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Summary

The primary benefit of identifying a valid surrogate marker is the ability to use it in a future trial 

to test for a treatment effect with shorter follow-up time or less cost. However, previous work has 

demonstrated potential heterogeneity in the utility of a surrogate marker. When such heterogeneity 

exists, existing methods that use the surrogate to test for a treatment effect while ignoring this 

heterogeneity may lead to inaccurate conclusions about the treatment effect, particularly when the 

patient population in the new study has a different mix of characteristics than the study used to 

evaluate the utility of the surrogate marker. In this paper, we develop a novel test for a treatment 

effect using surrogate marker information that accounts for heterogeneity in the utility of the 

surrogate. We compare our testing procedure to a test that uses primary outcome information 

(gold standard) and a test that uses surrogate marker information, but ignores heterogeneity. We 

demonstrate the validity of our approach and derive the asymptotic properties of our estimator 

and variance estimates. Simulation studies examine the finite sample properties of our testing 

procedure and demonstrate when our proposed approach can outperform the testing approach that 

ignores heterogeneity. We illustrate our methods using data from an AIDS clinical trial to test for a 

treatment effect using CD4 count as a surrogate marker for RNA.
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1 | INTRODUCTION

There has been a substantial growth in clinical and methodological research on identifying 

and using valid surrogate markers in the past few decades. A valid surrogate marker is a 

biological measurement that can be used as a replacement for a primary outcome of interest 

in a clinical study. Many statistical methods have been proposed to evaluate and validate 

surrogate markers using a wide variety of innovative methodological approaches.1,2,3,4,5 

The primary benefit of identifying a valid surrogate marker is the ability to use it in a 

future trial to test for a treatment effect with less required follow-up time or less cost. 
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For example, the U.S. Food and Drug Administration announced in 2020 that a surrogate 

marker that could be measured earlier than COVID-19 infection could be used to assess the 

vaccine efficacy in preventing infection,6 thus potentially allowing for earlier identification 

of effective vaccines.

Several statistical methods have been proposed in recent years to assess the treatment effect 

on the primary outcome based on surrogate marker information. For example, Parast et al. 

(2019)7 proposed a nonparametric approach to test for a treatment effect in a time-to-event 

outcome setting based on a surrogate marker measured at an earlier time point utilizing 

information about the relationship between the surrogate marker and primary outcome 

obtained from a prior study. Chen et al. (2020)8 suggested a model-based approach that 

uses surrogate information to make interim decisions about whether to drop a treatment 

arm or stop a trial for futility. Price et al. (2018)9 defined an optimal surrogate that 

optimally predicts a primary outcome and proposed super-learner and targeted super-learner 

based estimation procedures. Athey et al. (2019)10 proposed to combine multiple surrogate 

markers to predict a long term outcome and estimate a treatment effect, and explicitly 

characterized the difference between the treatment effect estimated based on the primary 

outcome versus the surrogate combination.

Previous clinical and methodological work has demonstrated potential heterogeneity in the 

utility of a surrogate marker i.e. that a surrogate marker may be more useful (with respect 

to capturing the treatment effect on the primary outcome) for some subgroups than for 

others.11 Parast et al. (2021)12 offers a nonparametric estimation procedure and formal 

test for heterogeneity of surrogate utility with respect to a baseline covariate. When such 

heterogeneity exists, existing methods that use the surrogate to test for a treatment effect 

while ignoring this heterogeneity may lead to inaccurate conclusions about the treatment 

effect, particularly when the patient population in the current study has a different mix of 

characteristics than the prior study (used to evaluate the utility of the surrogate marker).

For example, in the simulation study in this paper, we examine a setting where the estimated 

treatment effect based on the primary outcome is 33.7 (standard error [SE] = 1.6); applying 

the testing approach of Parast et al. (2019)7 which uses surrogate marker information but 

does not account for heterogeneity, the estimated treatment effect on the primary outcome 

is 39.2 (SE=3.5). The approach of Parast et al. (2019)7 guarantees that the treatment effect 

based on the surrogate will be a lower bound for the true treatment effect on the primary 

outcome under certain conditions. However, these conditions may be violated when there is 

heterogeneity in the utility of the surrogate and thus leads to this type of situation where 

the estimated treatment effect using the surrogate is much higher than that using the primary 

outcome. Our approach that we propose in this paper which incorporates heterogeneity 

produces a treatment effect estimate that retains the lower bound property, with similar 

power to the treatment effect using the primary outcome. While we focus on heterogeneity 

with respect to a continuous baseline covariate, we provide a motivational example in 

Appendix A where there is heterogeneity with respect to a discrete covariate, gender. In 

this example, the surrogate marker is strong among males (explaining 99% of the treatment 

effect on the primary outcome) but weaker among females (explaining 67%). In a new study 

where the distribution of gender is 95% female and 5% male and the treatment effect on 
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the primary outcome is 38.95, using the surrogate marker and accounting for heterogeneity 

in surrogacy produces an estimated treatment effect on the primary outcome equal to 17.95 

while ignoring heterogeneity produces an estimate of 44.5, again, failing to correctly provide 

a lower bound on the true treatment effect. In contrast, if we consider a future study 

where the distribution of gender is 5% female and 95% male, the treatment effect on the 

primary outcome is 74.05, while the treatment effect using the surrogate and accounting for 

heterogeneity is 71.05 versus not accounting for heterogeneity is 44.5, indicating a potential 

loss in power to detect a treatment effect when heterogeneity is ignored.

In this paper, we develop a novel test for a treatment effect using surrogate marker 

information that accounts for heterogeneity in the utility of the surrogate. We compare our 

testing procedure to a test that uses primary outcome information only (gold standard) and 

a test that uses surrogate marker information, but ignores heterogeneity. We demonstrate the 

validity of our testing procedure and derive the asymptotic properties of our estimator and 

variance estimates. A simulation study is used to examine the finite sample properties of our 

testing procedure and demonstrate when our proposed approach can outperform the testing 

approach that ignores heterogeneity. In particular, we demonstrate examples where the test 

of Parast et al. (2019)7 provides an incorrect estimate with respect to the treatment effect. 

We illustrate our approach using data from an AIDS clinical trial to test for a treatment 

effect using CD4 count as a surrogate marker for plasma HIV-1 RNA.

2 | TESTING PROCEDURE

2.1 | Notation and Setting

We focus on a setting where we are currently conducting a study to examine the effect 

of a treatment on a primary outcome of interest, denoted by Y , and we additionally have 

data available from a prior study. We assume that this prior study was used to examine the 

strength of the surrogate, denoted by S, and heterogeneity in the utility of the surrogate, 

and has measurements of both Y  and S of the current study. Let Z denote the treatment 

indicators where treatment is randomized and Z ∈ 0, 1  (i.e., treatment vs. control), and 

W  denote a baseline covariate such that S has been shown to have heterogeneous utility 

with respect to this covariate. Without loss of generality, we take W  to be continuous; all 

proposed procedures can easily accommodate a discrete W  as well. We focus on a setting 

with heterogeneity with respect to a single baseline covariate W ; in Section 3.3, we discuss 

an extension to multiple W . In addition, we assume we are in a setting where either S
is measured earlier than Y  or S is measured at the same time as Y  but is less expensive, 

invasive or burdensome, and there is no censoring or missing data. Throughout this paper, 

we quantify surrogate strength/utility using the quantity: the proportion of treatment effect 

on the primary outcome explained by the treatment effect on the surrogate marker.13,3,5 

We use potential outcomes notation where each person has a potential Y 1 , Y 0 , S 1 , S 0

where Y g  is the outcome when Z = g and S g  is the surrogate when Z = g. Observed data 

from the current study is denoted as and consists of D = Y gi, Sgi, W gi , i = 1, …, ng; g = 0, 1 , 

where ng denotes the number of individuals in treatment group g.
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The goal in the current study is to test for a treatment effect on the primary outcome 

quantified as

H0: Δ ≡ E Y (1) − Y (0) = E Y (1) − E Y (0) = 0.

Our aim is to leverage information from the prior study to test H0 using surrogate marker 

information in order to reduce study follow-up time, costs, and/or participant burden, i.e., 

making inference on Δ without using Y gi, i = 1, ⋯, 1, ng; g = 0, 1 . We use a superscript p to 

denote “prior” when referring to data or quantities from the prior study. For example, we 

denote observed data from the prior study by Dp = Y gi
p , Sgi

p , W gi
p , i = 1, …, ng

p, g = 0, 1 , where 

ng
p is the sample size of treatment group g.

2.2 | Assumptions

Given that our setting rests on the existence of a valid surrogate marker, we first define S to 

be a valid surrogate marker for Y  if the following conditions hold:

(C1) E Y 0 ∣ S 0 = s, W = w  is a monotone function of s;

(C2) P S 1 > s ∣ W = w ≥ P S 0 > s ∣ W = w  for all s and w;

(C3) E Y 1 ∣ S 1 = s, W = w ≥ E Y 0 ∣ S 0 = s, W = w  for all s and w.

(C4) A large proportion of the treatment effect on the primary outcome can be 

explained by the treatment effect on the surrogate marker for all w.

