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Abstract

Health studies report associations between metrics of residential proximity to unconventional 

oil and gas (UOG) development and adverse health endpoints. We investigated whether 

exposure through household groundwater is captured by existing metrics and a newly developed 
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metric incorporating groundwater flow paths. We compared metrics with detection frequencies/

concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential 

groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals 

were detected in ≥20% of water samples at concentrations generally below U.S. Environmental 

Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds 

of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds 

Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23–0.93) and m- and p-xylene (OR: 0.28, 95% 

CI: 0.10–0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene 

increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12–1.95), also 

consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all 

|ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related 

water contamination occurs rarely/episodically, more complex metrics may be needed to capture 

drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to 

other stressors.

Graphical Abstract
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unconventional oil and gas development; spatial surrogates; spatial metrics; drinking water; 
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INTRODUCTION

Hydrocarbon production from unconventional oil and gas (UOG) resources using horizontal 

drilling and high-volume hydraulic fracturing has prompted research on the potential 

for human health impacts.1 Numerous epidemiologic studies have observed associations 

between exposure to UOG activity (or combined UOG and conventional development) and 

adverse health endpoints, including birth outcomes, respiratory symptoms, and cancer.2–5 

Many of these studies used rigorous, high-quality designs and methods, yielding high 

confidence in the evidence for certain health outcomes (e.g., adverse birth outcomes).2,6 

However, these studies also used spatial surrogates (models that predict exposure potential 
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based upon proximity to a contaminant source) to estimate exposure to UOG activity 

rather than environmental or biological measurements. Spatial metrics are useful in health 

studies because they enable exposure estimation across a large population, can be applied to 

etiologically relevant time windows occurring in the past, and serve as an aggregate measure 

when the specific etiologic agent is not known or exposure to multiple hazards is possible. 

An important knowledge gap is the lack of understanding of which exposures are being 

captured by these metrics.7 Examining which specific etiologic agents or stressors are being 

captured by these metrics in smaller exposure studies can illuminate mechanisms underlying 

observed epidemiologic associations, inform mitigation strategies, or guide monitoring 

efforts.

Exposure to contaminated drinking water is one exposure pathway of public health 

relevance.8,9 UOG development is a complex, multiphase process with potential for 

chemical releases to water at several points. Hydraulic fracturing involves pressurized 

injections of millions of liters of water, chemicals, and proppant into horizontal wells to 

break and hold open the low-permeability rock, allowing natural gas to flow up the well 

for capture at the surface.10 This process generates 1.7–14 million liters of wastewater 

over the first 5–10 years of production, varying by region and producing formation.11,12 

Hundreds of chemicals have been reportedly used in injection water or detected in 

wastewater, including metals, volatile organic compounds (VOCs), and polycyclic aromatic 

hydrocarbons.13–15 Many of these chemicals are associated with adverse health outcomes 

in epidemiologic studies, such as reproductive and developmental toxicity and cancer.16,17 

Water contamination has been suggested to occur through improper management or 

structural failure of wastewater injection wells18–20 or through surface spills and releases 

of fracturing fluids or wastewaters that percolate into groundwater.18,21–26 PA alone 

experienced 1300 reported spills related to UOG from 2005 to 2014,27,28 and the PA 

Department of Environmental Protection (PADEP) received 4099 oil- and gas-related water 

supply complaints from 2004 to 2016, leading to 215 confirmed instances of UOG-related 

impairments (“positive determinations”).29 While specific localized water impairments have 

been documented, many studies have found no or limited evidence of regional impacts to 

water quality.30–33 Furthermore, the human exposure potential from water-related pathways 

is not well-understood.

While both surface water and groundwater are vulnerable to contamination from UOG 

operations,30–33 we focus on groundwater in this study. Approximately 50% of wells 

hydraulically fractured in Ohio (OH) and PA are located within 2 km of a domestic 

groundwater well,34 and approximately 50% of the residents in our predominantly rural 

study counties rely on groundwater from domestic wells.35,36 Domestic wells are not subject 

to federal regulations and monitoring37 and may be vulnerable to contamination due to 

their potential shallow depths and lack of continuous casing.38 Numerous groundwater 

monitoring studies have been conducted in the Appalachian Basin, primarily with the 

goal of evaluating UOG impacts to groundwater rather than conducting human exposure 

assessment.15,39–42 Several studies applied metrics related to topography, geology, and/or 

distance to UOG wells to evaluate potential impacts to potable groundwater supplies. 

