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Abstract

Read-across is a data gap filling technique utilized to predict the toxicity of a target chemical 

using data from similar analogues. Recent efforts such as Generalized Read-Across (GenRA) 

facilitate automated read-across predictions for untested chemicals. GenRA makes predictions of 

toxicity outcomes based on “neighboring” chemicals characterized by chemical and bioactivity 

fingerprints. Here we investigated the impact of biological similarities on neighborhood formation 

and read-across performance in predicting hazard (based on repeat-dose testing outcomes from US 

EPA ToxRefDB v2.0). We used targeted transcriptomic data on 93 genes for 1060 chemicals in 

HepaRG™ cells that measure nuclear receptor activation, xenobiotic metabolism, cellular stress, 

cell cycle progression, and apoptosis. Transcriptomic similarity between chemicals was calculated 

using binary hit-calls from concentration-response data for each gene. We evaluated GenRA 

performance in predicting ToxRefDB v2.0 hazard outcomes using the area under the Receiver 

Operating Characteristic (ROC) curve (AUC) for the baseline approach (chemical fingerprints) 

versus transcriptomic fingerprints and a combination of both (hybrid). For all endpoints, there 

were significant but only modest improvements in ROC AUC scores of 0.01 (2.1%) and 

0.04 (7.3%) with transcriptomic and hybrid descriptors, respectively. However, for liver-specific 

toxicity endpoints, ROC AUC scores improved by 10% and 17% for transcriptomic and hybrid 

descriptors, respectively. Our findings suggest that using hybrid descriptors formed by combining 

chemical and targeted transcriptomic information can improve in vivo toxicity predictions in the 

right context.
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Introduction

The cost and duration of current animal testing approaches only permits a small fraction 

of the 32,898 chemicals in commerce (US EPA, 2019) to be thoroughly evaluated for 

human safety. Advances in computing resources, increased access to laboratory automation, 

and development of new approach methodologies (NAMs) have resulted in the generation 

of ’big data,’ and the potential for a disruptive change in the field of toxicology. In some 

jurisdictions and for specific regulatory purposes in particular, there has been a concerted 

uptake in the application of high-throughput in vitro data and computational models 

[8,15,46,70]. One example is the US EPA’s Endocrine Disruption Screening Program 

(EDSP) which permits the use of high throughput assays and computational models to 

evaluate and screen chemicals. The OECD’s IATA Case studies programme has been a 

notable activity where Member Countries have submitted case studies in an effort to build 

capacity and share experiences for how to apply and interpret NAM data for different 

regulatory purposes. Many of the case studies submitted have been read-across orientated 

demonstrating how NAM data can be used in conjunction with in vivo data in a weight 

of evidence approach as well as providing a means to substantiate biological/mechanistic 

similarity across source analogues ([86]; see also Sakuratani et al. [87] for a summary of 

the programme and the learnings gained). More recently Health Canada [1] published their 

scientific approach whereby high throughput data could be coupled with predicted exposure 

information to establish defined ratios akin to margins of exposure (MoE) for priority setting 

and risk assessment contexts [53,62,63]. Technologies such as high-throughput and high-

content screening methods (HTS/HCS) [29], high-throughput transcriptomics data (HTTr), 

high-throughput phenotypic profiling (HTPP) for cellular morphology, and high-throughput 

exposure modelling are broadly referred to as NAMs, providing information about chemical 

hazards and risks without using intact animals [30]. NAMs also encompass in silico 
approaches such as (quantitative) structure-activity relationships ((Q)SARs) and read-across 

[30,55].

There is renewed recognition that in silico approaches can provide practical alternatives 

to bridge the lack of knowledge about chemical properties and their biological activities 

[13,65]. In Europe, the REACH regulation calls for the use of non-animal methods to assess 

chemical toxicity [71,73,74], whereas, in the U.S., the EPA created a NAMs Work Plan to 

prioritize agency efforts and resources toward activities that will reduce the use of animal 

testing while continuing to protect human health and the environment [57].

Read-across is a data gap filling technique whereby information from a similar (source) 

analogue is used to infer the same properties for a substance of interest (target). Read-

across has been in broad use for different regulatory purposes for decades [10,38,40,41], 

but its acceptance has been somewhat thwarted by how to address residual uncertainties 

[2,3,5,39,45]. The approach itself has always been a subjective expert-driven one, reliant 
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on domain knowledge of the toxicity endpoint of interest and the different considerations 

that need to be taken on board to rationalize and justify a read-across prediction [10,66]. 

In recent years, there have been more efforts that seek to better characterize what those 

uncertainties might be and how to describe and document the considerations underpinning 

a read-across prediction. While frameworks for the development and acceptance of read-

across have been published and extensively discussed (e.g. [5,39,75,76]), there remains a 

gap in understanding how to apply some of the principles in practice [3,7,37,41,45,47,48]. 

In the last five years, there has been a concerted move to consider NAMs as a means 

to enhance read-across. In addition to the work under the OECD IATA Case studies 

programme, there has been a large programme of work under the auspices of both the 

EU SEURAT and EU ToxRisk programmes exploring how NAM data can substantiate 

biological similarity specific case studies [16,49]. However there are many other examples 

where NAM approaches have been utilized including Brandt et al. [78] who evaluated a 

WoE approach to assess the persistence characteristics of certain phenolic benzotriazoles. 

Gautier et al. showcased use of a defined approach as part of a read-across for a resorcinol 

case study for the skin sensitization endpoint [83]. Gelbke et al. evaluated a category of 

methacrylates developed to showcase an example assessment prepared to meet the needs 

of a REACH submission [82]. Grimm et al. [20] used phenotypic and transcriptomic assay 

data to demonstrate bioactivity similarity in a set of glycol ethers. Pestana et al. [84] 

showcased how NAM data could reduce uncertainty in the read-across within a category 

of tetraconazoles to address the information requirements of a 90-day study outcome. Data 

driven approaches using larger datasets have been also pursued including Sperber et al. [88] 

who utilized metabolomics, also discussed in Ball et al. [81] as well as exploiting HTS 

assays from PubChem or ToxCast as investigated in Firman et al. [77].