Assumptions (C1)-(C3) are parallel to those required in Wang and Taylor (2002)3 and 

Parast et al. (2017)14 and protect against the surrogate paradox situation.15 Assumption 

(C1) implies that the surrogate marker is either “positively” or “negatively” related to 

the time of the primary outcome, (C2) implies that there is a positive treatment effect 

on the surrogate marker, and (C3) implies that there is a non-negative residual treatment 

effect beyond that on the surrogate marker. Assumptions (C1-C3) together guarantee that 

E Y 1 ∣ W = w ≥ E Y 0 ∣ W = w , for all w in the support of W  (see Appendix B). Lastly, 

(C4) states that the proportion of the treatment effect explained by the surrogate marker must 

be large and guarantees the strength of the surrogate marker of interest for all individuals 

in the study. While this is somewhat vague, there is no agreed upon value that signifies a 

“large” proportion, though previous work has tended to view values of 0.6-0.75 or higher 

as large.16,13,17 If the existing heterogeneity is such that the surrogate is strong for some w
and weak for other w, it should not be used as a replacement of the primary outcome for all 

individuals in a future study. Instead, one may consider using the surrogate as a replacement 

only among those with a W  where the surrogate is strong; we discuss this further in the 

Discussion.

In order to ensure that the proposed test statistic to be described in Section 2.3, has a 

reasonable interpretation with respect to Δ, we also require:
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(C5) E Y 0 ∣ S 0 = s, W = w = E Y 0p ∣ S 0p = s, W p = w  for all s and w;

(C6) E Y 0p ∣ S 0p = s, W p = w  is estimable for any s, w ∈ ΩJ, where ΩJ is the 

common compact support for both S g , W g  in g = 0, 1.

Assumption (C5) implies that in the control groups, the current study and the prior study 

share the same conditional expectation for Y  given S and W . This assumption is reasonable 

when, for example, the control condition in both studies are the same, such as “usual care.” 

Importantly, such an assumption is not required to hold for the treatment groups and it 

relaxes the requirement that the distribution of Y  conditional on S be transportable from 

the prior to current study. Even so, this assumption is admittedly very strong and needs 

to be carefully considered before using this approach; however, any testing procedure that 

attempts to borrow information from a prior study to test a hypothesis in a future study 

is going to require some type of strong transportability assumption. If there is reason to 

believe that such transportability between studies is not appropriate, then the prior study 

should not be considered for informing the future study. Assumption (C6) ensures that we 

can approximate E Y 0 ∣ S0 = s, W 0 = w  for all observed pairs of S g  and W g , g = 0, 1 in the 

current study. We discuss robustness to these assumptions as well as additional assumptions 

needed for a causal interpretation in Appendix B.

2.3 | Proposed Testing Procedure

Recall that our aim is to take advantage of information from the prior study to test H0 using 

surrogate marker information such that this test accounts for known heterogeneity in the 

utility of the surrogate marker. To achieve this goal we note that Δ can be expressed as:

Δ = E Y (1) − E Y (0) = ∫ Δ (w)dFW(w)

= ∫ ∫ μ1(s, w)dF (1)(s ∣ w) dFW(w) − ∫ ∫ μ0(s, w)dF (0)(s ∣ w) dFW(w)
(1)

where μg s, w ≡ E Y g ∣ S g = s, W = w , F g s ∣ w ≡ FS g ∣ W s ∣ w  is the conditional 

cumulative distribution function of S g  given W = w, and FW w  is the cumulative 

distribution of W . In expressing Δ as (1), we have simply used a conditional expectation 

to incorporate S and W  into our expression. By expressing Δ in this way, this motivates the 

following earlier treatment effect definition:

ΔH = ∫ ∫ μ0(s, w)dF (1)(s ∣ w) dFW(w) − ∫ ∫ μ0(s, w)dF (0)(s ∣ w) dFW

(w)
(2)

= ∫ μ0
p(s, w)dF (1)(s, w) − ∫ μ0

p(s, w)dF (0)(s, w) (3)
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where F g s, w  is the cumulative distribution function of S g , W  in the current study. The 

only change in going from (1) to (2), is that we have replaced μ1 s, w  with μ0 s, w  in the 

first term which will ensure that this quantity provides a lower bound on the treatment effect. 

In the second equality, (3), we replace μ0 s, w  with μ0
p s, w  which follows from Assumption 

(C5). The expression (3) is now a quantity that only involves μ0
p s, w  which is the conditional 

risk in the prior study, and the distribution of S and W  in the current study. Importantly, 

the expression does not involve Y  from the current study at all. In practice, μ0
p s, w  is 

unknown and must be replaced with an estimate, μ̂0
p s, w , which we describe in Section 3.1. 

Because of this, we define the following earlier average treatment effect quantity, where the 
~ notation makes the dependence on information from the prior study explicit:

ΔH = ∫ μ0
p(s, w)dF (1)(s, w) − ∫ μ0

p(s, w)dF (0)(s, w) = E μ0
p S(1), W − μ0

p S(0), W ∣ Dp .

This quantity, ΔH, measures the treatment effect on a transformation of the surrogate marker 

and baseline covariate, i.e., the difference between μ̂0
p S 1 , W  and μ̂0

p S 0 , W . First, due 

to randomization, W  has the same distribution between two treatment groups and ΔH has 

an appealing causal interpretation reflecting the treatment effect on the surrogate marker. 

Second, ΔH represents the part of the treatment effect on the primary outcome explained 

by the surrogate marker and an approximation to ΔH, which is the quantity of our primary 

interest. Under the null hypothesis of no average treatment effect on the primary outcome, 

there will also be no average treatment effect in any subgroup of patients with W = w (see 

Appendix B). Under the null, Assumptions (C1)-(C3) imply that S 1 ∣ W = w has the same 

distribution as S 0 ∣ W = w for all w in the support of W , and thus, ΔH = 0. Therefore, we 

may formally define our test statistic for H0 based on the early average treatment effect 

as ZH = n ΔH /σH, where ΔH is a root-n consistent estimate of ΔH and σH
2  is the estimated 

variance of n ΔH − ΔH . We reject H0 when ZH  is large. In Section 3, we propose 

robust procedures to construct Δ̂H and σ̂H. Obviously, this is a valid test for both the null 

H0H: ΔH = 0 and the null H0: Δ = 0.

One important merit of constructing the test statistic based on an estimator of ΔH is 

that this earlier average treatment effect is smaller than if we used the true conditional 

expectations within each treatment group in probability. That is, P ΔH ≤ Δ ≈ 1 and thus, 

ΔH is a conservative measure of the average treatment effect, Δ. Importantly, this early 

treatment effect and associated test account for heterogeneity in the utility of the surrogate 

by explicitly utilizing a condition mean function that depends on W . In the following section 

we describe other tests that may be considered; in our numerical studies, we compare our 

approach with these alternatives.

2.4 | Alternative Testing Approaches

We consider two alternative tests that would be reasonable options for testing H0 in this 

setting. The first quite obvious approach is simply to assume the primary outcome is 
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measured in the current study and use primary outcome information to estimate Δ and 

conduct a t-test of H0: Δ = 0. This reflects the gold standard as it directly tests the 

hypothesis we are interested in. Importantly though, the whole point of this setting is to 

provide a way to not have to measure the primary outcome. We include this option so that 

we can compare to this gold standard.

The second alternative test we examine is one which uses information from the prior study 

about the relationship between the surrogate and the primary outcome, but does not account 

for heterogeneity. This test is an extension of a test proposed in Parast et al. (2019)7 which 

was developed for the time-to-event outcome setting. Our description of it here, for a 

non-survival setting, is new and will be useful in practice for those analyzing a non-survival 

study in a setting with no heterogeneity in the utility of the surrogate. Similar to our 

proposed test, but without regard for W, we note that Δ = ∫ μ1 s dF 1 s − ∫ μ0 s dF 0 s

where μg s = E Y g ∣ S g  which motivates the following earlier treatment effect definition:

ΔP = ∫ μ0(s)dF (1)(s) − ∫ μ0(s)dF (0)(s) = ∫ μ0
p(s)dF (1)(s) − ∫ μ0

p(s)dF (0)(s)

where μ0
p s ≡ E Y 0p = y ∣ S 0p = s . Since μ0

p s  is unknown, we approximate ΔP with

ΔP = ∫ μ0(s)dF (1)(s) − ∫ μ0(s)dF (0)(s) = ∫ μ0
p(s)dF (1)(s) − ∫ μ0

p(s)dF (0)(s) .

where μp
0 s  is a consistent estimator of μ0

p s . As with the proposed test, this early treatment 

effect quantity replaces μg s  with μ0 s  for both treatment groups and will ensure it is a 

lower bound on the Δ under certain conditions. This test, however, requires the assumption 

that μ̂0
p s ≈ μ0

p s = μ0 s  i.e., that this conditional expectation in the control group is the 

same in the current study as the prior study. It is important to note that this assumption 

may not hold when there is heterogeneity in the utility of the surrogate marker. To test 

H0: Δ = 0, we instead test H0P : ΔP = 0 and define the test statistic for H0P based on the early 

treatment effect as ZP = n ΔP /σP, where ΔP is a root-n consistent estimate of ΔP and σP
2  is 

the estimated variance of n ΔP − ΔP . We reject H0P  and H0  when ZP  is large.