However, few have used the density metrics common in human health studies. In addition, 

while many studies have evaluated methane, noble gases, and anions/cations, comparably 
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fewer have focused on UOG-related constituents hazardous to human health (e.g., benzene 

and phthalates).15,43 A previous pilot study conducted by members of our research team 

in OH in 2016 reported associations between detections of several health-relevant organic 

chemicals in drinking water samples and proximity metrics in 66 homes.44 The current 

study builds upon this pilot by quantifying 64 organic and inorganic chemicals in 255 

homes served by groundwater in PA and OH. Study homes lie over both the Marcellus and 

Utica shale plays, allowing for comparisons between areas with distinct differences in UOG 

activity and geology. The objective of this study was to assess the relationship between five 

spatial surrogates of UOG exposure, including one novel groundwater-specific metric and 

groundwater detections and concentrations of chemicals that have reportedly been used or 

produced by UOG. Given the widespread concern over water contamination and the findings 

from the epidemiologic literature, understanding how and if current exposure surrogates are 

capturing this potential exposure can inform both interpretation of health studies and more 

effective policies to protect public health in the face of uncertainty.

METHODS

Study Setting and Population.

This analysis is part of the Yale WATer and Energy Resources (WATER) Study, which 

focuses on groundwater quality issues in actively drilled areas of the Appalachian Basin 

(Figure 1). The PA field study was conducted primarily in Bradford County (n = 1529 active 

UOG wells present in the county between July and September 2018).45 The county also 

has the highest number of “water supply determinations” (confirmed instances of drinking 

water impacts by oil and gas activity), with 63 reported by the PADEP between 2001 and 

2020.46 For OH, we sampled primarily from Belmont and Monroe Counties (n = 598 and 

431 active wells per county from May to August 2019, respectively). A few participants 

living in neighboring counties were included if their zip code intersected with the primary 

county (PA: n =5 in Tioga County and OH: n = 6 in Noble or Guernsey County).

To reach a broad range of people, multiple methods were used to recruit participants, 

including informational postcards, flyers posted at local businesses, social media, and 

newspaper advertisements. Prospective participants who responded to our recruitment 

methods were screened for eligibility via phone by study staff, and if eligible, scheduled 

for a home visit (see the Supporting Information, Study Zip Code Selection and Participant 

Recruitment Criteria). Study eligibility consisted of being an adult household decision-

maker (≥21 years of age), English-speaking, and living in our selected counties in a 

home served by a private groundwater well or spring. The study protocol was approved 

by the Institutional Review Board of Yale University (HIC #2000021809) and reviewed 

and approved by the US Environmental Protection Agency (HSR-001162). All participants 

provided informed consent prior to data collection activities.

Home Visit Overview.

Home visits included administration of informed consent, water sampling, measurement of 

geocoordinates, and an interview. We completed 94 home visits in PA between July and 

September 2018 and 161 in OH between May and August 2019. We collected latitude 
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and longitude at the front door of each home to accurately measure home location 

(Garmin eTrex 10).47 Trained interviewers administered a structured questionnaire with 

three sections: home characteristics, water source characteristics [e.g., treatment system(s) 

and well depth] and use patterns, and demographic characteristics (e.g., race/ethnicity 

and household income). Participants were mailed a report comparing their drinking water 

measurements to health- and aesthetic-based drinking water standards as available and 

provided state-specific information on water quality and testing.

Water Sample Collection and Analysis.

Water samples were collected upstream of any home water treatment/filtration devices 

to represent the maximum potential exposure and obtain the best representation of 

groundwater. Prior to sampling, the well or spring was purged until temperature, pH, 

conductivity, and dissolved oxygen were stable.48 Daily field blanks were collected using 

purified Milli-Q water (18 MOhm, UV-treated for total organic carbon reduction) to identify 

any contamination introduced by collectors, supplies, or sample transportation. Water 

samples were analyzed for a broad range of organic and inorganic chemicals reportedly 

used or produced by UOG activity with the evidence of human health effects or issues 

related to color, taste, or odor, hereafter referred to as “target chemicals” (Table S1).16,49 

Although linked to UOG processes, some chemicals have natural or other anthropogenic 

sources. Our VOC analysis followed U.S. Environmental Protection Agency (USEPA) 

Method 624, with minor modifications previously described by Getzinger et al.50 Chemicals 

with peaks that were not able to be differentiated were reported together (e.g., benzene 

and 1,2-dichloroethene). Samples for inorganic elements were collected following the U.S. 