In our own work, we have also applied a data driven approach to read-across by establishing 

a baseline in performance using k-nearest neighbors and a similarity weighted activity 

approach based on chemical fingerprints to make in vivo toxicity predictions [51]. In 

subsequent analyses, we have been focused on exploring enhancements to read-across 

through characterizing other similarity considerations, e.g., physicochemical properties as 

a surrogate for bioavailability [26] and quantifying their relative contribution to improving 

read-across performance as well as transitioning to predictions of potency [25,27–28]. As 

noted earlier there have been other works which have explored the concept of biological 

similarity [16,69]. Here we present a proof of concept study using targeted HTTr data to 

make repeated dose study-type and liver specific toxicity (see Methods) predictions relative 

to chemical structural features or a combination of both.

Whilst the use of transcriptomic data is not in of itself novel, indeed the chemical 

and biological read-across (CBRA) approach, which GenRA was based on, utilized 

toxicogenomic data for inferring toxicity (Low et al.). With the increasing reliability, 

reproducibility and scalability of transcriptomic technologies [60]), “connectivity mapping” 

[33,34] is becoming a powerful approach for inferring the bioactivity of chemicals based on 

similarity between gene expression profiles. Connectivity mapping has been used to evaluate 

the mode of action of drugs [31] and to evaluate their safety [54]. More recently, Wang et 

al. developed “fish connectivity mapping” [59] by linking transcriptomic profiles of known 

chemicals in ecologically-relevant species with untested chemicals to evaluate their putative 
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mechanisms. Similarly, De Abrew et al. investigated the mode of action for 34 chemicals 

using transcriptomic profiles produced in multiple cell types against a large reference 

database [12]. More recently, Harrill et al. used high-throughput transcriptomic (HTTr) data 

on environmental chemicals to evaluate their putative mechanisms and to estimate potency 

values using a gene signature-based concentration-response approach based on the concept 

of connectivity mapping [23]. Despite these advances, the application of transcriptomic data 

to read-across and especially in the context of traditional read-across remain at an early 

stage. How these data should be integrated with traditional data streams to make associations 

with regulatory relevant endpoints for risk assessment, remains an evolving area (see [6,68]).

As a prelude to evaluating the utility of whole transcriptomic data in read-across, we 

present an analysis using the expression levels measured for a targeted set of 93 transcripts 

in HepaRG™ cells treated with eight concentrations of 1060 chemicals. HepaRG™ cells 

express a full repertoire of xenobiotic-metabolizing enzymes, enabling more biological 

response, particularly from bioactivated or metabolically detoxified chemicals. Using these 

data, in addition to chemical structure data, repeat-dose toxicity outcomes, and predefined 

chemical clusters [51], we evaluated predictions of 922 toxicity endpoints using the GenRA 

approach [27,51] as implemented in genra-py, a new python package [52].

Materials and methods

The workflow followed in this analysis is captured in Fig. 1. Each step in the workflow, 

namely, data source selection, is described in more detail in the following sections.

Chemical libraries

Chemical libraries for this study were the ToxCast Phase I and Phase II libraries; the 

“phases” here indicate the order of testing by the ToxCast program and are unrelated to 

metabolism phases. Phase I of ToxCast focused on chemicals, including many pesticides, 

for which there were extensive in vivo studies for comparison. Phase II included a 

broader range of chemicals that are common in commerce and the environment. The 

full list of chemicals is provided as supplemental material, S1(a). Chemical samples 

were commercially procured, diluted in dimethyl sulfoxide (100% DMSO) to a stock 

concentration of 20 mM, and plated by Evotec (South San Francisco, CA). Analytical QC 

for the Phase I chemical inventory was performed using a combination of high-throughput 

liquid and gas chromatography-mass spectrometry to determine sample purity, parent mass, 

and sample stability in DMSO over time (https://www.epa.gov/chemical-research/toxcast-

chemicals). Similar methods were applied to analyzing the Phase II library in association 

with the Tox21 project and are publicly available at https://tripod.nih.gov/tox21/samples.

Datasets

Transcriptomic data—The transcriptomic data used in the analysis are described in detail 

in Franzosa et al. [18] and a brief outline is provided here. These data were generated 

using the Life Technologies/Expression Analysis (LTEA) assay, which is part of the 

ToxCast [29,43] HTS data set. The LTEA assay was designed to investigate the role of 

nuclear receptor activation and key cellular events in hepatotoxicity [50] in a liver-specific 
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in vitro model. In the LTEA assay, HepaRG™ cells were treated with 8 concentrations 

of 1060 chemicals for 24 h, and the expression levels of genes were measured using 

quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Due to the format 

of the assay, only a set of 93 transcripts could be concurrently measured and they were 

targeted to assessing nuclear receptor activation, xenobiotic metabolism, cellular stress, 

cell cycle progression, and apoptosis, which are key events in different pathways to liver 

toxicity (the list of genes is provided as Supplemental Material, S2). Concentration-response 

data for each of the 93 transcripts and cytotoxicity (which was assessed using lactate 

dehydrogenase (LDH) assay) were analyzed using the ToxCast analysis pipeline package in 

(R/tcpl) [17]. Each gene was curve-fit twice, once for up-regulation and a second time for 

down-regulation. After curvefitting, the efficacy, potency (AC50), and hit-call were stored in 

a MySQL database (invitroDB v3.00) [56]. The hit-call for each chemical and transcript was 

assigned a binary active (1) or inactive (0) value based on level 5 data [17]. A hit-call was 

also assigned an “up” or “down” direction depending on whether the efficacy was positive or 

negative, respectively. The transcriptomic data for each chemical was represented using the 

hit calls in two ways: firstly, as a vector comprising the binary hit-calls for the 93 genes and 

secondly, as a vector consisting of the 190 directional activities of the 93 genes (i.e., each 

transcript was included once for the “up” and once for the “down” direction). The former 

will be referred to as ‘gene’ (ge) throughout this paper and the latter will be referred to as 

‘assay’ (asy).