In Appendix C, we discuss estimation and testing for Δ using the primary outcome, propose 

estimation procedures to obtain ΔP and σP, and discuss why we do not consider directly 

testing the surrogate. Intuitively, we would expect that both our proposed test and this test 

based on ΔP should work well when there is no heterogeneity. When there is heterogeneity, 

we expect that the test based on ΔP (or even ΔP) could lead to erroneous conclusions about 

the treatment effect and/or have less power than the proposed test.
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3 | ESTIMATION AND INFERENCE

3.1 | Estimation of Proposed ΔH

For our proposed testing procedure, we first define

μ0
p(s, w) =

∑i = 1
n0

p
Kℎ2 S0i

p − s Kℎ3 W 0i
p − w Y 0i

p

∑i = 1
n0

p
Kℎ2 S0i

p − s Kℎ3 W 0i
p − w

, and

mg(w; μ( ⋅ , ⋅ )) =
∑i = 1

ng Kℎg W gi − w μ Sgi, W gi

∑i = 1
ng Kℎg W gi − w

,

as nonparametric smoothed estimators of the conditional expectation of Y 0  given 

S 0 , W = s, w  in the prior study, and the conditional expectation of μ S g , W

given W = w and a bivariate function μ ⋅ , ⋅  in the current study, respectively. Here, 

Kℎ ⋅ = K ⋅ /ℎ /ℎ, K ⋅  is a smooth symmetric density function with finite support, 

ℎ0, ℎ1, ℎ2, ℎ3 are specified bandwidths which may be data dependent, and n0
p denotes the sample 

size of group Z = 0 in the prior study. We utilize undersmoothing and select all bandwidths 

throughout to be of order O n−ϵ , ϵ ∈ 1/4, 1/2 , to eliminate the asymptotic bias, where 

n = n1 + n0 in an effort to avoid a need for bias correction in subsequent statistical inference.

A very straightforward estimate of ΔH would be

n1
−1 ∑

i = 1

n1

μ0
(p) S1i, W 1i − n0

−1 ∑
i = 1

n0

μ0
(p) S0i, W 0i (4)

which simply takes our estimated conditional mean function from the prior study and applies 

it to data in the current study. However, it is possible for us to improve upon this estimator in 

terms of efficiency. To do this, we note that

ΔH = E E μ0
p S(1), W ∣ W − E E μ0

p S(0), W ∣ W
≈ E m1 W ; μ0

p − E m0 W ; μ0
p ,

and thus we now consider an estimate of ΔH as

n1
−1 ∑

i = 1

n1

m1 W 1i; μ0
p − n0

−1 ∑
i = 1

n0

m0 W 0i; μ0
p , (5)

which is asymptotically equivalent to (4). Note that this estimate only uses S g  and W
data from the current study (no Y  data from the current study) and μ̂0

p s, w , which in turns 

depends on S 0p , W p, Y 0p  data in group Z = 0 from the previous study.

Parast et al. Page 8

Stat Med. Author manuscript; available in PMC 2023 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While either (4) or (5) would be consistent estimates of ΔH, we utilize the fact that the 

distributions of W  from the two treatment arms are identical due to randomization and 

construct the estimator:

ΔH = 1
n1 + n0

∑
i = 1

n0

m1 W 0i; μ0
p + ∑

i = 1

n1

m1 W 1i; μ0
p

− ∑
i = 1

n0

m0 W 0i; μ0
p + ∑

i = 1

n1

m0 W 1i; μ0
p .

(6)

We show in Appendix D that (6) improves upon the efficiency of (5). Essentially, ΔH

is equivalent to an augmented version of the simple estimator (described below), taking 

advantage of the independence of W and treatment, since treatment was randomized.

In Appendix D we show that conditional on μ0
p ⋅ , ⋅ , ΔH is a consistent estimate of ΔH, 

and that n ΔH − ΔH  weakly converges to a mean zero normal distribution as n ∞. 

A consistent estimate of the conditional variance of Δ̂H given the prior study, σH
2 , can be 

obtained as

σH
2 = 1

n1
2 ∑
i = 1

n1
S1i − π0m1 W 1i; μ0

p − π1m0 W 1i; μ0
p − π1 ΔH

2

+ 1
n0

2 ∑
i = 1

n0
S0i − π0m1 W 0i; μ0

p − π1m0 W 0i; μ0
p − π0 ΔH

2

where πg = ng/n and Sgi = μ0
p Sgi, W gi . Our testing procedure uses the test 

statistic ZH = ΔH /σH and rejects the null hypothesis when ZH > Φ−1 1 − α/2 . As 

n0p ∞, ΔH − ΔH = op 1  and ΔH can be viewed as a consistent estimator of ΔH. More 

importantly, under Assumptions (C1), (C2), (C3) and (C5), P ΔH ≤ Δ 1 as n ∞, 

indicating that the test for ΔH = 0 is a valid test for Δ = 0 with probability approaching 1 as 

the sample size of the prior study increases to infinity.

Remark. The efficiency of the simple estimator

n1
−1 ∑

i = 1

n1
m1 W 1i; μ0

p − n0
−1 ∑

i = 1

n0
m0 W 0i; μ0

p ≈ n1
−1 ∑

i = 1

n1
μ0

(p) S1i, W 1i − n0
−1 ∑

i = 1

n0
μ0

(p) S0i, W 0i ,

can be improved by considering the fact that E m W 1i; μ̂0
p = E m W 0i; μ̂0

p  for any 

transformation m ⋅  due to randomization. Specifically, one may consider a new class of 
consistent estimators indexed by m ⋅ :R R,

n1
−1 ∑

i = 1

n1
μ0

(p) S1i, W 1i − m W 1i; μ0
p − n0

−1 ∑
i = 1

n0
μ0

(p) S0i, W 0i − m W 0i; μ0
p .
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The optimal choice of m ⋅  minimizing the asymptotic variance is

mopt(w) = π0E μ0
(p) S1, w ∣ W 1 = w + π1E μ0

(p) S0, w ∣ W 0 = w .

In practice, m0 w  can be consistently estimated by mopt w = π0m1 w; μ0
p + π1m0 w; μ0

p . 

Denote the resulting estimator of ΔH by

ΔH
AUG = n1

−1 ∑
i = 1

n1
μ0

(p) S1i, W 1i − mopt W 1i; μ0
p − n0

−1 ∑
i = 1

n0
μ0

(p) S0i, W 0i − mopt W 0i; μ0
p .

In Appendix D we show that conditional on μ0
p ⋅ , ⋅ , ΔH

AUG
 is a consistent estimate of ΔH and 

that n ΔH
AUG − ΔH  weakly converges to a mean zero normal distribution as n ∞. The 

conditional variance of ΔH
AUG ∣ μ0

p ⋅ , ⋅ , σAUG
2 , can be consistently estimated by

σAUG
2 = 1

n1
2
i 1

n1

μ0
(p) S1i W 1i m1 W 1i μ0

p 2 + 1
n0

2
i 1

n0

μ0
(p) S0i W 0i m0 W 0i μ0

p 2

+ π1
2

n1
2

i 1

n1

m1 W 1i μ0
p m0 W 1i μ0

p
H

2
+ π0

2

n0
2

i 1

n0

m1 W 0i μ0
p m0 W 0i μ0

p
H

2 .

In Appendix D, we show that ΔH
AUG

 is asymptotically equivalent to our proposed ΔH and 

σH /σAUG = 1 + op 1 .

3.2 | Inference

To construct a confidence interval for ΔH we use our estimated variance σH
2  and define a 

100 1 − α % confidence interval as ΔH ± Z1 − α/2σ̂H. We examine the empirical performance of 

our proposed estimation procedure, variance estimation, confidence interval construction, 

and testing procedure in Section 4.

It is important to note that we consider the prior study, the study from which we estimate 

the conditional mean function, μ̂0
p s, w , as fixed. This is a reasonable assumption given that 

in practice, there is truly some previously conducted prior study which one is using to 

inform testing in the current study. However, one could argue that this prior study should 

be considered random and that all inference should be derived as such. In such a case, the 

estimation of our point estimate ΔH would remain the same but the standard estimation and 

confidence interval construction would be more complex.

3.3 | Multiple Baseline Covariates

While in this paper we focus only on heterogeneity with respect to a single baseline 

covariate, it may be the case that there is heterogeneity with respect to multiple baseline 

covariates. In such a case, one still can consider a straightforward estimator for the treatment 

effect using surrogate marker and baseline covariates:
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n1
−1 ∑

i = 1

n1
μ0m

(p) S1i, W1i − n0
−1 ∑

i = 1

n0
μ0m

(p) S0i, W0i

where μ0m
p s, w  is an estimator of μ0 s, w ≡ E Y 0 ∣ S 0 = s, W = w  and W is a baseline 

covariate vector of interest (including an intercept term, with a slight abuse of notation). 

The difficulty is that fully nonparametric estimation of μ0 s, w  will likely be infeasible for 

practical sample sizes with a vector W of moderate dimension, e.g., ≥3. In such a case, 

one may be willing to consider a parametric or semi-parametric model. For example, an 

estimator can be obtained based on a simple regression model μ0 s, w = gY β0s + β1
′w , where 

gY ⋅  is a known, strictly increasing link function and β0 and β1 are unknown regression 

coefficients to be estimated based on the prior study. Alternatively, one could consider 

a more flexible varying coefficient model for μ0
p s, w  such as μ0 s, w = gY B s ′w , where 

B s = β1 s , β2 s , …, βL s ′, and βl s  is the unknown smooth function of s to be estimated 

nonparametrically. This modeling approach would allow complex interactions between S
and W. Here, we use the additional subscript m in μ0m

p ⋅ , ⋅  to emphasize the fact that this 

estimator of μ0 ⋅ , ⋅  will now be fully or partially dependent on model assumptions, i.e., 

model-based. Certainly, given this model dependence, robustness (or lack thereof) to model 

misspecification would need to be carefully considered when using this approach in practice.