Geological Survey groundwater sampling protocol.51 Major cations and dissolved iron were 

quantified by inductively coupled atomic plasma emission spectrometry. Major anions and 

remaining trace elements were quantified using ion chromatography and inductively coupled 

plasma mass spectrometry, respectively. For details, see the Supporting Information (Water 

Sampling and Analytical Methods).

UOG Data Sources.

We assembled a database of UOG wells for PA, OH, and West Virginia (WV) that were spud 

prior to sample collection (May 1, 2018 for PA and May 1, 2019 for OH and WV wells). 

Locations and activity characteristics of UOG wells were obtained from PADEP’s Office of 

Oil and Gas Management (2000–2020), OH Department of Natural Resources’ Risk-Based 

Data Management System (1924–2019), and WV Department of Environmental Protection’s 

Offce of Oil and Gas (1985–2019). WV wells were included in the OH proximity metrics 

when the buffer area around OH homes extended across state boundaries. Data were quality-

checked and cleaned to remove duplicates, resolve missing data, fix structural errors, and 

harmonize variables over multiple years and across states.

Calculation of Spatial Metrics.

Using UOG well location data from our database and geocoordinates collected at participant 

homes, we constructed four previously applied metrics and one newly applied metric 

capturing proximity and/or density of UOG wells in relation to participant residences.
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These included

i. number of UOG wells within a buffer zone,

ii. distance to the nearest UOG well,

iii. inverse distance weighted (IDW) well count [represented by 
i = 1

n 1
di

 for all UOG 

wells within a buffer zone (n), where di = distance between the ith UOG well and 

a residence],

iv.
inverse distance-squared weighted (ID2W) well count (represented by 

i = 1

n
1

di
2

for all UOG wells within a buffer zone), and

v. a topographically driven groundwater flow-based inverse distance metric IDups 

(1
u  where u = distance to the nearest upgradient UOG well), determined using 

the D-infinity flow direction algorithm,52 first applied within the UOG context 

in Soriano Jr. et al.53 This metric is based on the widely accepted conceptual 

model that groundwater flow in regions of hill-and-valley topography occurs in 

the downhill direction, parallel to the topographic gradient.54

Distance to the nearest UOG well, IDW, and ID2W metrics was constructed using the 

Euclidean distance between each participant’s home and surrounding eligible UOG wells 

within 2, 5, and 10 km (ArcGIS 10.8.1). We selected these buffer sizes based on the 

hydrogeologic literature, which generally supports transport distances of 2 km or less55–57 

and the epidemiologic literature, which incorporates buffer distances up to 10 km.2 For 

IDups, which was specific to the groundwater exposure pathway, we explored buffer sizes of 

0.2, 0.3, 0.5, 1, and 2 km.53,58 Additionally, IDups buffers are applied around delineated flow 

paths from UOG well locations and not around participant homes. For all metrics except 

distance to the nearest UOG well, having no wells within the relevant buffer zone yields a 

value of zero.

Statistical Analysis.

We summarized the characteristics of the population (e.g., race/ethnicity and gender) 

and sampled residences (e.g., drinking water well depth) and compared the distribution 

of these factors between states. We calculated detection frequencies (see the Supporting 

Information, Water Sampling and Analytical Methods) and summary statistics for chemical 

concentrations in water samples and compared them to standards from the USEPA and the 

World Health Organization (WHO). Spatial metrics were evaluated using three approaches: 

comparing exposure assignments produced by each metric with the other metrics, comparing 

metrics with chemical detections in drinking water, and comparing metrics with chemical 

concentrations in drinking water. We assessed the relationships among the metrics using 

Spearman correlations, calculated separately for each state. We used logistic regression to 

evaluate the odds of detecting target chemicals (detected in at least 20% of samples) in 

drinking water in relation to the metrics. We assessed correlations between metrics and 

concentrations of chemicals in drinking water using scatterplots and Spearman correlations. 