The 3 LTEA datasets used in the current study are publicly available from the EPA ftp 

site at: ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/

Wambaugh/ToxCast_LTEA

These three data sets comprise LTEA_Inucyte_Images.zip (images of each 

cell culture), LTEA_Level2_20191119.zip (the raw, unnormalized data), and 

LTEA_Level5_20191119.zip (results of concentration-response curve-fitting). All other data 

and analysis scripts used are included in [18] and its supplementary information files.

Chemical structure data

Morgan fingerprints (mrgn) [44], Topological Torsion (tptr) fingerprints [42], and ToxPrint 

(toxp) [67] chemotypes were computed for the 1060 chemicals. These descriptors were 

represented as binary (bit) vectors where the presence or absence of each structural element 

was represented as a 1 or 0, respectively. Mrgn and tptr fingerprints were calculated 

using the freely available python RDKit [35], whereas Tox-Prints [67]; chemotyper.org) 

were downloaded using the batch search functionality (ChemoTyper format) from the EPA 

CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard) [64].

Toxicity data

Toxicity data were extracted from ToxRefDB version 2.0 [61], which is accessible as a 

MySQL Dump file from ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/

Animal_Tox_Data/current/. ToxRefDB describes the in vivo effects of repeat-dose testing 

for hundreds of substances observed across various species and target organs. The previous 

version of ToxRefDB contained only data for positive related effects; however, recent 
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refinements now enable the distinction between untested chemicals and chemicals tested 

with no effects (negative endpoints) based on adherence to Office of Chemical Safety and 

Pollution Prevention (OCSPP), National Toxicology Program (NTP) specifications or OECD 

test guidelines. Chemicals producing significant effects for an endpoint were categorized 

as positive (1), and those that did not produce significant effects were categorized as 

negative (0). We found 935 chemicals were assigned with positive or negative toxicity 

assignments for 252 target organs and effects in 9 guideline repeat dose testing study types 

in ToxRefDB v2. Endpoints for these target organ and effects are grouped by study type, 

endpoint category and endpoint type. The 9 study types were namely: chronic toxicity 

(chr), subchronic toxicity (sub), subacute toxicity (sac), developmental toxicity (dev), 

multigenerational reproductive toxicity (mgr), reproductive toxicity (rep), developmental 

neurotoxicity (dnt), acute toxicity (acu), and neurological toxicity (neu). Toxicity studies 

where a specific guideline was not reported were categorized as “other” (oth). Endpoint 

categories include cholinesterase, developmental, reproductive, and systemic. For systematic 

endpoint categories, endpoint types include clinical chemistry, hematological, and in life 

observation. Overall, there were 922 unique toxicity study targeted effects or endpoints that 

were used to evaluate the accuracy of GenRA in making in vivo toxicity predictions.

Chemical clustering data

Chemical clusters previously generated in [51] were utilized to assign membership for 

the total set of 1060 chemicals and chemical controls (i.e. induction positive controls, 

cytotoxicity controls, and vehicle controls). These clusters were used to explore local 

domains of chemicals where read-across based on either chemical, biological, or hybrid 

descriptor performed the best. Nine hundred ninety-four (994) substances were matched by 

their chemical identifier, CASRN or DTXSID, to clusters [51]. Clusters for the remaining 

unassigned 71 chemicals were then determined on the basis of their Jaccard pairwise 

similarity index [32] calculated using Morgan chemical fingerprints. The similarity index 

helped to identify the most appropriate cluster for each unassigned chemical, i.e., the 

pairwise similarity between chemicals belonging to clusters and those not belonging defined 

the most likely cluster assignment. These clusters formed the basis of a ‘local’ performance 

assessment of the GenRA approach (see SECTION 3.5: Comparing Local Predictive 

Performance of all Toxicity Outcomes for Morgan, Gene, and Morgan and Gene Hybrid 

Descriptors).

Summary of GenRA approach

The workflow underpinning the GenRA approach [27] was adapted in this study. Rather 

than identifying analogues based on structural similarity, transcriptomic data (characterizing 

mechanistic similarity) or a combination of transcriptomic data and chemical fingerprints 

were used to identify analogues. In addition, whilst the original GenRA approach used the 

Jaccard distance, two other distance metrics were explored, the Euclidean distance [11] 

and the Manhattan distance [4,9]. The similarity weighted activity was calculated using 

transcriptomic (bio) or chemical (chm) descriptors or a combination of the two (see Fig. 

1). A 5-fold grid search cross-validation determined the appropriate number of neighbors 

(ranging from 1 to 15) and the similarity metric based on the optimal performance, which 

was assessed using area under the receiver operating characteristic curve (AUC). The impact 
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on the performance of using these different metrics (Jaccard, Euclidean, Manhattan) for each 

descriptor (bio, chm, chm + bio) combination was evaluated. For each chemical, similarity 

(Jaccard, Euclidean, Manhattan) was calculated for each of the chemical (chm), biological 

(bio), and hybrid chemical and biological descriptor (CB) types as listed in Supplemental 

Material, S3.