4 | SIMULATION STUDY

4.1 | Simulation Goals and Setup

The two main goals of our simulation study were: 1) to examine the finite sample properties 

of our estimation procedure for ΔH in terms of bias, accuracy of our variance calculation, and 

coverage of constructed confidence intervals, and 2) to compare testing results based on the 

three different testing quantities: Δ (using the primary outcome, gold standard) vs. ΔP (using 

the surrogate marker, ignoring heterogeneity) vs. ΔH (using the surrogate marker, accounting 

for heterogeneity). For the testing results, we focus on the point estimates themselves, the 

resulting effect sizes (point estimate/standard error estimate), and power. Importantly, when 

there is heterogeneity, we do not necessarily aim to demonstrate improved power with our 

proposed approach but rather, to demonstrate settings where the testing procedure using ΔP

(using the surrogate marker, ignoring heterogeneity) can be incorrect.

To achieve these goals, we examined eight simulation settings. For all settings, results 

were summarized over 500 replications; we examined all settings with n1
p, n0

p = 1000, 800
(sample sizes in prior study) and n1, n0 = 300, 300  (sample sizes in current study). All 

simulation settings were also repeated with n1
p, n0

p = 300, 300  (sample sizes in prior study) 

and n1, n0 = 300, 300 ; results were similar and are not shown here. In setting 1, we 

generated data such that there was heterogeneity in the utility of the surrogate with respect 

to a baseline covariate and the distribution of this baseline covariate was different in the 

current study compared to the prior study. Specifically, in the prior study, which is fixed 
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in all simulations, W 1i
p ∼ U 0, 10 , W 0i

p ∼ U 0, 10 , S1i
p ∼ gamma(sℎape = 2.78, scale = 2.78), and 

S0i
p ∼ gamma(sℎape = 2.5, scale = 2.5). We then generate the outcomes from:

Y 1i
p = I W 1i

p < 5 3.5 + 5S1i
p + I W 1i

p ≥ 5 16S1i
p + N(0, 16),

Y 0i
p = I W 0i

p < 5 3.2 + 4S0i
p + I W 0i

p ≥ 5 15.95S0i
p + N(0, 16) .

where throughout N a, b  indicates a normal distribution with mean a and variance b. The 

motivation behind this setup was (a) to generate a surrogate marker where higher values are 

desirable and the surrogate level tends to be higher in the treated group, and (b) to generate 

an outcome where the surrogate marker is positively associated with the outcome but this 

association is stronger in magnitude in the treated group, reflecting residual treatment effect 

beyond the surrogate marker. In addition, to induce heterogeneity, we generate data such that 

the treatment effect on the primary outcome and the association between primary outcome 

and surrogate marker depend on whether the covariate is less than or greater than 5. With 

this setup, there was a statistically significant heterogeneity in surrogacy based on the test 

for heterogeneity proposed by Parast et al. (2021); the estimated proportion of treatment 

effect explained by the surrogate marker was 0.52 for W gi
p < 5 and 0.95 for W gi

p ≥ 5, g ∈ 0, 1 . 

In this setting, the Sgi, Y gi ∣ W gi in the current study was generated the same as in the prior 

study, but W 1i and W 0i were generated from a U 0,4 , which is different from the prior study. 

Note that for all patients in the current study, the surrogate strength is not very strong and 

thus, we would expect that using the surrogate but ignoring heterogeneity will lead to an 

overestimation of the treatment effect. While the variability of the primary outcome, Y gi, is 

large in both treatment groups, the size of the treatment effect is large as well. For example, 

in this setting, our results will show that the average estimated treatment effect on the 

outcome in the current study is 14.10, and the empirical power of testing the treatment effect 

is 100% using the primary outcome only.

In setting 2, W gi
p  and Y gi

p ∣ Sgi
p , W gi

p  in the prior study were generated exactly the same as in 

setting 1, but S1i
p ∼ gamma(sℎape = 2.66, scale = 2.66) and S0i

p ∼ gamma(sℎape = 2.5, scale = 2.5). 
The motivation behind this change in the distributions for the surrogate marker is that we 

aimed to make the treatment effect on both the primary outcome and surrogate marker 

smaller than in setting 1, in order to explore how the various tests performed when less 

power would be expected. As in setting 1, there was significant heterogeneity in surrogacy 

with the estimated proportion of treatment effect explained by the surrogate being 0.39 for 

W gi
p < 5 and 0.90 for W gi

p ≥ 5. The current study was generated the same as the prior study 

except that W 1i and W 0i were generated from a U 6, 10  distribution. In contrast to setting 

1, for all patients in the current study, the surrogate is strong and thus, we would expect 

that using the surrogate but ignoring heterogeneity will lead to an underestimation of the 

treatment effect. With respect to the size of the treatment effect and empirical power in this 

setting, our results will show that the average treatment effect on the outcome in the current 

study is 13.34 , and the empirical power of testing the treatment effect is 69% using the 

primary outcome only.
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In setting 3, W gi, Sgi  in the prior study were generated as 

in setting 2, but Y 1i
p = I W 1i

p < 5 3.5 + 5 × 7 + I W 1i
p ≥ 5 16S1i

p + N 0, 16  and 

Y 0i
p = I W 0i

p < 5 3.2 + 4 × 6.25 + I W 0i
p ≥ 5 15.95S0i + N 0, 16 . The motivation behind this 

change in the distributions for Y  was to explicitly make the surrogate useless among those 

with W gi
p < 5 i.e., a more extreme version of setting 2. As expected, there was significant 

surrogacy heterogeneity with the treatment effect on the surrogate marker not explaining any 

of the treatment effect on the primary outcome among patients with W gi
p < 5, and explaining 

the majority of the treatment effect on the primary outcome among patients with W gi
p ≥ 5

(proportion explained ≈ 0.92). Similar to setting 2, the current study was generated the same 

as the prior study except that W 1i and W 0i were generated from a U 6, 10  distribution and 

thus, we expect a potentially larger gain in power using our proposed approach (though 

again, this is not our primary goal). With respect to the size of the treatment effect and 

empirical power in this setting, our results will show that the average treatment effect on 

the primary outcome in the current study is 13.34 , and the empirical power of testing the 

treatment effect is 69% using the primary outcome only, parallel to setting 2.

In setting 4, the prior study was generated exactly the same as in setting 1, and the current 

study was generated exactly the same as the prior study, i.e., W 1i and W 0i were generated 

from a U 0, 10  distribution. Here, even though there is heterogeneity as described above for 

setting 1, since the covariate distribution is the same in prior and current studies, we expect 

the tests ignoring vs. accounting for heterogeneity to produce similar results. With respect to 

the size of the treatment effect and empirical power in this setting, our results will show that 

the average treatment effect on the primary outcome in the current study is 19.12 , and the 

empirical power of testing the treatment effect is 96% using the primary outcome only.

In setting 5, data were generated such that there is no heterogeneity. Specifically, 

in the prior study, W 1i
p ∼ U 0, 10 , W 0i

p ∼ U 0, 10 , S1i
p ∼ gamma(sℎape = 2.78, scale = 2.78), 

S0i
p ∼ gamma(sℎape = 2.5, scale = 2.5), Y 1i

p = 3.5 + 5S1i
p + N 0, 1 , and Y 0i

p = 3.2 + 4S0i
p + N 0, 1 , 

independent of the baseline covariate. The proportion of the treatment effect explained by 

the surrogate in the prior study was 0.47, which is homogeneous in the study population. 

Data from the current study was distributed the same as for the prior study. The purpose 

of this setting was to examine how the tests perform when there is no heterogeneity and 

no difference in distribution from the prior study to the current study. With respect to the 

size of the treatment effect and empirical power in this setting, our results will show that 

the average treatment effect on the outcome in the current study is 13.90 , and the empirical 

power of testing the treatment effect is 100% using the primary outcome only.

In setting 6, data are generated similar to setting 1 but with lower 

variability in the primary outcome resulting in a much larger effect 

size. In the prior study, W 1i
p ∼ U 0, 10 , W 0i

p ∼ U 0, 10 , S1i
p ∼ gamma(sℎape = 3, scale = 3), 

S0i
p ∼ gamma(sℎape = 2.1, scale = 2.2). For W 1i

p < 5 and W 0i
p < 5, Y 1i

p = 3.5 + 5S1i
p + N 0, 1 , and 

Y 0i
p = 1 + 3S0i

p + N 0, 1 , respectively. For W 1i
p ≥ 5 and W 0i

p ≥ 5, Y 1i
p = 16S1i

p + N 0, 1  and 

Y 0i
p = 15.8S0i

p + N 0, 1 , respectively. There was a substantial heterogeneity in the utility of 

the surrogate with the proportion of treatment effect explained by the surrogate being 0.67 

for W gi
p < 5 and 0.98 for W gi

p ≥ 5. In the current study, the S and Y  were generated the same 
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as in the prior study, but W 1i and W 0i were generated from a U 0,4  distribution. As in setting 

1, since the surrogate strength is not very strong in the current study, we would expect that 

using the surrogate but ignoring heterogeneity will lead to an overestimation of the treatment 

effect. With respect to the size of the treatment effect and empirical power in this setting, 

our results will show that the average treatment effect on the outcome in the current study 

is 33.70 , and the empirical power of testing the treatment effect is 100% using the primary 

outcome only.