Finally, we used linear regression to identify associations between the concentrations 
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(continuous, μg/L) of target chemicals in drinking water and metrics. Correlation and 

linear regression analyses of chemical concentrations were restricted to chemicals with 

a detection frequency of at least 50% and/or a twofold difference between the 75th and 

25th percentiles to ensure sufficient variability in the data. Measurements below the limit 

of detection (LOD) were substituted with LOD/ 2 (see the Supporting Information, Water 

Sampling and Analytical Methods). Separate models were run for each chemical and metric. 

For our regression analyses, we considered variables from the home interview as potential 

covariates. We used metrics with 0.5 (for IDups only), 1, and 2 km buffer sizes, informed 

by and to facilitate comparisons with the hydrogeological and epidemiologic literature 

studies.55,58 Metrics were used continuously (distance to the nearest UOG well, per km), 

categorically and high/low (above and below the median level of exposure; IDups, IDW, and 

ID2W), and as discrete data (sum of wells within a buffer).

RESULTS

Study Population and Water Source Characteristics.

The characteristics of our study populations in both PA and OH (Table 1) were similar 

to the 2019 U.S. Census characteristics for their respective counties with respect to 

age, race/ethnicity, and income; educational attainment was slightly higher among study 

participants.59 The majority of participants had a private well (79%) with few being served 

by a spring (10%) or both a well and spring (11%) (Table 1). Drinking water wells tended to 

be shallower in OH compared to those in PA (χ2 p-value <0.001). Private wells and springs 

were the primary drinking water source for most households (77%), while 22% relied on 

bottled water and 1% on another source. A slightly higher percentage of PA versus OH 

participants reported their water ever having an unnatural color (35 vs 25%) or taste (19 vs 

15%) (χ2 p-values = 0.080 and 0.039, respectively). In PA, the mean distance to the nearest 

well was 1.15 km (range = 0.15–4.03 km), and on average, homes had 7.80 UOG wells 

within 2 km and 52.38 within 5 km. In OH, study homes were on average 2.03 km from a 

UOG well (range = 0.30–7.31 km), with an average of 4.72 UOG wells within 2 km and 

31.94 within 5 km.

Distributions of Chemicals in Residential Drinking Water.

Of the 47 organic compounds measured, 10 were detected in at least 20% of PA 

homes (Table 2) with the following most commonly detected: bromochloromethane 

(detection frequency = 97%), chloroform (76%), 1,2-dichloroethene and benzene (75%), 

and trichloroethene (75%). In OH, six organic chemicals were detected in at least 20% of 

homes (Table 2), where the most frequently detected organics were bromomethane (67%) 

and vinyl chloride (57%). While some organics (e.g., toluene) were detected more frequently 

in PA versus OH, the detected concentrations were generally several orders of magnitude 

below maximum contaminant limits (MCLs) or guidance values (GVs), were often clustered 

near the LODs and LOQs, and exhibited limited variability with interquartile ranges (IQRs) 

spanning less than 1 order of magnitude. No organic chemicals exceeded health-based 

MCLs in either state.
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All 17 inorganic chemicals measured were detected in at least 20% of PA homes (Table 

2). The most frequently detected inorganic chemicals were barium, chloride, lithium, 

strontium, sulfate, sodium, and potassium (all 100% of homes), calcium and magnesium 

(99%), lead (96%), manganese (91%), uranium (85%), and arsenic (81%). In OH, all 

inorganic chemicals except for arsenic, lead, and uranium were detected in at least 20% of 

homes (Table 2). Arsenic and lead were much less commonly detected in OH (8 and 12%, 

respectively) than those in PA (81 and 96%, respectively). Although rare, MCL exceedances 

were observed in some PA or OH study homes for arsenic, lead, barium, fluoride, and 

nitrate.

Correlations among Spatial Surrogates.