Evaluating GenRA performance for different descriptor sets

The prediction accuracy of in vivo toxicity outcomes across all chemicals was evaluated in 

two ways for each of the three descriptor sets (chm, bio, and CB). 1) A ‘local’ performance 

evaluation was conducted utilizing predefined clusters of structurally similar chemicals 

to aggregate the predictions made for all the chemicals in the dataset (as described in 

section 2.2.4). This was considered a ‘local-validity’ approach whereby the success of 

read-across for these diverse descriptors was evaluated to determine if chm, bio, or CB 

predictive performance was specific to certain chemical classes and/or toxicity endpoints. 2) 

Additionally, an overall, ‘global’ performance evaluation was implemented on the entire data 

sets to evaluate descriptor performance. For each toxicity endpoint, the AUC measured the 

prediction accuracy of each descriptor for all chemicals for k-nearest neighbors. Predictive 

performance for each of the different descriptor types across a neighborhood and a single 

metric for other toxicity effects were compared in both the global and local analysis. The 

best similarity metric and the number of nearest neighbors were determined based on the 

optimal AUC performance. In order to assess the significance of AUC scores, we also 

calculated empirical p-values based on permutation testing as described in [51]. Lastly, 

we evaluated the statistical significance of differences between AUC values due to various 

factors using analysis of variance (ANOVA). One-way ANOVA on AUC scores was used 

to compare individual differences in performance for the various descriptors, followed by 

multiple comparisons of mean differences using Tukey’s honest significance difference 

(HSD) test.

Data analysis and code

Data processing and analysis were conducted in both the R (Version 3.6.1) and Python 

programming (Version 3.8.2) languages. Specifically, transcriptomics data was retrieved 

from the EPA Center for Computational Toxicology MySQL invitrodb (Version 3.0) using 

the tcpl package in R [17] and pre-processed for analysis in python. The RDKit package 

[35] was used to generate chemical fingerprints or downloaded from the EPA CompTox 

Chemicals Dashboard, and genra-py [52] was utilized for all toxicity predictions. Jupyter 

notebooks for the entire analysis workflow are provided on GitHub [https://github.com/

i-shah/genra-ltea]. The input data files are provided as Supplemental Material, S1(b–e) from 

the journal website.

Results

We first conducted a global analysis of all chemicals to determine the optimal choice of 

GenRA parameters and input descriptor types for classifying all toxicity outcomes. We 

then conducted the same analysis at a local level using the predefined chemical clusters 

(described in section 2.2.4) to identify chemistry domains where GenRA performed better 
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(or worse) than on a global level. For the sake of brevity, we refer to all descriptors by their 

abbreviations (which are listed in the List of Abbreviations).

Predicting toxicity endpoints by optimum metric and nearest neighbors

The classification accuracy of GenRA for each toxicity endpoint depends on the type 

of descriptor (chm, bio, and CB descriptors), the choice of similarity metric, and the 

number of nearest neighbors. We used genra-py to systematically explore the relationship 

between these parameters for every toxicity endpoint. The optimum metric and number of 

nearest neighbors for each of our descriptors for chronic liver toxicity is shown in Table 1. 

Although there was no consensus on the optimum number of neighbors across all descriptor 

types, many of the individual sets of descriptors (biological or chemical structure) and the 

combined (CB) descriptors performed better with the Jaccard similarity metric. The best 

performance was observed for MG using the Jaccard metric with ten nearest neighbors. 

Since the chronic liver toxicity endpoint had the most positive and negative examples among 

all liver endpoints in our data set, we chose the same GenRA parameters (Jaccard similarity 

metric with 10 nearest neighbors) that resulted in the best performance outcome for all other 

toxicity classes.

Comparing global predictive performance of liver toxicity outcomes for different 
descriptors

The global accuracy of GenRA for predicting liver toxicity outcomes was evaluated using 

several types of descriptors, and their performance across in vivo outcomes in liver toxicity 

endpoints, along with statistical significance by permutational testing, shown in Table 2. 

For all chm, bio, and CB descriptors, the average predictive AUC score for each toxicity 

endpoint, the number of chemicals with positive and negative study level effects, and the 

number of chemicals with available toxicity information were calculated. The average AUC 

scores for all descriptors and study types were close to 0.5, suggesting poor performance 

overall but there were exceptions. On average, ‘all chemical descriptors combination’ (CC) 

descriptor outperformed (AUC = 0.61) other descriptors (individual and combinations) 

by 9%, 15%, and 27% when compared to hybrid descriptors, biological and individual 

chemical descriptors, respectively. For chronic, developmental, sub-acute, and sub-chronic 

liver outcomes, the TTG (AUC = 0.7, p < 0.05), MG (AUC = 0.64, p 0.05) and TTG (AUC 

= 0.74, p < 0.05) hybrid descriptors resulted in the highest respective significant predictive 

performance scores. The CC descriptors resulted in the best prediction performance (AUC 

= 0.68, p < 0.05) for multigenerational reproductive liver endpoints. Although the individual 

topological torsion chemical descriptors (tptr) most accurately predicted reproductive liver 

endpoints (AUC = 0.78), this result was not statistically significant. Lastly, none of the 

approaches produced significant AUC scores for developmental neurotoxicological hepatic 

effects. Despite the low average AUC scores, biological descriptors produced a modest 

10% improvement over chemical descriptors. Hybrid descriptors generated an overall 16% 

increase in predictive performance than individual chemical descriptors and a 6% increase 

relative to biological descriptors.
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Comparing global predictive performance of all toxicity outcomes for different descriptors

GenRA’s global predictive performance for all outcomes in all studies was evaluated with 

various chemical, biological, and hybrid descriptors. A comparison of the performance for 

each of these descriptors is shown in Tables 3a and 3b. The columns in both tables denote 

the individual and hybrid combinations of biological and chemical descriptors, and the rows 

represent the toxicity endpoints and study types. For Table 3a, each element consists of the 

AUC (mean and standard deviation (SD)) of each study type for the various descriptors. In 

addition, we also calculated statistical differences between the AUC scores for descriptors 

using Tukey’s HSD post hoc test after ANOVA (p < 0.05 are signified with an asterisk). 

Because average AUC scores were quite low on average, each element within Table 3b 

includes the number and percentage of instances for all study types where the descriptor 

AUC greater than 0.70 (which is the same threshold as used in our earlier study [51])). 