Settings 7 and 8 reflect a null treatment effect setting and we include them so 

that we may examine the empirical Type 1 error rate. In both settings, data from 

the prior study are generated as W gi
p ∼ U 0, 10 , Sgi

p ∼ gamma(sℎape = 2.5, scale = 2.5), and 

Y gi
p = 3.2 + 4Sgi

p + N 0, 16  for g = 0, 1. That is, there is neither treatment effect on the 

surrogate marker nor the treatment effect on the primary outcome, and Sgi and Y gi are 

positively associated. In setting 7, data in the current study are generated exactly as the 

prior study. In setting 8, data in the current study are generated such that Sgi, Y gi ∣ W gi are 

generated the same as the prior study, but W gi ∼ U 0,4 , g ∈ 0, 1 , i.e., the distribution of the 

baseline covariate is different in the current study. The purpose of setting 8 is to specifically 

examine estimation and testing when there is no treatment effect and no heterogeneity, 

but the current study does have a different patient population compared to the prior study. 

In both settings, the true treatment effect on the primary outcome is 0 and the empirical 

Type 1 error of the test using the primary outcome is 0.06. In both settings, there is no 

empirical evidence that S is an “informative” surrogate marker, and no empirical evidence of 

heterogeneity in surrogacy, as expected.

With respect to our bandwidth selection, we let ℎ0 = 1.06 × min σW 0, IQR0/1.34 n0
−2/5 and 

ℎ1 = 1.06 × min σW 1, IQR0/1.34 n1
−2/5 where σW g and IQRg were the empirical standard 

deviation and inter-quartile range of W g, and ℎ2 = 2 × 1.06 × min σS0
p, IQR1/1.34 n0p−2/5 and 

ℎ3 = 2 × 1.06 × min σW 0
p, IQR2/1.34 n0p−2/5 where σS0

p and IQR1 were the empirical standard 

deviation and inter-quartile range of S0p, respectively, and σW 0p and IQR2 were the empirical 

standard deviation and inter-quartile range of W 0p, and ℎ4 = 1.06 × min σS0
p, IQR1/1.34 n0p−0.31.18,7

4.2 | Simulation Results

Table 1 shows estimation results for ΔH for all settings, using our proposed estimating 

procedure. We examine bias in coverage with respect to both ΔH (fixed prior study) and 

ΔH. These results demonstrate good performance with minimal bias, average standard error 

estimates that are close to the empirical standard error, and coverage of the confidence 

intervals close to the nominal value of 95%.

Table 2 shows results from testing using Δ , ΔP, and ΔH. In setting 1 where there is 

heterogeneity and the distribution of W  in the current study is different from the prior 

study, results show that ΔP overestimates the treatment effect and thus, does not retain the 

lower boundedness property. In contrast, our approach using ΔH does not overestimate the 

treatment effect. The power using ΔH is smaller than that using Δ, but this is expected 
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since the data generation in this setting is such that the population in the current study is 

composed largely of individuals where the surrogate marker is not very strong. In setting 2 

where there is again heterogeneity and the distribution of W  in the current study is different 

from the prior study, results show that both ΔP and ΔH are less than Δ, but ΔH is much closer 

to Δ and has power equivalent to that using Δ. This, again, is what was expected since the 

data generation in this setting is such that the population in the current study is composed 

largely of individuals where the surrogate marker is strong. In setting 3, which is similar 

to setting 2 but we have made the data more extreme with the surrogate being useless for 

those with W < 5, results show a larger departure in ΔP from Δ, and a larger decrease in 

power for ΔP compared to ΔH. In setting 4 where there is heterogeneity but the distribution of 

W  in both the prior study and the current study is the same, we see similar point estimates 

for ΔP and ΔH but a slightly higher standard error and lower power for ΔH. This indicates 

that in some settings, we may pay a price in terms of power and efficiency when we use 

the approach that accounts for heterogeneity when it is not necessary. In setting 5, where 

there is no heterogeneity, we see similar performance for ΔP and ΔH. In setting 6, where we 

have a very large treatment effect on the primary outcome, there is heterogeneity and the 

distribution of W  in the current study is different from the prior study, results show that, as 

expected, ΔP overestimates the treatment effect and does not retain the lower boundedness 

property, as in setting 1. In settings 7 and 8, where there is no treatment effect, results show 

that all three testing procedures perform well with an estimated treatment effect close to zero 

and Type 1 error rate close to 0.05. We additionally examined the efficiency gain comparing 

our proposed estimator to the simple estimator in (4); indeed, we did observe efficiency 

gains using our proposed estimator, quantified by the ratio of the estimated standard error 

using our proposed estimate to that using the simple estimate, that ranged from 0.79-0.98 

across settings.

In summary, results from this simulation study show 1) good finite sample performance of 

our estimation and inference procedures for ΔH , 2) a potential slight loss in power when 

using the proposed ΔH compared to ΔP when accounting for heterogeneity is not needed, and 

3) a potential for inaccurate conclusions and/or loss in power when ΔP is used instead of the 

proposed Δ̂H when accounting for heterogeneity is needed.

5 | APPLICATION

We apply our proposed approach to test for a treatment effect based on a heterogeneous 

surrogate using data from two distinct AIDS clinical trials, the AIDS Clinical Trials Group 

(ACTG) 320 Study and the ACTG 193A Study.19,20 These data are publicly available upon 

request from the AIDS Clinical Trial Group21. We consider the ACTG 320 Study as our 

prior study and the ACTG 193A Study as our current study. The ACTG 320 study was 

conducted among HIV-infected patients with a CD4 cell count of 200 or less per cubic 

millimeter and was a randomized, double-blind trial that compared a two-drug regimen (two 

nucleoside reverse transcriptase inhibitors [NRTI]) with a three-drug regimen (two NRTIs 

plus indinavir). There were a total of 830 participants, with 412 in the two-drug regimen 

group and 418 in the three-drug regimen group. The ACTG 193A study was a randomized, 
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double-blind trial conducted among HIV-infected patients with a CD4 cell count of 50 or 

less per cubic millimeter. We focus on the comparison of a two-drug regimen (NRTIs) with a 

three-drug regimen (two NRTIs plus nevirapine). There were a total of 657 participants, with 

327 in the two-drug regimen group and 330 in the three-drug regimen group. Our primary 

outcome Y  is the change in plasma HIV-1 RNA from baseline to 24 weeks; our surrogate 

marker S is change in CD4 cell count from baseline to 24 weeks, as CD4 is relatively 

less expensive to measure compared to RNA.22 Both Y  and S are available in ACTG 320 

while only S is available in the publicly available data of ACTG 193A. Previous work has 

demonstrated significant heterogeneity in the utility of S with respect to W  , baseline CD4 

count, with the surrogate strength being stronger among those with a lower baseline CD4 

count and weaker among those with a higher baseline CD4 count12 as shown in Figure 1. 

We aim to use our proposed method to test for a treatment effect on RNA using CD4 count 

as a surrogate marker, accounting for the known heterogeneity in the utility of the surrogate 

which was demonstrated in the prior study.

In Figure 2 we show the distribution of the baseline covariate, baseline CD4, in the prior 

study compared to the current study. Clearly, the current study is composed of a different 

participant population with lower CD4 counts due to the study eligibility criteria. In Figure 

1, we also see that the surrogate is strongest in this subgroup. Using our proposed approach, 

we obtain a treatment effect estimate of ΔH = − 0.10 (standard error SE = 0.03) with a 

p-value < 0.001. Note that since lower plasma HIV-1 RNA is better, a negative change in 

RNA indicates a beneficial treatment effect for the three-drug regimen. Using the approach 

that does not account for heterogeneity, we obtain a treatment effect estimate closer to 

the null, but still significant: ΔP = − 0.07 SE = 0.02 , p < 0.001. That is, while the overall 

conclusion regarding the treatment effect based on the surrogate would be significant using 

either test, our proposed test provides a treatment effect point estimate that is larger in 

magnitude. This is expected since the surrogate strength is greater in this subgroup that 

makes up the current study, and our proposed approach takes advantage of that information.

6 | DISCUSSION

For settings where it is known that the strength of a surrogate marker varies by a 

certain baseline characteristic, we have proposed an approach and estimation procedures to 

appropriately test for a treatment effect using only the surrogate marker, accounting for this 

known heterogeneity. We demonstrated good finite sample performance of our estimation 

procedure and showed that our proposed testing procedure can outperform an approach that 

does not account for heterogeneity. An R package implementing the methods proposed here, 

named hettest, is available at https://github.com/laylaparast/hettest.

While we largely focus, specifically in the numerical studies, on settings where the 

distribution of W  is different in the current study as compared to the prior study, it is 

still possible for a test based on ΔP, i.e., ignoring heterogeneity, to provide inaccurate results 

about the treatment effect when there is heterogeneity in the utility of the surrogate and the 

W  is distributed the same in the two studies; we provide an example in Appendix E.
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In the presence of heterogeneity, both the treatment effect and the utility of the surrogate 

marker may depend on W . While we focus exclusively on the average treatment 

effect in this paper, it may be of interest to test for a treatment effect based on 

alternative summaries that account for such heterogeneity. For example, one may define 

Δw = E Y 1 ∣ W 1 = w − E Y 0 ∣ W 0 = w  and the subgroup specific earlier treatment 

effect ΔH w = ∫ μ0
p s, w dF 1 s ∣ w − ∫ μ0

p s, w dF 0 s ∣ w . Then we may test for a treatment 

effect based on S by examining a functional of ΔH w  such as supw ΔH w  or ∫ ΔH w dw, 

the area under the curve produced by ΔH w . Such alternative summaries of the treatment 

effect across a baseline covariate, W , are not unique to the surrogate marker setting as they 

have been extensively discussed in the general heterogeneous treatment effect literature.23,24 

However, these alternative summaries may also prove useful in the heterogeneous surrogate 

setting and may offer new insights over simply looking at the average treatment effect.