Patterns in Spearman correlation coefficients among metrics were similar for PA and OH 

(Figure 2). For both states, IDW and ID2W metrics were strongly correlated with all buffer 

sizes (ρ ≥ 0.70). Distance to the nearest UOG well was inversely correlated with IDW 

metrics (range ρ = − 0.28 to − 0.75 in PA and − 0.62 to − 0.71 in OH) and ID2W metrics (ρ 
= − 0.66 to − 0.86 in PA and − 0.48 to − 0.55 in OH) at all buffer sizes. Note that distance 

to the nearest UOG well is the only metric for which a lower value indicates higher UOG 

exposure potential. In PA, the strength of the correlations between distance to the nearest 

well and IDW and ID2W metrics decreased as buffer size increased. This attenuation was 

not observed for OH, where UOG wells were farther away from homes on average (mean 

= 2.03 km in OH vs 1.15 in PA). The novel IDups metric was most strongly correlated with 

distance to the nearest UOG well (ρ = − 0.43 to − 0.67) in PA and most strongly correlated 

with the ID2W metrics in OH (ρ = 0.69–0.72). The UOG well counts in buffer sizes were 

most strongly correlated with IDW metrics of the same buffer size (ρ = 0.91–0.95 in PA and 

0.82–0.91 in OH).

The top section shows Spearman correlation coefficients among OH metrics. The bottom 

section shows Spearman correlation coefficients among PA metrics.

Associations between Organic Chemicals and Spatial Surrogates.

For organic chemicals, regression analyses were limited to modeling detection frequencies 

due to relatively low concentrations and limited variability within the data. In logistic 

regression models for PA, the odds of detecting four organics (1,2-dichloroethene and 

benzene, bromomethane, toluene, and m- and p-xylene) were positively associated with 

higher UOG exposure potential based on at least one metric (Table 3). The odds of detecting 

1,2-dichloroethene and benzene combined were associated with four of six metrics. The 

odds of detecting 1,2-dichloroethene and benzene were 0.46 times lower for each additional 

km between a UOG well and a home (95% confidence interval [CI]: 0.23–0.93), 2.59 

times higher in the high exposure group (exposure level above the median) for IDups 

and IDW 2 km (95% CI: 1.01–6.67 for both metrics), and 3.29 times higher in the high 

exposure group for ID2W 2 km (95% CI: 1.25–8.66). The odds of detecting bromomethane 

were elevated in the high exposure group for IDups 1 km (odds ratio [OR]: 2.55, 95% 

CI: 1.06−6.13); associations with other metrics were inconsistent in direction (IDups 0.5 

km, IDW and ID2W2 km) and statistical significance (distance to the nearest, IDups 1 

and 2 km). The odds of detection of toluene decreased with increasing distance between 
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UOG well and home (OR: 0.52, 95% CI: 0.27–1.03) and increased in the high exposure 

group for one metric, IDups 1 km (OR: 2.67, 95% CI: 1.07–6.45). The odds of detecting 

toluene were elevated for three other metrics (IDups, IDW, and ID2W 2 km). The odds 

of detection for m- and p-xylene decreased with increasing distance to the nearest UOG 

well (OR: 0.28, 95% CI: 0.10–0.80) and were consistently elevated across inverse distance 

metrics. Spearman correlation coefficients between concentrations of organics with at least 

50% detection frequency ranged from −0.02 to−0.27 in PA and were consistent with 

regression results (see Figure S1), particularly for 1,2-dichloroethene and benzene, toluene, 

and bromochloromethane.

In contrast to results from PA, in OH, the odds of detection of toluene were higher in homes 

with lower UOG exposure potential based on four of six metrics (Table 3). The odds of 

toluene detection were 1.54 times higher for each increasing kilometer of distance between 

a home and the nearestUOG well (OR: 1.54, 95% CI: 1.17–2.03). Results were consistent 

in direction across IDups, IDW, and ID2W metrics up to the 2 km buffer size. No other 

organic chemicals were associated with any metric. The concentrations of the two chemicals 

meeting our criteria for the correlation analysis (bromomethane and vinyl chloride) were not 

correlated with distance to the nearest UOG well (Figure S1).

Associations between Inorganic Chemicals and Spatial Surrogates.

In PA and OH, most inorganic species were not correlated or weakly correlated with 

metrics (ρ range: ±0.00–0.28). Concentrations of some inorganics were correlated with 

increasing UOG proximity and density (e.g., chloride, bromide, and fluoride), while others 

were inversely correlated with UOG exposure (e.g., calcium, iron, sulfate, magnesium, and 

manganese) (see Supporting Information, Table 1). Bivariable linear regression results were 

consistent with the correlation analysis.

