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SUMMARY

The complex functions of neuronal synapses depend on their tightly interconnected protein 

network, and their dysregulation is implicated in the pathogenesis of autism spectrum disorders 

and schizophrenia. However, it remains unclear how synaptic molecular networks are altered 

biochemically in these disorders. Here, we applied multiplexed imaging to probe the effects 

of RNAi knockdown of 16 autism- and schizophrenia-associated genes on the simultaneous 

joint distribution of ten synaptic proteins, observing several protein composition phenotypes 

associated with these risk genes. We applied Bayesian network analysis to infer hierarchical 

dependencies amongst eight excitatory synaptic proteins, yielding predictive relationships that can 

only be accessed with single-synapse, multiprotein measurements performed simultaneously in 
situ. Finally, we found that central features of the network are affected similarly across several 

distinct gene knockdowns. These results offer insight into the convergent molecular etiology 

of these widespread disorders and provide a general framework to probe subcellular molecular 

networks.

INTRODUCTION

The functional complexity of the brain is enabled by trillions of chemical synapses that 

form connections amongst its ~1011 neurons. Each synapse is capable of analog computation 
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that integrates its activity history, chemical environment, and the state of its pre- and post-

synaptic neurons to modulate communication through synaptic plasticity. This computation 

is achieved1 in large part by the synaptic molecular network, a dynamic, compartmentalized 

biomolecular system of hundreds of proteins2–4 that includes constantly varying levels 

and activity states of receptors, scaffolding proteins, kinases, and other protein types. This 

proteomic diversity likely underlies the remarkable cell- and context-specific functional 

diversity even amongst synapses of the same type5,6. Numerous studies have revealed 

mechanistic connections between two or three synaptic components at a time, providing 

the foundation to integrate these connections into a broader context of many-component 

networks. However, due to the high complexity and interconnectedness of such networks, 

this integration requires simultaneous single-synapse measurement of numerous proteins, a 

technique we previously developed and applied to analyze synapse compositions7.

The synaptic molecular network is tightly connected to cognitive disorders, with 

synaptogenesis and plasticity increasingly appreciated as molecular targets for psychiatric 

treatments8–10. Accumulating evidence also points to synaptic biochemistry as a focal 

point of the pathophysiology of psychiatric, neurodevelopmental, and neurodegenerative 

diseases11–17. Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two such 

conditions that manifest in a range of specific higher cognitive symptoms that range 

in intensity from healthy neurodiversity to debilitating brain dysfunction. These latter 

conditions typically include changes in social and communication behavior18,19, altered 

perception and sensory habituation, including self-stimulatory behavior19–22, adherence 

to patterns and focused interests19, impaired language acquisition and use18,23, as well 

as general intellectual disability24,25 and psychosis26. While divergent in symptom 

presentation, they are often studied genetically in the same context due to similarities in 

risk genes and possible functional and pathological associations27–29.

Both ASD and SCZ are highly heritable30,31 and genetically heterogeneous32–34, with many 

identified risk genes, including rare, highly penetrant de novo mutations35 as well as many 

common variants that contribute small increases in risk. Thus, a central question is whether 

the genetic variants that increase risk for ASD or SCZ share similar downstream molecular 

etiologies, and if so, what are their mechanisms. Genome-wide association studies and rare 

variant sequencing studies have revealed the prevalence of synaptic genes11,12,17,29,36–41, 

including adhesion, scaffolding, ion channel, and local translation control proteins, as well 

as transcription factors upstream of them, among those associated with ASD and SCZ42–46. 

Additional evidence points to consistent changes in synaptic structural and functional 

features including dendritic spine morphology47 excitation/inhibition ratios48–51, and global 

features of gene expression and protein interaction networks11,17,52,53, which are common to 

different genetic models. Research that implicates perturbations in brain-wide connectivity 

patterns54,55, possibly related to deficits in predictive processing capacity56, supports the 

notion that a fundamental synaptopathology expressed variably throughout the brain may 

contribute to these disorders13. Physical protein-protein interaction approaches such as Y2H 

and CoIP52,53 have established interaction networks involving synaptic proteins and their 

changes in vivo in autistic individuals and autism models, demonstrating the promise of 

studying the synaptic molecular network as a focal point of autism pathogenesis. However, 

Falkovich et al. Page 2

Cell Rep. Author manuscript; available in PMC 2023 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these studies fall short of measuring changes to joint distributions of protein expression 

levels or identifying perturbed causal connections between relevant proteins.