Importantly, we require Assumptions (C1) – (C4) and in practice, they may be violated. 

Specifically, if the existing heterogeneity is such that the surrogate is not strong or, 

worse, the treatment effect on the surrogate marker and primary endpoint may be in 

different directions for some w, the surrogate should not be used as a replacement of 

the primary outcome for all individuals in a future study. Instead, one may consider using 

the surrogate as a replacement only among those with a w where assumptions (C1) – 

(C4) hold. To achieve this, one could consider first identifying a region of interest where 

the surrogacy is sufficiently strong e.g., Ωw such that the conditional average treatment 

effect on the primary endpoint Δ w ≥ δ0 > 0 and the proportion explained by the surrogate 

for W = w, RS w = ΔH w / Δ w , is between 0.50 and 1.0, and then apply the proposed 

testing procedure that replaces Y  with S for testing the average treatment effect in the 

subpopulation Ωw. If one is interested in studying the average treatment effect in the entire 

study population, one may combine the proposed test statistic with a new but simple test 

statistic measuring the strength of the treatment effect based on actual primary endpoints Y
for patients in the complement of Ω. Such a hybrid approach has the potential to reduce costs 

if S is less costly to measure than Y  and/or reduce the follow-up time needed for those in 

Ωw if S is measured earlier than Y . Though not exactly within this context, previous work 

has explored the potential for auxiliary information (including but not limited to surrogate 

markers) to improve efficiency when testing for a treatment or intervention effect.25,26 While 

this is beyond the scope of this paper, further work on this topic within the framework of a 

heterogeneous surrogate is warranted.

Our proposed approach has some limitations. First, if the current study includes participants 

with w values outside the observed distribution in the prior study, our approach will not 

be able to obtain μ̂0
p s, w  for that w without extrapolation. In such a case, when there 

is observed heterogeneity in the prior study, use of the surrogate marker to test for a 

treatment effect in the current study should likely be limited to those with w contained in 

the prior study. Second, given our use of kernel smoothing, we require a relatively large 

sample size. Robust nonparametric methods for surrogate markers are lacking in general for 

small sample size settings; future work in this area would be needed. Lastly, we require 

several assumptions, outlined in Section 2.2, which are generally untestable though they 
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may be empirically explored using the observed data. These assumptions are needed for 

identifiability, to ensure our lower-boundedness property of ΔH (i.e., ΔH ≤ Δ), and to guard 

against the surrogate paradox which occurs when the surrogate and outcome are positively 

associated, the treatment has a positive effect on the surrogate, but the treatment in fact has 

a negative effect on the outcome.15 The surrogate paradox is especially of concern here as 

our primary goal is to make a conclusion about the treatment effect on the primary outcome 

based on information about the surrogate marker. While these assumptions are strong, they 

are more likely to hold than the parallel assumptions required for ΔP 7 to be valid due to 

the additional conditioning on W . Further work on methods that allow for more relaxed 

assumptions and/or that allow one to assess sensitivity to violations of these assumptions 

would be useful.27
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APPENDIX

APPENDIX A

Discrete Example

Let Y  denote the primary outcome and S denote the surrogate marker. We use potential 

outcomes notation where each person has a potential Y 1 , Y 0 , S 1 , S 0  where Y g

and S g  are the outcome and surrogate when the patient receives treatment g. Our 

main quantity of interest is the treatment effect on the primary outcome quantified 

as Δ ≡ E Y 1 − Y 0 = E Y 1 − E Y 0 . The earlier treatment effect incorporating S

information is defined in the main text as

ΔP = ∫ μ0
p(s)dF (1)(s) − ∫ μ0

p(s)dF (0)(s) (1)

where μ0
p s ≡ E Y 0p = y ∣ S 0p = s . In this example, we will have heterogeneity in 

the utility of the surrogate with respect to gender. Consider our prior study, which 

we refer to as Study A in this example, and is shown in Figure 1. The Study A 

sample is 50% female and 50% male. For all individuals, S 1 , S 0  are independent 

of gender, and E S 1 , E S 0 = 10,5 . For females, E Y 1 ∣ S 1 = s = 3 + 5s and 

E Y 0 ∣ S 0 = s = 1 + 3S. It can be shown that for females, Δ = 53 − 16 = 37 and ΔP = 15. 

The proportion of the treatment effect on the primary outcome that is explained by the 

surrogate among females is thus 15/37=41%, which would not be considered as a strong 
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surrogacy. For males, E Y 1 ∣ S 1 = s = 15s and Y 0 ∣ S 0 = s = 14.8S. It can be shown 

that for males, Δ , ΔP = 76, 74  and the proportion explained by the surrogate marker is 

97% among males, representing strong surrogacy.

To calculate ΔP for a future study, let’s consider the conditional mean that is central 

to this calculation, μ0
p s = E Y 0p = y ∣ S 0p = s) where the superscript p indicates that 

this is referring to the prior study, i.e., study A. In this example, this would be 

μ0
p s = 0.5 × 1 + 3s + 0.5 × 14.8s = 8.9s + 0.5. Now assume our current study is Study 

B shown in Figure 1 which is 95% female and 5% male. Importantly, the joint 

distributions of Y 1 , Y 0 , S 1 , S 0  in males and females remain as described above; 

the only difference is the distribution of gender. The treatment effect, Δ in this new 

study is 0.95×37+0.05×76=38.95. If one were to calculate ΔP not accounting for this 

known heterogeneity in the utility of the surrogate, the quantity obtained would be 

ΔP = 8.9 × 10 + 0.5 − 8.9 × 5 − 0.5 = 44.5, recalling that E S 1 = 10 and E S 0 = 5 for all 

individuals in both studies. However, using our proposed approach which does account for 

heterogeneity, we use ΔH as the earlier treatment effect, defined in the main text as:

ΔH = ∫ μ0
p(s, w)dF (1)(s, w) − ∫ μ0

p(s, w)dF (0)(s, w) .

Thus, ΔH = 95% × 1 + 3 × 10 + 5% × 14.8 × 10 − 95% × 1 + 3 × 5 − 5% × 14.8 × 5 = 17.95. 

Therefore ΔH < Δ < ΔP and ΔP no longer retains the property of providing a lower bound 

on the treatment effect on Y .

Now we consider a study, labeled Study C in Figure 1, which is 95% males and 5% females. 

Using similar calculations, we can show that Δ = 74.05, ΔP = 44.05 and ΔH = 71.05. Thus, 

in this case, ΔH will provide better lower bound for Δ and the test based on ΔH is expected 

to be more powerful than that based on ΔP. The discrete case, as illustrated in this example, 

is relatively straightforward in terms of how to go about calculating the needed quantities 

separately by group and appropriately accounting for the different distribution in the new 

study. The continuous baseline covariate case, however, is more complex, and our Appendix 

C presents an example such that even if the prior and current studies have the same 

distribution for covariates, ΔP may still fail to be a valid lower bound for Δ.

APPENDIX B

As noted in this text, Assumptions (C1) – (C3) together guarantee that 

E Y 1 ∣ W = w ≥ E Y 0 ∣ W = w , for all w in the support of W . This result is due to the 

derivation:
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Δ (w) = E Y (1) ∣ W = w − E Y (0) ∣ W = w

= ∫
s

E Y (1) ∣ S(1) = s, W = w dF (1)(s ∣ w) − ∫
s

E Y (0) ∣ S(0) = s, W = w dF (0)(s ∣ w)

≥ ∫
s

E Y (0) ∣ S(0) = s, W = w dF1(s ∣ w) − ∫
s

E Y (0) ∣ S(0) = s, W = w dF (0)(s ∣ w)

= ∫
s

E Y (0) ∣ S(0) = s, W = w d F (1)(s ∣ w) − F (0)(s ∣ w)

= ∫
s

F (0)(s ∣ w) − F (1)(s ∣ w)
∂E Y (0) ∣ S(0) = s, W = w

∂s ds ≥ 0,

where F g s ∣ w = P S g ≤ s ∣ W = w , g = 0, 1. That is, while treatment effect heterogeneity 

is allowed, the directions of the conditional average treatment effect among subgroups of 

patients with W = w need to be consistent. One important implication is that under the null 

H0: Δ = E Δ W = 0, i.e., no average treatment effect, the conditional average treatment 

effect Δ w = 0 for all w as well. Furthermore, from the derivation, it is clear that Δ w = 0
if and only if both

1. F 1 s ∣ w = F 0 s ∣ w , i.e., P S 1 > s ∣ W = w = P S 0 > s ∣ W = w  and

2. E Y 1 ∣ S 1 = s, W = w = E Y 0 ∣ S 0 = s, W = w .

Specifically, Δ w = 0 implies that there is no treatment effect on the distribution of the 

surrogate marker in the subgroup of patients with W = w. In summary, under Assumptions 

(C1)-(C3)

Δ = 0 Δ (w) = 0 S(1) W = w ∼ S(0) W = w .

This relationship allows us to test the common null H0: Δ = 0 via testing a seemingly more 

restrictive null that S 1 ∣ W = w ∼ S 0 ∣ W = w, for all w in the support of W .