For all study types CC had the greatest average performance (AUC = 0.53, p < 0.05)) 

compared to all other descriptors (Table 3a). Likewise, the CC descriptor most frequently 

predicted toxicity for all study/effect types, producing AUC values greater than 0.70 for 

8% of the endpoints (Table 3b). Significant differences in AUC score (p < 0.05) were 

found to be study type specific. in performance were found for chronic, sub-acute, and 

sub-chronic study types. Individually, biological descriptors had higher mean performance 

scores than the single chemical descriptors for all study types; however, these difference 

were not significant.. The CB descriptors exceeded the mean prediction performance for 

all study types compared with the individual sets of descriptors, resulting in a minimal 

6.25% increase in mean performance values overall. These significant differences were also 

chronic, sub-acute, and sub-chronic study type specific. Of the hybrid descriptors, the tptr + 

asy class more often accurately predicted toxicity overall for all study types (Table 3b) yet 

resulted in similar mean AUC scores to the other hybrid descriptors (Table 3a).

Comparing global predictive performance of all toxicity outcomes for Morgan, Gene, and 
Morgan + Gene hybrid descriptors

A summary of GenRA predictions for selected chemical, biological, and hybrid descriptors 

is given in Table 4. These descriptors, mrgn and ge, were chosen to compare the baseline 

GenRA approach from [51], which utilizes mrgn fingerprints and bioactivity assay data 

(821 HTS assays from ToxCast Phase I and II compounds), and the chemical-biological 

hybrid to make in vivo toxicity predictions. Similar to [51], the hybrid (mg) descriptor 

class outperformed the others (number and percent of mg > B & C = 376 | 44%, 

respectively), resulting in a higher average performance value of 0.51 (SD 0.11) and more 

total cases (46 | 5.9%) in which study types were predicted with AUC > 0.7. In general, 

the hybrid descriptor generated a 4% increase in the average prediction score for all toxicity 

endpoints over biological descriptors and 6.25% over chemical descriptors. The mean AUC 

scores were statistically significant (p < 0.05) for chronic, developmental neurotoxicity 

(mrgn-mg), sub-acute, and sub-chronic study types. While on average biological descriptors 

displayed greater performance than chemical descriptors, chemical descriptors more often 

outperformed biological descriptors (C > B & CB in comparison to B > C & CB) and 

accurately predicted study type toxicity (27 total >0.70 vs. 18 total >0.70). Chemical 

descriptors were able to predict study type toxicity more often consistent with the results 

generated with a comparison of all descriptors and types (Table 3b). Based on Tukey’s HSD 
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post hoc analysis, overall differences mean performance score across all study types was 

statistically significant (p < 0.05). Likewise, significance was also study type specific (for 

chr and sub study types).

Comparing local predictive performance of all toxicity outcomes for Morgan, Gene, and 
Morgan + Gene hybrid descriptors

For each cluster containing two or more chemicals, the accuracy of GenRA for predicting 

toxicity outcomes was evaluated utilizing various descriptor types. The best overall 

performing descriptors for each cluster are available as supplemental material, S1 (f) and 

S1 (g). A summary of GenRA local predictions for the mrgn, ge, and hybrid descriptor types 

is given in Table 5 for cluster 67. This cluster comprises many phenyl containing chemicals 

such as biphenyl, 2-phenylphenol, and ethyl 3 phenylglycidate. Similar to the previous 

tables, the columns in Table 5 show the study types and the number of endpoints for the 

cluster within each study class; the average AUC performance scores and SD for each 

study type (3–4); the number and percentages of study/endpoint types that can accurately 

(AUC > 0.70) be predicted by each of the three sets of descriptors (6–8); and the number 

and percentage of cases in which biological descriptors outperformed the others (B > C & 

CB), chemical descriptors outperformed the others (C > B & CB), and hybrid descriptors 

outperformed all others (CB > B & C) (columns 9–11). While not practical to discuss the 

results of utilizing GenRA local analysis to each cluster, we have selected several examples 

in which each of the descriptor types may outperform the others. Table 5 is an illustrative 

example, in which the biological (gene-level) descriptor outperforms both chemical structure 

(mrgn) and hybrid (ge + mrgn). Compared to the mrgn chemical structure descriptors for 

this cluster, the gene-level biological descriptor more often accurately predicted toxicity 

with 6 out of 13 endpoints prediction values greater than 0.70 (compared to 3 of 13 for 

chemical) and a total 23% increase in average AUC value. Of the 13 endpoint predictions, 

biological descriptors more often outperformed the chemical and hybrid descriptors 7 times 

as compared to 4 and 3 times. Thus overall, for a chemical in cluster 67, the biological gene-

level based descriptors were more accurate than the chemical structure or hybrid descriptors. 

According to Tukeys HSD however, these results were not significant when broken down by 

study type and for the overall mean across study types. This is also true when comparing 

the local performance of all other previously discussed descriptors. Supplemental material 

S4a and S4b reflect the consistent pattern for cluster 67 in which both biological descriptors 

(asy and ge) result in higher average predictive values (S4a) and a greater percentage of 

prediction score above 0.70 (S4b), yet differences in mean remain insignificant.

There are several examples of clusters where chemical structure and/or hybrid descriptors 

outperformed the biological descriptors, and two examples are provided in Supplemental 

Material Tables S5 and S6. The summary table in Supplemental Material S5 is an example 

in which the performance of the chemical structure descriptor class exceeds other descriptor 

types in predicting toxicity for chemicals in this cluster. This table shows cluster 19 results 

consisting of several benzene-containing chemicals such as 4-aminoazobenzene, sodium 

benzoate, benzyl alcohol, and benzyl acetate. In this particular cluster, we found that the 

chemical structure descriptors outperformed the biological and hybrid descriptors for 8 of 

the 15 toxicity endpoints and more often accurately predicted (AUC > 0.70) development 
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(dev), developmental neurotoxicity (dnt), and subacute (sac) effects as compared to the 

other descriptors. The comparison of performance for all descriptors for cluster 19 in 

Supplemental Material S6 also shows chemical structure descriptors outperforming others. 