To characterize how synaptic molecular composition is affected across genetic perturbations 

associated with ASD and SCZ, we applied RNAi-mediated knockdown of 16 canonical, 

highly penetrant risk genes associated with either ASD, SCZ, or both, at the onset of 

synaptogenesis. Once a mature and stable synapse population was established in each 

genetic context, we measured the amounts of each of ten synaptic proteins across individual 

synapses using Probe-based Imaging for Sequential Multiplexing (PRISM)7,57,58. PRISM 

is a recently introduced multiplexed imaging technique that uses single-stranded DNA 

(ssDNA)-conjugated antibodies or peptides against desired targets, that are confocally 

imaged sequentially using fluorescently labeled single-stranded locked nucleic acid (ssLNA) 

imaging probes. The affinity of imaging probes for their targets depends on ionic strength, 

allowing sequential rounds of imaging of multiple proteins in the same sample and fields 

of view by exchanging imaging strands using high- and low-salt buffers. Thus, this imaging 

method provides a combination of extensive multiplexing, moderate throughput, minimal 

disruption to delicate synapse structures, and single-synapse resolution.

The PRISM imaging output consists of images of the same synaptic puncta over numerous 

protein channels. Integrating fluorescence intensity over individual puncta and assigning 

puncta across channels to the same synapse yields individual protein measurements per 

synapse7,57. We refer to the total integrated fluorescence intensity per protein at a given 

synapse as the local synaptic protein level. With this approach, in a single experiment, 

we can generate a type-resolved systematic view of protein level changes caused by 

different genetic knockdowns, as well changes to distinct, compositionally defined synaptic 

populations, as previously performed in response to chemical perturbations57. In the current 

study these changes included a global synaptic protein increase with knockdown of Pten, 

differential changes in response to Cul1 knockdown, a potentially compensatory increase 

in synaptic PSD95 with knockdown of Grin2a, and several unique synaptic phenotypes 

resulting from Dyrk1a knockdown.

Leveraging the unique ability of single-synapse, multiprotein measurements from PRISM to 

provide a high-dimensional joint probability distribution (PD) of synapses in composition-

space, we additionally sought to infer the synaptic protein influence networks that generated 

the measured protein distributions. Toward this end, we used Bayesian network (BN) 

inference, a tool previously used to reconstruct entire signaling pathways from multiplexed 

single-cell data59. BNs is a framework to factor a joint PD into a product of individual 

conditional PDs. This can be represented by a directed acyclic graph between measured 

nodes, in which graph edges represent direct conditional dependencies between individual 

nodes, i.e., retaining only those connections that cannot be explained by mutual dependence 

on a third node, as well as the estimated causal direction of the pairwise dependencies. In 

this study, each node refers to the local synaptic level of a certain protein. Substructures in 

the resulting model generated testable predictions of causal connections (e.g., the hierarchy 

in which perturbing A affects B and C) between protein levels, some of which were 

consistent with known protein roles and interactions, and others that were discovered anew 

to the best of our knowledge.
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In particular, the causal chain by which F-actin determines post-synaptic PSD95 levels, 

which in turn determines post-synaptic SHANK3 levels, we validated independently via 

direct perturbations, thereby establishing a new causal hypothesis that shapes synaptic 

protein distributions and, by confirming a novel prediction presented by the model, 

generating confidence in the new model as a whole. Finally, we present evidence for 

convergent changes in the inferred synaptic molecular network that are caused by distinct 

genetic knockdowns, specifically in the strengths of trans-synaptic and intra-postsynaptic 

edges, offering evidence for a convergent molecular etiology across ASD/SCZ-associated 

genes.

RESULTS

Effects of ASD- and SCZ-associated gene knockdowns on the synaptic molecular system

The following core synaptic proteins were characterized using PRISM to provide snapshots 

of the synaptic molecular sub-network (Figure 1A). Synapsin1 was used to define all 

synapses, with vGluT1 and vGAT used to differentiate glutamatergic from GABAergic 

synapses. Other proteins included Bassoon, a central presynaptic scaffolding protein which 

served as a proxy for active zone size60, and the AMPA receptor subunit GluR2, which 

served as an indicator of synapse strength61. Filamentous β-actin (F-actin), measured via 

phalloidin, was included as the core of the dendritic spine cytoskeleton that is locally 

regulated by several ASD/SCZ associated genes (e.g., Trio, Pten and Dyrk1a) and whose 

dysregulation is implicated in various synaptopathologies62,63. Finally, four scaffolding 

proteins were included that have crucial roles in shaping the post-synaptic density: PSD95, 

Homer1a, and SHANK3 in excitatory synapses, and Gephyrin in inhibitory synapses. MAP2 

staining via conventional immunofluorescence was also used to trace dendrites to the degree 

feasible in dense cultures and constrain puncta assignments to synapses, as well as to align 

images from different imaging probe exchange rounds7,57.