For (C2) and (C3), if the primary outcome or surrogate are such that lower values are 

“better”, one can simply define the outcome/surrogate as −X where X is the initial value.

Assumptions (C5) – (C6) are not required for the validity of the testing procedure proposed 

in the next section in that the p-value under the null follows a uniform distribution even 

without them, but it allows us to estimate a lower bound of the average treatment effect, Δ, 

and construct the corresponding test statistic.

Under the following additional assumptions:

(C7) Y 1 ⊥ S 0 ∣ S 1 , W  and Y 0 ⊥ S 1 ∣ S 0 , W ;

(C8) Y 1p ⊥ S 0p ∣ S 1p , W p and Y 0p ⊥ S 1p ∣ S 0p , W p,
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the treatment effect on the surrogate marker defined in Section 2.3 and on the primary 

outcome can be interpreted within a causal framework: the proposed test statistic is an 

estimate of the portion of the treatment effect on the primary outcome attributable to the 

treatment effect on the surrogate marker. Otherwise, the proposed treatment effect on the 

surrogate marker can always serve as a lower bound for the average treatment effect on Y
and can be used in practice without assuming them.

To summarize, Assumptions (C1) – (C4) are needed for the validity of the proposed testing 

procedure, Assumptions (C5) – (C6) allow us to interpret the test statistic based on he 

surrogate marker and baseline covariate only as a “conservative” estimator (or a lower 

bound) of the average treatment effect on the primary outcome, and causal interpretation of 

the lower is possible under additional assumptions (C7) – (C8).

APPENDIX C

To estimate Δ using the primary outcome (gold standard) we use 

Δ = n1
−1∑i = 1

n1 Y 1i − n0
−1∑i = 1

n0 Y 0i and conduct a t-test to test H0: Δ = 0.

To estimate ΔP, we use the nonparametric estimation approach of7 by estimating μ0
p s  as

μ0
p(s) =

∑i = 1
n0

p
Kℎ4 S0i

p − s Y 0i
p

∑i = 1
n0

p
Kℎ4 S0i

p − s
,

and then estimate ΔP as

ΔP = n1
−1 ∑

i = 1

n1
μ0

p S1i − n0
−1 ∑

i = 1

n0
μ0

p S0i .

Note that this estimate only uses S data from the current study (no Y  data from the current 

study) and S, Y  data from the previous study in group Z = 0 only. To obtain an estimate 

for the standard error of ΔP , σP, we simply take the empirical standard deviation of the 

transformed surrogate i.e., let Y gi = μ0
p Sgi , and then σP = var Y 1i /n1 + var Y 0i /n0 where var

indicates the empirical variance. This alternative testing procedure would then use the test 

statistic ZP = ΔP /σP and reject the null hypothesis when ZP > Φ−1 1 − α/2 .

Importantly, one may also consider simply using the surrogate markers measured in the 

current study and define ΔM = E S 1 − E S 0  and conduct a t-test of H0M: ΔM = 0. The 

disadvantage of this approach is that there is no way to relate ΔM and Δ i.e., the estimate 

of ΔM does not give any helpful information about the magnitude of Δ. In addition, this 

approach does not take advantage of information from the previous study nor does it account 

for heterogeneity in the utility of the surrogate marker. For these reasons, we do not compare 

our approach to this test.
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APPENDIX D

Our proposed estimator for ΔH is

ΔH = 1
n ∑

i = 1

n0
m1 W 0i; μ0

p − m0 W 0i; μ0
p + ∑

i = 1

n1
m1 W 1i; μ0

p − m0 W 1i; μ0
p .

Let μg = E μ0
p S g , W ∣ μ0

p , g = 0, 1. It is obvious that ΔH = μ1 − μ0. Also, let 

mg w; μ0
p = E μ0

p S g , W ∣ W = w .

In this section, we only consider the randomness in the current study, i.e., the probability 

measure is conditional on μ̂0
p ⋅ , ⋅ . Now consider the centered term

1
n ∑

g = 0

1
∑

j = 1

ng
m1 W gj; μ0

p − μ1

= 1
n ∑

g = 0

1
∑

j = 1

ng
n1

−1 ∑
i = 1

n1 Kℎ W 1i − W gj S1i

f 1 W gj
− μ1,

which is

1
nn1

∑
j = 1

n0

∑
i = 1

n1 Kℎ W 1i − W 0j S1i

f 1 W 0j
+ 1

n ∑
i = 1

n1 1
n1

∑
j = 1

n1 Kℎ W 1i − W 1j

f 1 W 1j
S1i − μ1

= 1
nn1

∑
j = 1

n0

∑
i = 1

n1 Kℎ W 1i − W 0j S1i

f 1 W 0j
+ 1

n ∑
i = 1

n1 1
n1

∑
j = 1

n1
Kℎ W 1i − W 1j

S1i

f 1 W 1i
− μ1 + Op ℎ2

= n0
nn1

∑
i = 1

n1 f 0 W 1i

f 1 W 1i
S1i + 1

n ∑
i = 1

n1
S1i − μ1 + Op ℎ2

= 1
n1

∑
i = 1

n1
S1i − μ1 + n0

nn1
∑

i = 1

n1 f 0 W 1i − f 1 W 1i

f 1 W 1i
S1i + Op ℎ2

= 1
n1

∑
i = 1

n1
S1i − μ1 + n0

nn1
∑

i = 1

n1 1
n0

∑
j = 1

n0
Kℎ W 0j − W 1i − 1

n1
∑

j = 1

n1
Kℎ W 1j − W 1i

S1i
f1 W 1i

+ Op ℎ2

= 1
n1

∑
i = 1

n1
S1i − μ1 + π0

1
n0

∑
i = 1

n0
m1 W 0i; μ0

p − 1
n1

∑
i = 1

n1
m1 W 1i; μ0

p + Op ℎ2

= 1
n1

∑
i = 1

n1
S1i − μ1 + π0

1
n0

∑
i = 1

n0
m1 W 0i; μ0

p − 1
n1

∑
i = 1

n1
m1 W 1i; μ0

p

+ π0
1
n0

∑
i = 1

n0
m1 W 0i; μ0

p − m1 W 0i; μ0
p − 1

n1
∑

i = 1

n1
m1 W 1i; μ0

p − m1 W 1i; μ0
p + Op ℎ2

where πg = ng/n and f1 w  is the nonparametric estimator for the density function of W  based 

on observations in treatment group 1. Now, consider the expansion

m1 w; μ0
p − m1 w; μ0

p = 1
n1

∑
i = 1

n1
Kℎ W 1i − w S1i − m1 W 1i; μ0

p + Op ℎ2 + log n1
n1ℎ
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uniform in w. Therefore,

1
n0

∑
j = 1

n0
m1 W 0j; μ0

p − m1 W 0j; μ0
p

= 1
n1n0

∑
j = 1

n0

∑
i = 1

n1
Kℎ W 1i − W 0j S1i − m1 W 1i; μ0

p + Op ℎ2 + log n1
n1ℎ

= 1
n1

∑
i = 1

n0
f 0 W 1i S1i − m1 W 1i; μ0

p + Op ℎ2 + log n1
n1ℎ

= 1
n1

∑
i = 1

n0
f0 W 1i S1i − m1 W 1i; μ0

p + Op ℎ2 + log n1
n1ℎ + op

1
n1

Similarly,

1
n1

∑
i = 1

n1
m1 W 1i; μ0

p − m1 W 1i; μ0
p

= 1
n1

∑
i = 1

n0
f0 W 1i S1i − m1 W 1i; μ0

p + Op ℎ2 + log n1
n1ℎ + op

1
n0

,

and

n 1
n0

∑
i = 1

n0

m1 W 0i; μ0
p − m1 W 0i; μ0

p − 1
n1

∑
i = 1

n1

m1 W 1i; μ0
p − m1 W 1i; μ0

p
(2)

= Op n1ℎ2 + log n1

n1ℎ
+ op(1) . (3)

Therefore, when ℎ = O n1
−δ , δ ∈ 1/4, 1/2 , the right hand side of (3) becomes op 1 , and thus

1
n ∑

g = 0

1
∑

j = 1

ng
m1 W gj; μ0

p − μ1

= n
n1

∑
i = 1

n1
S1i − μ1 + π0

n
n0

∑
j = 1

n0
m1 W 0j; μ0

p − n
n1

∑
j = 1

n1
m1 W 1j; μ0

p + op(1) .

Finally, we have
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n ΔH − ΔH

= n
n1

∑
i = 1

n1
S1i − μ1 + π0

n
n0

∑
i = 1

n0
m1 W 0i; μ0

p − n
n1

∑
i = 1

n1
m1 W 1i; μ0

p − n
n0

∑
i = 1

n0
S0i − μ0

+ π1
n

n1
∑

i = 1

n1
m0 W 1i; μ0

p − n
n0

∑
i = 1

n0
m0 W 0i; μ0

p + op(1)

= n
n1

∑
i = 1

n1
S1i − π0m1 W 1i; μ0

p − π1m0 W 1i; μ0
p − π1 μ1 − μ0

− n
n0

∑
i = 1

n0
S0i − π0m1 W 0i; μ0

p − π1m0 W 0i; μ0
p − π0 μ1 − μ0 + op(1),

which converges weakly to a mean zero Gaussian distribution with a variance of

1
π1

E S1i − π0m1 W 1i; μ0
p − π1m0 W 1i; μ0

p − π1 ΔH
2 + 1

π0
E S0i − π0m1 W 0i; μ0

p − π1m0 W 0i; μ0
p − π0 ΔH

2 .

