance for liver toxicity endpoints was higher than CC. The lack

of biological relevance of the HepaRG cells to other study types and target organs could
also explain why their performance scored lower. A better understanding of cell type-
mechanisms’ roles in organ toxicities [79,80] could enable the development of additional
targeted assays.

In contrast, the CC combination was not the best performing descriptor for local read-across
analysis (See, supplemental material S1 (i) and S9). Local predictions based on biological
descriptors frequently outperformed all other descriptors (Supplemental Fig. S9). This was
illustrated for phenyl-containing compounds in cluster 67 (Table 5 and Supplemental Table
S4(a & b)) where biological descriptors produced the highest overall AUC scores and

more accurate predictions (AUC values greater than 0.70). For this example, however,
hybrid descriptors performed most poorly. In general, hybrid descriptors elicited increased
performance over the individual chemical structure for various toxicity study types; still,

the performance of the read-across predictions varied with in study types and depended on
specific toxicity effects and the chemical cluster assessed.

This context-dependency of read-across predictions was also reported in Shah et al. [51],
where bioactivity fingerprints and hybrid (chemical and bioactivity) outperformed mrgn
chemical fingerprints for specific study types. Shah et al. [51] noted that bioactivity might
be a more promising predictor due to the association of high dose effects /n vivo and the
high concentration effects observed in the /n vitro activity. The ToxCast HTS assays used

in Shah et al. [51] lacked metabolic transformation, whereas this analysis used data from
metabolically competent HepaRG™ cells with more xenobiotic responsive metabolizing
enzymes [18]. This choice aligns with factors proposed by Thomas et al. [55] for improving
the predictive capacity of the ToxCast HTS data and obtaining broader acceptance of
predictive approaches [14,55].

Despite the promise of HTS assays for improving read-across predictions, we note [12] two
main limitations: the targeted transcriptomic assay only included 93 genes and were only

assessed in one cell culture model. While the gene descriptors had the best performance for
predicting hepatic outcomes, they did not perform well for other target organ effects. This is
likely the result of using transcriptomic data from HepaRG™ cells, which is a liver cell line.
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Additionally, using a targeted set of 93 genes substantially limits the range of pathway
perturbations that can be assessed, resulting in only a partial evaluation of biological
similarity. To address these limitations, we are evaluating the utility of HTTr data from
multiple cell types for screening thousands of chemicals [23,24]. Using HTTr will expand
the scope of biological fingerprints by covering a broader set of biological pathways that can
be analyzed with connectivity mapping approaches [12,33,34,59] to automate read-across
predictions of hazard classifications for targets beyond the liver.

Conclusion

Generalized Read-Across (GenRA) approach was developed to make automated read-across
predictions of toxicity effects, utilizing a similarity weighted average approach [51].
Previously, this approach was shown to be effective in characterizing source analogues
using binary and quantitative measures for chemical and bioactivity descriptors, as well

as physiochemical property information [25-28,51]. In this present study, we extended

the approach to transcriptomic data comprising binary hit-calls (activity calls) from
concentration-response data for each gene. Our analysis estimated both global and local
performance using diverse individual and combinations of transcriptomic binary hit call
measures and chemical structure fingerprints in predicting liver toxicity and overall study-
type associated toxicity effects. The global read across performance for all neighborhoods
suggests that hybrid combinations of biological and chemical descriptors were effective for
several study types (chr, sac, sub). This was also the case for the combination of multiple
chemical descriptors. In contrast, for the local read across performance, the individual
biological descriptors proved more predictive. Overall, whilst the coverage with this dataset
was more limited, in specific cases, the utility of transcriptomic hit-call information in
addition to chemical structure information was found to be promising in making /n vivo
toxicity predictions Next steps will be to extend the scope to a more comprehensive
transcriptomic dataset to determine whether the performance significantly improves.
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Abbreviations:

AC50 Activity concentration at 50% of E-max
ACU Acute Toxicity Study

ANOVA Analysis of Variance

ASY Assay Biological Descriptor

AUC Area Under the ROC Curve
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BIO

CASRN

CB

CC

CHM

CHM

CHR

DEV

DNT

DSSTOX

GE

HSD

HTS

HTPP

LOAEL

LTEA

MA

MG

MGR

MRGN

NAM

NEU

NTP

POD

OCSPP

OSAR

REP

ROC
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Biological Descriptor
Chemical Abstract Services Registry Number
Hybrid Chemical and Biological Descriptor