DISCUSSION

In this multistate exposure study in Appalachian Basin counties with a high UOG activity, 

we provide data on detection frequencies and concentrations of 64 organic and inorganic 

chemicals and compared them with spatial surrogates of UOG exposure commonly used 

in health studies. We also applied a new spatial surrogate specifically designed to capture 

exposure via the groundwater pathway.52,53 Organic chemicals were not commonly detected 

and were present at concentrations below health-based standards in both states. Nonetheless, 

some chemicals had greater odds of detection with increasing UOG exposure proxies. 

Inorganic chemicals, many of which have geologic and anthropogenic sources, were 

commonly detected at concentrations below MCLs, with a few exceedances observed. The 

concentrations of inorganic species were generally unrelated to UOG exposure surrogates or 

were higher in residences with lower exposure potential.

The low detection frequencies and concentrations of organic chemicals are consistent with 

other groundwater monitoring studies in the area in that, to our knowledge, no study to date 

has found widespread contamination attributable to UOG activity.15,39,43,44,60 The results 

of this study are concordant with the previous pilot study in the Appalachian Basin in 

regard to low levels of organic contaminants overall.44 Another study of Northeastern PA 
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reported benzene and other VOCs in only 10% of samples,15 while we detected benzene 

combined with 1,2-dichloroethene more frequently (75% of homes) at comparably low 

concentrations. A study of 11,156 predrill PA groundwater measurements reported higher 

benzene concentrations than our study (range: 0.25–7.88 μg/L), although it was detected 

less frequently (12%).43 Similarly, a previous OH study detected benzene in 7% of samples 

(range: 0.3–1.2 μg/L).44 While we detected benzene and 1,2-dichloroethene in 24% of OH 

homes, the concentrations were similar (range: <0.09−2.73 μg/L). Our higher detection 

frequencies may be explained by differences in sample collection, method sensitivity, and 

reporting of some chemicals as groups when chromatographic peaks were unresolvable. 

Ultimately, the relatively low concentrations and variability limited the types of statistical 

analyses we could conduct. Despite low concentrations and detection frequencies, detections 

of 1,2-dichloroethene and benzene, bromomethane, toluene, and m- and p-xylene were 

associated with spatial metrics. Most indicated increased odds of detection with increasing 

UOG exposure, and associations were consistent across all metrics except for IDups 0.5 

km. Exposure to benzene is of particular public health concern due to its leukemogenic 

properties.61,62 In addition to being detected in other groundwater studies, elevated benzene 

exposures have been observed in communities proximate to oil and gas activities based on 

air63,64 and biological samples.65

Detection frequencies and concentrations of inorganic chemicals were consistent with 

existing monitoring data from the area.35,66 While concentrations of inorganic species in 

this study were generally below MCLs, exceedances were observed for arsenic (a known 

carcinogen), barium (a cardiovascular toxicant), nitrate (a probable carcinogen), and lead (a 

neurotoxicant).67–69 Lead was detected frequently in PA (96% of samples), and while lead 

has a health-based MCL, no concentration of lead is thought to be safe.68 Some inorganic 

species varied substantially in detection frequency and concentration by state (e.g., arsenic), 

which may reflect differences in the mineralogic composition of drinking water aquifers 

and their overlying sediments, as well as differences in groundwater flow patterns and 

associated differences in water–rock interaction times.70–72 Our results indicate generally 

either inverse or no associations between concentrations of inorganic chemicals and UOG 

exposure metrics, even those accounting for hydrogeological pathways.

The low chemical concentrations and limited associations with spatial metrics could be 

due to several factors. UOG-related contamination events could occur with low frequency 

or be transient.24,73 Thus, individual groundwater samples collected at one point in time 

may be unlikely to capture a contamination event. In addition to these temporal constraints, 

physically based transport modeling work conducted under this project demonstrated that 

the longitudinal extent of the probabilistic capture zones (the area from which a drinking 

water well likely draws its groundwater) around the PA homes was generally smaller than 

distances to the nearest UOG wells (<1.6 km with a median of 0.86 km).55,74 Therefore, 

the appropriate buffer sizes when considering water quality impacts may be considerably 