Mrgn and toxp chemical descriptors displayed greater overall performance scores as seen in 

Table S6a, and toxp chemical descriptors more often accurately predicted study type toxicity 

(S6b). Similar to cluster-67, Tukey’s HSD determined these differences are not significant.

In cluster 1 the hybrid mrgn + ge (MG) descriptors performs better than the singular 

descriptors (Supplemental Material S7). This cluster contains a diverse set of chemicals, 

including folpet, warfarin, fluridone, and salicylamide. For cluster 1, the MG hybrid 

descriptor generated the best average performance for all toxicity endpoints. MG also 

more often accurately predicted toxicity outcomes relative to the individual biological 

and chemical structure descriptors, which both predicted outcomes correctly for 2 of 12 

endpoints. Performance scores for other descriptors in cluster 1 are in Supplemental Material 

Tables S8a and S8b. Overall, the hybrid descriptors, including mrgn + asy (MA), mrgn + ge 

(MG), and the CA and CB descriptors, performed best in comparison the all other descriptor 

types (S8a). The MA hybrid also more often accurately predicting toxicity across all study 

types (S8b); however, difference in mean performance scores were not significant.

While we identified clusters in which each of the descriptor types outperformed the others, 

the local GenRA predictive performance using gene descriptors exceeded the chemical 

(mrgn) and hybrid (mg) descriptors, as seen in Fig. 2. When broken down into cluster 

and study into organ specific liver targets (Table 6b), differences in performance were 

not statistically significant. When broken down by study-type and across aggregated study-

types significant differences were observed for chr and sub study types, where gene 

descriptors produced best performance (Table 6a). Additionally, significant differences in 

performance were observed for rep study-type where mrgn performed the best. Overall, 

out of the 48 clusters containing more than 2 chemicals with toxicity data, the biological 

descriptor outperformed the other descriptors’ predictive performance for about 60% (28/48) 

of the cases. The same was true when stratifying by effect type where the performance 

of biological descriptors exceeded the others at predicting toxicity endpoints within each 

cluster (Supplemental Material S9). Overall, of the 13 descriptors evaluated, both individual 

biological descriptors (asy and ge) outperformed the other descriptor types in 51% of the 

cases (shown in Supplemental Material S10).

Case example of GenRA toxicity predictions using diethyl phthalate

We illustrate the impact of biological similarities on GenRA read-across performance 

using Diethyl phthalate, a member of cluster-80. The biological and chemical descriptors 

performed equally well overall. Fig. 3 illustrates the neighborhood for diethyl phthalate 

based on the application of biological, gene-level descriptors (Fig. 3a), mrgn chemical 

structure descriptors (Fig. 3b), and hybrid descriptors (Fig. 3c) for toxicity predictions. For 

each descriptor class, 10 source analogues were identified, comprising cluster-80 chemicals. 

The membership of the neighborhood varied slightly depending on the descriptor used either 

in terms of the pairwise similarities themselves or the chemicals.
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While the similarity scores for each descriptor neighborhood varied, the chemical descriptor 

neighborhood more often yielded similarity scores greater than 0.50. The biological 

descriptors yielded a perfect similarity score (1.0) for diisobutyl phthalate. Overall, this 

example illustrates that the neighborhoods and the similarity values generated between 

‘neighboring’ chemicals depend on the type of descriptors utilized. Similarity scores appear 

to be comparable to average performance scores for each descriptor in 3d which displayed 

insignificant differences that varied overall. Likewise, no significant study-type differences 

were detected. Lack of coverage across sufficient endpoints may account this outcome. 

There is still merit however in utilizing a combination of biological and chemical descriptors 

as we saw significant differences in performance with more coverage within study types for 

both the local and global approaches.

Discussion

The Strategic Plan for NAMs [58] provides an impetus to transition from animal testing to 

in vitro and in silico approaches. Generation of NAM data has opened the door for a host 

of computational approaches, including data-driven read-across predictions of hazard and 

risk [41,55]. Traditionally, read-across relies on chemical similarity to identify candidate 

source analogues; however, numerous studies demonstrate the utility of characterizing 

biological similarity with other NAM in vitro data to make read-across predictions of 

toxicity [19,20,21,22,25,36,51,69]. Here, we used the genra-py package to investigate the 

role that targeted transcriptomic bioactivity descriptors play in identifying source analogues 

and predicting hazard in outcomes compared to chemical structure fingerprints and hybrid 

fingerprints. In all, we systematically evaluated the performance of GenRA using thirteen 

different types of biological, chemical, and hybrid descriptors to predict 252 apical effects 

across 10 different guideline study types. We employed two main approaches to summarize 

read-across performance: 1) a global approach in which we aggregated performance across 

all chemicals in our data set; and 2) a local approach where performance was aggregated 

by categories defined by chemical structure clusters. Although average global performance 

for all descriptors and study types was poor (with AUC = 0.51), we were able to 

identify specific contexts in which automated read-across performed well with chemical, 

transcriptomic, or hybrid fingerprints (see Fig. 3b and Supplemental Material, S1(h)).

The global and local performance results for all toxicity endpoints suggest that utilizing a 

small targeted set of transcriptomic descriptors for read-across predictions can provide only 

a modest advantage singly or in combination with chemical structure fingerprints. Globally, 

this is evident in Table 3a and Table 4, where individual biological and hybrid descriptors 

outperform the individual chemical descriptors on average for all toxicity target studies. 

However, it is worth noting that combining all chemical descriptors (CC) is advantageous for 

global read-across analysis, as shown in Tables 3a and 3b. For accurate predictions, CC more 

often accurately predicted toxicity than all descriptor types (Table 3b) and retained higher 

average AUC scores amongst the various toxicity study types. One reason for this could be 

that the much larger number of CC fingerprints (4825 descriptors) provides a more detailed 

representation of chemicals versus biological or dual hybrid descriptors (See Supplemental 

Material S3). Increasing the number of individual biological descriptors may be necessary 

for a fairer comparison. The CC descriptor also outperformed the CB descriptor, which 
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incorporated all individual chm and bio descriptors (a total of 5109 descriptors). Despite an 

increase in the number of descriptors for CB, there were still fewer biological fingerprints 

than chemical fingerprints in our analysis. This highlights the importance of expanding the 

bioactivity data to improve the performance of hybrid read-across predictions or alternative 

what feature selection procedures might be warranted to target more relevant fingerprints.