Therefore, the variance of ΔH can be estimated as

σH
2 = 1

n1
2
i 1

n1

S1i π0m1 W 1i μ0
p π1m0 W 1i μ0

p π1ΔH

2

+ 1
n0

2 ∑
i = 1

n0
S0i − π0m1 W 0i; μ0

p − π1m0 W 0i; μ0
p − π0ΔH

2

Next, we will derive the asymptotical distribution of n ΔH
AUG − ΔH . It is clear that

n ΔH
AUG − ΔH

= n
n1

∑
i = 1

n1
S1i − π0m1 W 1i; μ0

p − π1m0 W 1i; μ0
p − π1 ΔH

− n
n0

∑
i = 1

n1
S0i − π0m1 W 0i; μ0

p − π1m0 W 0i; μ0
p − π0 ΔH

= n
n1

∑
i = 1

n1
S1i − π0m1 W 1i; μ0

p − π1m0 W 1i; μ0
p − π1 ΔH

− n
n0

∑
i = 1

n1
S0i − π0m1 W 0i; μ0

p − π1m0 W 0i; μ0
p − π0 ΔH

− n π0
n0

∑
i = 1

n0
m1 W 0i; μ0

p − m1 W 0i; μ0
p − π0

n1
∑

i = 1

n1
m1 W 1i; μ0

p − m1 W 1i; μ0
p

− n π1
n1

∑
i = 1

n1
m1 W 1i; μ0

p − m1 W 1i; μ0
p − π1

n0
∑

i = 1

n0
m0 W 0i; μ0

p − m1 W 0i; μ0
p

= n
n1

∑
i = 1

n1
S1i − π0m1 W 1i; μ0

p − π1m0 W 1i; μ0
p − π1 ΔH

− n
n0

∑
i = 1

n1
S0i − π0m1 W 0i; μ0

p − π1m0 W 0i; μ0
p − π0 ΔH + op(1)

= n ΔH − ΔH + op(1) .
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Therefore, ΔH
AUG

 and ΔH are asymptotically equivalent. Furthermore, noting that

S1i − π0m1 W 1i; μ0
p − π1m0 W 1i; μ0

p − π1 ΔH
= S1i − m1 W 1i; μ0

p + π1 m1 W 1i; μ0
p − m0 W 1i; μ0

p − ΔH

and

S1i − m1 W 1i; μ0
p m1 W 1i; μ0

p − m0 W 1i; μ0
p − ΔH ∣ W 1i = 0,

we have

E S1i − π0m1 W 1i; μ0
p − π1m0 W 1i; μ0

p − π1 ΔH
2

= E S1i − m1 W 1i; μ0
p 2 + π1

2E m1 W 1i; μ0
p − m0 W 1i; μ0

p − ΔH
2 .

Similarly,

E S0i − π0m1 W 0i; μ0
p − π1m0 W 0i; μ0

p − π0 ΔH
2

= E S0i − m0 W 0i; μ0
p 2 + π0

2E m1 W 0i; μ0
p − m0 W 0i; μ0

p − ΔH
2 .

Therefore, the variance of ΔH
AUG

 can also be consistently estimated by

σAUG
2 = 1

n1
2 ∑
i = 1

n1
μ0

(p) S1i, W 1i − m1 W 1i; μ0
p 2 + 1

n0
2 ∑
i = 1

n0
μ0

(p) S0i, W 0i − m0 W 0i; μ0
p 2

+ π1
2

n1
2 ∑

i = 1

n1
m1 W 1i; μ0

p − m0 W 1i; μ0
p − ΔH

2 + π0
2

n0
2 ∑

i = 1

n0
m1 W 0i; μ0

p − m0 W 0i; μ0
p − ΔH

2,

and Δ AUG / ΔH = 1 + op 1 .

APPENDIX E

Here, we provide an example where there is heterogeneity in the utility of the surrogate 

and the W  is distributed the same in the prior study and current study, but ΔP still fails 

to provide a lower bound for Δ. In both the prior study and the current study, we assume 

that log W ∼ ϵW , S g = W × exp δ0g + ϵS , and Y g = S g W , g ∈ 0, 1 , where δ0 is a positive 

constant, and ϵW  and ϵS are two independent standard normals. It is obvious that μ0
p s, w = sw

and

Δ = ΔH = E S(1)W − E S(0)W = E W E S(1) − S(0) W

= E W exp 0.5 + δ0 W − exp(0.5)W = exp 5
2 exp δ0 − 1 .

Next, we have
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μ0
p(s) = E W S(0) ∣ S(0) = s = sE W (0) ∣ S(0) = s

= s × exp 1
4 s

1
2 = exp 1

4 s
3
2,

and

ΔP = E S(1)
3
2exp 1

4 − E S(0)
3
2exp 1

4

= exp 5
2

3δ0
2 − 1 .

Consequently, in this setting, ΔP > Δ = ΔH even though the W  has the same distribution in 

both studies.

FIGURE 1. 
Discrete data example
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FIGURE 1. 
Estimated proportion of the treatment effect on the primary outcome (change in RNA) 

explained by the treatment effect on the surrogate marker (change in CD4), denoted as RS, 

as a function of baseline CD4
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FIGURE 2. 
Distribution of baseline CD4 in current study vs. prior study
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TABLE 1

Estimation results from the simulation study using the proposed procedure to estimate ΔH; note that settings 7 

and 8 are null settings with no treatment effect; bias and coverage are examined with respect to ΔH (prior study 

fixed) and ΔH; Bias = bias with respect to ΔH, quantified as | ΔH − ΔH |/ ΔH except for settings 7 and 8 where it 

is quantified without dividing by ΔH; Bias = bias with respect to ΔH, quantified as | ΔH − ΔH | / ΔH except for 

settings 7 and 8 where it is quantified without dividing by the truth; ESE = empirical standard error, ASE = 

average standard error (average of the square root of the closed form variance estimate), Cov = coverage of 

95% confidence intervals with respect to ΔH ; Cov = coverage of 95% confidence intervals with respect to ΔH

Estimate Bias Bias ESE ASE Cov Cov

Setting 1 6.32 0.07 0.05 1.82 1.79 0.96 0.96

Setting 2 12.53 0.05 0.07 5.39 5.22 0.94 0.94

Setting 3 12.52 0.05 0.07 5.39 5.22 0.94 0.94

Setting 4 14.72 0 0.05 4.12 4.13 0.96 0.95

Setting 5 5.75 0.03 0.04 1.38 1.4 0.95 0.95

Setting 6 12.97 0.01 0.02 1.05 1.27 0.98 0.98

Setting 7 −0.03 0.03 0.16 1.31 1.25 0.94 0.94

Setting 8 −0.03 0.03 0.16 1.31 1.26 0.94 0.94
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TABLE 2

Testing results from the simulation study comparing testing results based on the three different testing 

quantities: Δ (using the primary outcome, gold standard) vs. ΔP (using the surrogate marker, ignoring 

heterogeneity) vs. ΔH (using the surrogate marker, accounting for heterogeneity); ESE = empirical standard 

error, ASE = average standard error (average of the square root of the closed form variance estimate), Effect 

size = estimate divided by the estimated standard error (i.e., square root of the closed form variance estimate), 

Power/Type 1 error = proportion of replications for which the test rejects the null i.e., p-value of the test is 

< 0.05

Setting 1

Estimate ESE ASE Effect size Power

Δ 14.10 1.64 1.65 8.55 1.00

ΔP 14.53 3.61 3.65 3.99 0.98

ΔH 6.32 1.82 1.79 3.62 0.95

Setting 2

Estimate ESE ASE Effect size Power

Δ 13.34 5.54 5.42 2.47 0.69

ΔP 7.64 3.38 3.31 2.31 0.64

ΔH 12.53 5.39 5.22 2.39 0.67

Setting 3

Estimate ESE ASE Effect size Power

Δ 13.34 5.54 5.42 2.47 0.69

ΔP 6.00 2.81 2.76 2.18 0.58

ΔH 12.52 5.39 5.22 2.39 0.67

Setting 4

Estimate ESE ASE Effect size Power

Δ 19.12 5.17 5.20 3.68 0.96

ΔP 14.64 3.66 3.66 4.01 0.98

ΔH 14.72 4.12 4.13 3.56 0.95

Setting 5

Estimate ESE ASE Effect size Power

Δ 13.90 1.64 1.65 8.43 1.00

ΔP 5.77 1.38 1.38 4.18 0.99

ΔH 5.75 1.38 1.40 4.09 0.99
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Setting 1

Estimate ESE ASE Effect size Power

Setting 6

Estimate ESE ASE Effect size Power

Δ 33.70 1.61 1.60 21.08 1.00

ΔP 39.12 3.51 3.50 11.18 1.00

ΔH 12.97 1.05 1.27 10.23 1.00

Setting 7

Estimate ESE ASE Effect size Type 1 error

Δ −0.05 1.39 1.35 −0.04 0.06

ΔP −0.03 1.31 1.27 −0.02 0.06

ΔH −0.03 1.31 1.25 −0.02 0.06

Setting 8

Estimate ESE ASE Effect size Type 1 error

Δ −0.05 1.37 1.33 −0.04 0.06

ΔP −0.03 1.31 1.27 −0.02 0.06

ΔH −0.03 1.31 1.26 −0.02 0.06
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