Chemical Combination Descriptor of Morgan, Torsion, and Toxprint
Descriptors

Chemical Descriptor

Chronic Toxicity Study

Developmental Toxicity Study

Developmental Neurotoxicity Study

Distributed Structure-Searchable Toxicity
Gene-level Biological Descriptor

High content screening

Tukey’s Honest Significance Difference
High-throughput screening

High throughput phenotypic profiling

Lowest observed adverse effect level

Life Technologies/Expression Analysis

Morgan Chemical and Assay Biological Hybrid Descriptor
Morgan Chemical and Gene Biological Hybrid Descriptor
Multigenerational Toxicity Study

Morgan Chemical Descriptor

New approach methodology

Neurological Toxicity Study

National Toxicology Program

Point of departure

Office of Chemical Safety and Pollution Prevention
Quantitative structure-activity relationships
Reproductive Toxicity Study

Receiver Operator Characteristic
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SAC Sub-Acute Toxicity Study

SUB Sub-Chronic Toxicity Study

TPTR Torsion Topological Chemical Descriptor

ToxCast ToxCast HTS assays

ToxP ToxPrint Chemotype Chemical Descriptor

TTA Torsion Topological Chemical and Assay Biological Hybrid
Descriptor

TTG Torsion Topological Chemical and Gene Biological Hybrid
Descriptor

TXA ToxPrint Chemotype and Assay Biological Hybrid Descriptor

TXG ToxPrint Chemotype and Gene Biological Hybrid Descriptor
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Data

1. 1060+ Chemicals and Chemical controls
2. Chemical descriptors (chm):
+ 2048 Morgan (mrgn)
* 2048 Topological Torsion (tptr)
* 729 ToxPrints (toxp)
3. Transcriptomic descriptors(bio):
+ 95Gene (ge)
* 189 Assay (asy)
4. 922 Toxicity outcomes(tox)
5. 86 Predefined Chemical Clusters

)

Find Best n-Neighbors and
Similarity Metric

Utilize a 5-fold grid search cross
validation and AUC scoring to
determine appropriate number of
neighbors and similarity metric for
each descriptor type.

Generate Local
Neighborhoods

Group chemicals using a similarity-

weighted activity score of nearest
neighbors.

Similarity calculated by:
+ Jaccard distance
* Manhattan distance

* Euclidean distance

Performance Evaluation

Evaluate the impact of diverse
descriptors (chm, bio, chm+bio) on
GenRA global and local read-across
performance.

Fig. 1.

Workflow for analysis of multiple descriptor types in GenRA.
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A. Frequency of Best B.

Descriptor Performer

Descriptor Type Count
Overall

ge 28
mg 11

mrgn 9

Total 48

ge (B) mrgn (C) mg (CB)
Fig. 2.

Local Prediction Performance (Area Under the ROC Curve) for All Endpoints Using
Morgan Chemical Structure (C), Gene Level Biological (B), and Hybrid (CB) Descriptors.
The overall performance winners for all clusters. Ge (gene-level) biological descriptor, mg
(morgan/gene) hybrid descriptor, mrgn (morgan) structural chemical descriptor.
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A. Gene Fludiox__u_:-rj_lll_ B. Morgan Aroxystrobin .
9. 4 Diisobutyl phthalate Dibutyl phthalate
g A Propoxycarbazone- :
3-lodo-2-propynyl-N-butylcarbamaté | n sodium 4 .. Diisobutyl phthalate
I 4-Nonylphenol, branched v \ / p
004 100 : 018 057
Dinoctylphthalate | 006 % < » “
- ' 7 033 Monobenzyl phthalate 021 = 056 -
’
=013 o - — - ’ \
ot 0.29 Benzyl butyl phthalate 038 A\ 051 Diallyl phthalate
Ciethyl phthalate Dieth ’
Moncbenzyl phthalate ,0-1— v 025 041 05 pn‘mrmo .
- 025 025 Benzyl butyl phthalate - 046 :
7 v e sl Dihexyl phthalate
Di(2-ethylhexyl) phthalate
Dihexyl phthalate
Di{2-ethylhexyl) phthalate -n-octyl phthal
Diallyl phthalate Pravosy phhoere
C. Gene + Morgan Hybrid D. Overall Performance Summary
3-lodo-2-propynyl-N-butylcarbamate *,_Diisobutyl phthalate
i 4 Descriptor . ,
e g Type Mean SD Median Min Max
o Dibutyl phihalate
A / Gene 0.50 0.15 0.53 0.2 0.67
013 oss
~ 1] .
Monabenzyl phthalate 020 , 05 Morgan 048 0.31 0.44 0.08 1.0
=034 * o = 049 " Dialiyl phthalate
' e " Hybrid 0.42 0.28 0.45 0.05 1.0
0.40 Diethyl phthalate
- * L]
Benzyl butyl phtha!at_e 043 043 047
¢ 5 Dihexyl phthalate
Di{2-ethylhexyl) phthala Di-n-octyl phthalate
Fig. 3.