It is also noteworthy to consider that while CC had the greatest overall average performance 

scores for all aggregated study-types and all aggregated liver-specific endpoints, hybrid 

descriptors more often accurately predicted liver toxicity (Table 2). Since the biological 

descriptors utilized here were derived from HepaRG cells, which are liver-derived, higher 

prediction scores for the liver toxicity endpoints (chr_liver, dev_liver, sac_liver, and 

sub_liver) by biological or hybrid descriptors may be a result of this specificity. Therefore, 

the biological relevance of the liver-derived targeted transcriptomic descriptors may also 

explain why the performance for liver toxicity endpoints was higher than CC. The lack 

of biological relevance of the HepaRG cells to other study types and target organs could 

also explain why their performance scored lower. A better understanding of cell type-

mechanisms’ roles in organ toxicities [79,80] could enable the development of additional 

targeted assays.

In contrast, the CC combination was not the best performing descriptor for local read-across 

analysis (See, supplemental material S1 (i) and S9). Local predictions based on biological 

descriptors frequently outperformed all other descriptors (Supplemental Fig. S9). This was 

illustrated for phenyl-containing compounds in cluster 67 (Table 5 and Supplemental Table 

S4(a & b)) where biological descriptors produced the highest overall AUC scores and 

more accurate predictions (AUC values greater than 0.70). For this example, however, 

hybrid descriptors performed most poorly. In general, hybrid descriptors elicited increased 

performance over the individual chemical structure for various toxicity study types; still, 

the performance of the read-across predictions varied with in study types and depended on 

specific toxicity effects and the chemical cluster assessed.

This context-dependency of read-across predictions was also reported in Shah et al. [51], 

where bioactivity fingerprints and hybrid (chemical and bioactivity) outperformed mrgn 

chemical fingerprints for specific study types. Shah et al. [51] noted that bioactivity might 

be a more promising predictor due to the association of high dose effects in vivo and the 

high concentration effects observed in the in vitro activity. The ToxCast HTS assays used 

in Shah et al. [51] lacked metabolic transformation, whereas this analysis used data from 

metabolically competent HepaRG™ cells with more xenobiotic responsive metabolizing 

enzymes [18]. This choice aligns with factors proposed by Thomas et al. [55] for improving 

the predictive capacity of the ToxCast HTS data and obtaining broader acceptance of 

predictive approaches [14,55].

Despite the promise of HTS assays for improving read-across predictions, we note [12] two 

main limitations: the targeted transcriptomic assay only included 93 genes and were only 

assessed in one cell culture model. While the gene descriptors had the best performance for 

predicting hepatic outcomes, they did not perform well for other target organ effects. This is 

likely the result of using transcriptomic data from HepaRG™ cells, which is a liver cell line. 
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Additionally, using a targeted set of 93 genes substantially limits the range of pathway 

perturbations that can be assessed, resulting in only a partial evaluation of biological 

similarity. To address these limitations, we are evaluating the utility of HTTr data from 

multiple cell types for screening thousands of chemicals [23,24]. Using HTTr will expand 

the scope of biological fingerprints by covering a broader set of biological pathways that can 

be analyzed with connectivity mapping approaches [12,33,34,59] to automate read-across 

predictions of hazard classifications for targets beyond the liver.

Conclusion

Generalized Read-Across (GenRA) approach was developed to make automated read-across 

predictions of toxicity effects, utilizing a similarity weighted average approach [51]. 

Previously, this approach was shown to be effective in characterizing source analogues 

using binary and quantitative measures for chemical and bioactivity descriptors, as well 

as physiochemical property information [25–28,51]. In this present study, we extended 

the approach to transcriptomic data comprising binary hit-calls (activity calls) from 

concentration-response data for each gene. Our analysis estimated both global and local 

performance using diverse individual and combinations of transcriptomic binary hit call 

measures and chemical structure fingerprints in predicting liver toxicity and overall study-

type associated toxicity effects. The global read across performance for all neighborhoods 

suggests that hybrid combinations of biological and chemical descriptors were effective for 

several study types (chr, sac, sub). This was also the case for the combination of multiple 

chemical descriptors. In contrast, for the local read across performance, the individual 

biological descriptors proved more predictive. Overall, whilst the coverage with this dataset 

was more limited, in specific cases, the utility of transcriptomic hit-call information in 

addition to chemical structure information was found to be promising in making in vivo 
toxicity predictions Next steps will be to extend the scope to a more comprehensive 

transcriptomic dataset to determine whether the performance significantly improves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

AC50 Activity concentration at 50% of E-max

ACU Acute Toxicity Study

ANOVA Analysis of Variance

ASY Assay Biological Descriptor

AUC Area Under the ROC Curve
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BIO Biological Descriptor

CASRN Chemical Abstract Services Registry Number

CB Hybrid Chemical and Biological Descriptor

CC Chemical Combination Descriptor of Morgan, Torsion, and Toxprint 

Descriptors

CHM Chemical Descriptor

CHM Chronic Toxicity Study

CHR Developmental Toxicity Study

DEV Developmental Neurotoxicity Study

DNT Distributed Structure-Searchable Toxicity

DSSTOX Gene-level Biological Descriptor

GE High content screening

HSD Tukey’s Honest Significance Difference

HTS High-throughput screening

HTPP High throughput phenotypic profiling

LOAEL Lowest observed adverse effect level

LTEA Life Technologies/Expression Analysis

MA Morgan Chemical and Assay Biological Hybrid Descriptor

MG Morgan Chemical and Gene Biological Hybrid Descriptor

MGR Multigenerational Toxicity Study

MRGN Morgan Chemical Descriptor

NAM New approach methodology

NEU Neurological Toxicity Study

NTP National Toxicology Program

POD Point of departure

OCSPP Office of Chemical Safety and Pollution Prevention

OSAR Quantitative structure-activity relationships

REP Reproductive Toxicity Study

ROC Receiver Operator Characteristic
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SAC Sub-Acute Toxicity Study

