Skip to main content
. Author manuscript; available in PMC: 2023 Jun 12.
Published in final edited form as: Comput Toxicol. 2021 Aug 1;19:1–12. doi: 10.1016/j.comtox.2021.100171

Table 1.

Appropriate metrics and number of nearest neighbors to assess the performance of various descriptor read-across prediction of chronic liver toxicity. Column 2 represents the descriptors type including: chemical structure (chm), biological (bio), and hybrid (CB). Descriptors names in column 3 include: Biological (B) − Assay (asy) and Gene (ge); Chemical Structure (C) − Morgan (mrgn), Toxprints (toxp), Topological Torsion (tptr), all chemicals combination descriptor (CC), Chemical + Biological Hybrid (CB) − Morgan + Assay (MA), Morgan + Gene (MG), Topological Torsion + Assay (TTA), Topological Torsion + Gene (TTG), Toxprints + Assay (TXA), Toxprints + Gene (TXG), and all chemical and biological descriptors combined (CB). Column 4 denotes the AUC performance values for each descriptor in predicting chronic liver toxicity effect. Column 5–6 denote the appropriate similarity metric and number of neighbors to make accurate prediction for each descriptor. Major descriptors of interest are marked bold.

Liver Effect Descriptor Type Descriptor Name AUC Metric N Neighbors
Chr_liver Chm Tptr 0.6303 Euclidean 9
Chm Mrgn 0.64549 Jaccard 8
Chm Toxp 0.61379 Jaccard 7
Bio Ge 0.648847 Euclidean 14
Bio Asy 0.6632 Euclidean 11
CB mrgn + asy 0.6883 Jaccard 13
CB toxp + ge 0.7044 Jaccard 10
CB tptr + ge 0.6818 Euclidean 6
CB (CB) all 0.6999 Jaccard 14
Chm (CC) all 0.6702 Jaccard 10
CB mrgn + ge 0.7049 Jaccard 10
CB toxp + asy 0.6992 Jaccard 14
CB tptr + asy 0.6721 Manhattan 5