smaller than those traditionally applied in health studies, which are designed to capture 

a range of possible environmental stressors. Additionally, the multiple natural, industrial, 

and other sources make it difficult to link the occurrence of particular inorganic chemicals 

to UOG activity.75,76 Studies focused on source apportionment use other methods, such 
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as ratios of inorganic ions (e.g., bromide/chloride), as potential indicators of UOG-related 

contamination.77,78

The limited associations between spatial metrics and chemical concentrations could indicate 

that to optimize metrics for the water pathway, more complex models incorporating 

groundwater flow, water source vulnerability, contamination release information, and 

contaminant transport are needed. Additionally, these results may reflect the need for 

measurements at multiple times. For example, episodic exposures could occur during 

phases of hydraulic fracturing or high production. Studies coordinating the timing of 

sampling events with production stages are rare.41 They are made difficult by the lack 

of contemporaneous, publicly available information on UOG activities at specific well pads 

and complicated further by the temporal lag between chemical release and appearance at 

receptor locations. Because domestic groundwater is not routinely monitored, there are 

limited existing data with which to examine issues of temporality.

Although more specific hydrogeological models may be better suited to predicting UOG-

related groundwater vulnerability, regulatory protections such as setback distances are based 

on simple spatial relationships, such as distance from home or school to the UOG site. 

Therefore, using and understanding these simpler metrics provide value to researchers, 

government organizations, and community stakeholders. The mandatory setback distance 

between a UOG well and homes or private drinking water wells is 152 m (500 ft) in PA and 

46 m (150 ft) in OH.79,80 Updates to these distances are the subject of debate and are being 

informed in some states by exposure and the epidemiologic literature.6,81–85

Our survey data indicated areas for consideration for future exposure or health studies. 

Only 6% of homes had their private wells tested at least once per year, and 28% had 

never tested their water. Given the lack of regulatory oversight and monitoring of domestic 

groundwater wells,37 testing and reporting drinking water results in this research context had 

the added benefit of informing residents about the safety of their water.86 Additionally, 

22% of participants reported primarily consuming bottled water instead of their well 

water, underscoring how individual behavior may influence exposures. This also indicates 

individual and community concern over water quality, which can contribute to negative 

mental health outcomes, such as psychosocial stress.87–92

The UOG metrics we evaluated have yielded significant associations with adverse health 

outcomes in epidemiologic studies.2 While we cannot discount the potential importance of 

the drinking water pathway for public health, our results suggest that these metrics may 

be reflecting other stressors or a combination of stressors not measured here (e.g., air 

pollution and noise).13,22,50,79–81 Given the complexity of UOG exposure, specific models 

may be needed to explicate distinct exposure pathways. For example, Casey et al. (2016) 

introduced an activity-based inverse distance-squared weighted metric where the numerator 

varies by the UOG phase.93 Allshouse et al. (2017) introduced an activity-based metric to 

assess exposure to UOG-related air pollution.94 Furthermore, recent studies have applied 

exposure models specific to flaring (the intentional burning of natural gas),95 earthquakes,96 

and radioactivity.97 As new models and metrics are developed, researchers can consider 
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the benefits and trade-offs of pathway-specific versus aggregate models for optimizing their 

exposure assessment approach.

In our study, spatial surrogates exhibited limited associations with detections and 

concentrations of target chemicals. This may indicate that water contamination by UOG may 

occur with low frequency and/or be episodic, creating a temporal misalignment between 

our measurements and exposures, and/or water contamination may be highly localized, and 

more complex groundwater flow and contaminant fate models or more specific information 

on spills, leaks, and violations may be needed to accurately capture drinking water exposure. 

Given the complexities of water contamination and exposure pathways, spatial metrics in 

epidemiologic studies may be better representing other environmental UOG stressors. More 

complex models and groundwater monitoring data could provide insights into the drinking 

water exposure pathway and would have a high value to ensure the protection of public 

health.
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Figure 1. 
Sampling locations in Bradford County, PA (A) and Belmont and Monroe Counties, OH (B). 

Gray diamonds represent sampling locations; red circles represent active UOG wells. Home 

locations were randomly geodispersed (offset) by 0.1 km for privacy.
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Figure 2. 
Spearman correlations between spatial metrics in PA and OH.
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