SUB Sub-Chronic Toxicity Study

TPTR Torsion Topological Chemical Descriptor

ToxCast ToxCast HTS assays

ToxP ToxPrint Chemotype Chemical Descriptor

TTA Torsion Topological Chemical and Assay Biological Hybrid 

Descriptor

TTG Torsion Topological Chemical and Gene Biological Hybrid 

Descriptor

TXA ToxPrint Chemotype and Assay Biological Hybrid Descriptor

TXG ToxPrint Chemotype and Gene Biological Hybrid Descriptor
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Fig. 1. 
Workflow for analysis of multiple descriptor types in GenRA.
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Fig. 2. 
Local Prediction Performance (Area Under the ROC Curve) for All Endpoints Using 

Morgan Chemical Structure (C), Gene Level Biological (B), and Hybrid (CB) Descriptors. 

The overall performance winners for all clusters. Ge (gene-level) biological descriptor, mg 

(morgan/gene) hybrid descriptor, mrgn (morgan) structural chemical descriptor.
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Fig. 3. 
Case Example of GenRA Neighborhood Using Biological, Chemical, and Hybrid 

Descriptors with the Target Chemical Diethyl phthalate and Cluster 80 Chemicals. The 

target chemical, anilazine lies in the center of each neighborhood. (A) Numbers in the 

center represent the pairwise biological (gene-level) similarity scores. (B) Numbers in the 

center represent the pairwise chemical structure (Morgan) similarity scores. (C) Numbers 

in the center represent the pairwise hybrid (Morgan H-Gene) similarity scores. (D) Overall 

summary of cluster-80 untargeted toxicity AUC performance scores for each descriptor.
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Table 1

Appropriate metrics and number of nearest neighbors to assess the performance of various descriptor read-

across prediction of chronic liver toxicity. Column 2 represents the descriptors type including: chemical 

structure (chm), biological (bio), and hybrid (CB). Descriptors names in column 3 include: Biological (B) − 

Assay (asy) and Gene (ge); Chemical Structure (C) − Morgan (mrgn), Toxprints (toxp), Topological Torsion 

(tptr), all chemicals combination descriptor (CC), Chemical + Biological Hybrid (CB) − Morgan + Assay 

(MA), Morgan + Gene (MG), Topological Torsion + Assay (TTA), Topological Torsion + Gene (TTG), 

Toxprints + Assay (TXA), Toxprints + Gene (TXG), and all chemical and biological descriptors combined 

(CB). Column 4 denotes the AUC performance values for each descriptor in predicting chronic liver toxicity 

effect. Column 5–6 denote the appropriate similarity metric and number of neighbors to make accurate 

prediction for each descriptor. Major descriptors of interest are marked bold.

Liver Effect Descriptor Type Descriptor Name AUC Metric N Neighbors

Chr_liver Chm Tptr 0.6303 Euclidean 9

Chm Mrgn 0.64549 Jaccard 8

Chm Toxp 0.61379 Jaccard 7

Bio Ge 0.648847 Euclidean 14

Bio Asy 0.6632 Euclidean 11

CB mrgn + asy 0.6883 Jaccard 13

CB toxp + ge 0.7044 Jaccard 10

CB tptr + ge 0.6818 Euclidean 6

CB (CB) all 0.6999 Jaccard 14

Chm (CC) all 0.6702 Jaccard 10

CB mrgn + ge 0.7049 Jaccard 10

CB toxp + asy 0.6992 Jaccard 14

CB tptr + asy 0.6721 Manhattan 5
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Table 6

Local Prediction Performance (AUC) for All Toxicity Endpoints Using Morgan Chemical Structure(C), Gene 

Level Biological(B), and Hybrid(CB) Descriptors by study type and liver target effects. Column 1 expresses 

various toxicity study types(6A), or liver effect(6B) and the total number of chemicals with in vivo data 

available for all descriptors (in parenthesis). Columns 2–3 comprises the average by study type AUC | SD.

6A.

Study ge (B) mrgn (C) MG(CB)

Chr (276) *0.58 | 0.33 0.39 | 0.33 0.44 | 0.34

Dev (273) 0.40 | 0.38 0.38 | 0.37 0.40 | 0.34

Dnt (24) 0.41 | 0.44 0.23 | 0.36 0.23 | 0.26

Mgr (99) 0.45 | 0.32 0.42 | 0.34 0.29 | 0.30

Rep (54) *0.32 | 0.41 0.68 | 0.41 0.42 | 0.42

Sac (111) 0.59 | 0.37 0.56 | 0.36 0.57 | 0.34

Sub (249) *0.50 | 0.32 0.37 | 0.30 0.44 | 0.34

ALL *0.49 | 0.34 0.41 | 0.35 0.42 | 0.35

6B.

Target ge (B) mrgn (C) MG(CB)

Chr_liver (96) 0.63 | 0.32 0.45 | 0.34 0.52 | 0.37

Mgr_liver (75) 0.46 | 0.36 0.46 | 0.36 0.33 | 0.33

Sac_liver (33) 0.58 | 0.43 0.72 | 0.34 0.62 | 0.33

Sub_liver (78) 0.52 | 0.35 0.37 | 0.28 0.45 | 0.34

ALL_liver 0.55 | 0.35 0.47 | 0.34 0.46 | 0.35

(*)
indicates study type specific statistically significant (p < 0.05) differences in mean AUC scores between descriptors and baseline approach 

(Morgan chemical Structure).

Descriptors listed include: Biological(B), Gene (ge); Chemical(C) Structure, Morgan (mrgn); Hybrid(CB), Morgan + Gene.
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