Case Example of GenRA Neighborhood Using Biological, Chemical, and Hybrid
Descriptors with the Target Chemical Diethyl phthalate and Cluster 80 Chemicals. The
target chemical, anilazine lies in the center of each neighborhood. (A) Numbers in the
center represent the pairwise biological (gene-level) similarity scores. (B) Numbers in the
center represent the pairwise chemical structure (Morgan) similarity scores. (C) Numbers
in the center represent the pairwise hybrid (Morgan H-Gene) similarity scores. (D) Overall
summary of cluster-80 untargeted toxicity AUC performance scores for each descriptor.
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Appropriate metrics and number of nearest neighbors to assess the performance of various descriptor read-
across prediction of chronic liver toxicity. Column 2 represents the descriptors type including: chemical
structure (chm), biological (bio), and hybrid (CB). Descriptors names in column 3 include: Biological (B) -
Assay (asy) and Gene (ge); Chemical Structure (C) — Morgan (mrgn), Toxprints (toxp), Topological Torsion
(tptr), all chemicals combination descriptor (CC), Chemical + Biological Hybrid (CB) — Morgan + Assay
(MA), Morgan + Gene (MG), Topological Torsion + Assay (TTA), Topological Torsion + Gene (TTG),
Toxprints + Assay (TXA), Toxprints + Gene (TXG), and all chemical and biological descriptors combined
(CB). Column 4 denotes the AUC performance values for each descriptor in predicting chronic liver toxicity
effect. Column 5-6 denote the appropriate similarity metric and number of neighbors to make accurate
prediction for each descriptor. Major descriptors of interest are marked bold.

Liver Effect Descriptor Type Descriptor Name AUC Metric N Neighbors

Chr_liver Chm Tptr 0.6303 Euclidean 9
Chm Mrgn 0.64549 Jaccard 8
Chm Toxp 0.61379  Jaccard 7
Bio Ge 0.648847 Euclidean 14
Bio Asy 0.6632 Euclidean 11
CB mrgn + asy 0.6883 Jaccard 13
CB toxp + ge 0.7044 Jaccard 10
CB tptr + ge 0.6818 Euclidean 6
CB (CB)all 0.6999 Jaccard 14
Chm (CC)all 0.6702 Jaccard 10
CB mrgn + ge 0.7049 Jaccard 10
CB toxp + asy 0.6992 Jaccard 14
CB tptr + asy 0.6721 Manhattan 5
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Table 6

Local Prediction Performance (AUC) for All Toxicity Endpoints Using Morgan Chemical Structure(C), Gene
Level Biological(B), and Hybrid(CB) Descriptors by study type and liver target effects. Column 1 expresses
various toxicity study types(6A), or liver effect(6B) and the total number of chemicals with /n vivo data
available for all descriptors (in parenthesis). Columns 2—-3 comprises the average by study type AUC | SD.

6A.

Study ge (B) mrgn (C) MG(CB)
Chr (276) 058|033 0391033 044]034
Dev (273) 040|038 0.38]0.37 0.40|0.34
Dnt (24) 0.41]0.44 0.23]0.36 0.23]0.26
Mgr (99) 045|032 042|034 0.29]0.30
Rep (54) 0.32)041 068|041 042|042
Sac (111) 0.5910.37 0.56]0.36 0.57]0.34
Sub (249) 050|032 0371030 044]0.34
ALL 049|034 041]035 042|035
6B.

Target ge (B) mrgn (C) MG(CB)

Chr_liver (96) 0.63]0.32  0.45[034 0.52]0.37
Mgr_liver (75) 0.46]0.36  0.46]0.36 0.33]0.33
Sac_liver (33) 058|043  0.72]0.34 0.62]0.33
Sub_liver (78)  0.52|0.35  0.37|0.28 0.45]0.34
ALL_liver 055|035 047|034 0.46]0.35

*
) indicates study type specific statistically significant (p < 0.05) differences in mean AUC scores between descriptors and baseline approach
(Morgan chemical Structure).

Descriptors listed include: Biological(B), Gene (ge); Chemical(C) Structure, Morgan (mrgn); Hybrid(CB), Morgan + Gene.
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