For genetic perturbations, ten autism genes (Figure 1B) were chosen as the best-scoring 

targets in the Simons Foundation Autism Research Initiative database64,65 (“SFARI score”), 

half of which are implicated in SCZ as well. Six additional SCZ-specific genes were chosen 

from the highly penetrant de-novo mutations identified by Singh et al.35 A mixture of four 

siRNA reagents was used for each gene, and each siRNA treatment was separately validated 

by RTqPCR for reduction in mRNA levels in cultured hippocampal neurons (figure S1A). 

The siRNA reagents appeared to act more similarly to a small molecule treatment than a 

transfected gene, with transfection universal (>99% of cells) and concentration-dependence 

occurring even at low doses (figure S1D–F). A non-targeting siRNA mix (“NonT”) was 

included as a negative control and used for treatment comparisons throughout results.

To measure the effect of each gene knockdown on synaptic protein distribution we treated 

hippocampal neuronal cultures at day-in-vitro (DIV) 6 with one of the corresponding siRNA 

reagent mixes and fixed the cultures at DIV 19 to image using PRISM (see STAR Methods). 

We integrated an automated liquid handling platform for probe exchange to complete seven 

imaging rounds of the same 60 cultures (3–4 per treatment group) in under 12 hours. The 

resulting fluorescent images of the same synapses across imaging rounds (figures 1C and 

2A) were automatically segmented, classified, and quantified using CellProfiler66,67 (see 
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STAR Methods). We combined data from N=4 such experiments, where each used E18 

embryonic neurons from a different pregnant rat, for a total of 3.5×106 11-protein synaptic 

measurements across 220 separate neuronal cultures in 18 treatment groups. To account 

for variability in staining and imaging conditions between experiments, images in each 

experiment were manually adjusted to the average intensity of that channel in untreated 

cultures of the same plate.

Automatically segmented puncta, identified as above-threshold intensity peaks within a size 

range (see STAR Methods) in each protein channel, were assigned to specific individual 

synapses based on overlap with Synapsin1 puncta (see STAR Methods). The existence of 

a punctum in a protein channel assigned to a specific synapse was taken as the presence 

of that protein in the synapse, and the integrated fluorescence intensity of a certain protein 

channel across its synapse-associated punctum was assumed to be proportionate to the total 

level of that protein in the synapse. Based on these data, we first examined the individual 

effects of different siRNA treatments on three global parameters—excitatory:inhibitory (E:I) 

synapse ratio (figure 2B), fraction of GluR2-negative excitatory synapses68 (figure 2C), and 

dendrite growth, measured as overall area stained by MAP2 (figure 2D). E:I synapse ratio, 

implicated previously to be dysregulated in ASD and SCZ48, was calculated as the ratio of 

(+vGluT1, −vGAT) to (−vGluT1,+vGAT) synaptic puncta. This ratio was on average ~5:1 

and was significantly increased in knockdown of Dyrk1a, consistent with reports of inverse 

correlation of Dyrk1a expression to E:I ratio in vivo49. It also increased in knockdown of 

Grin2a, Shank3 and Chd8.

Next, by examining the average levels of each measured protein across synapse populations, 

we created a map of how the synaptic levels of each protein were on average affected 

by each treatment (figure 2E). Beyond this overall characterization, we observed several 

novel synaptic phenotypes, the strongest of which included: (a) two-fold increase in 

Homer1a under knockdown of Setd1a, a nuclear regulatory lysine methyltransferase, while 

knockdown of Setd5, a gene of the same family, decreased Homer1a; (b) 80% increase in 

synaptic F-actin after knockdown of Cul1; other proteins including Synapsin1 are decreased; 

(c) knockdown of Grin2a leading to a ~70% increase in PSD95, as well as increases in other 

proteins including Homer1a, GluR2 and Bassoon; (d) A twofold decrease in synaptic F-actin 

following knockdown of Dyrk1a, accompanied by decreases in other proteins including 

Bassoon and Homer1a; and (e) knockdown of Trio leading to a decrease in synaptic F-actin 

and SHANK3.We did not identify significant differential effects on the same protein in the 

context of excitatory versus inhibitory synapses.

The same images could also be used to assess changes in global protein expression 

(figure S2), either somatic (i.e., fluorescence in synapse-excluded neuronal bodies) or total 

(averaged fluorescence over the entire image). Several notable differences from synapse-

specific phenotypes appeared. For example, Cul1 knockdown showed a significant increase 

in synaptic F-actin, but not in global somatic levels, in parallel with both synaptic and 

(stronger) somatic reduction in other proteins, raising the possibility of a compensatory 

connection, in either direction, between an increase in F-actin and reduction in other 

postsynaptic proteins via an unknown mechanism, possibly related to the role of Cul1 in 

regulating SPAR turnover69.
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Some treatment effects in 2E were reported previously or were expected based on pre-

existing knowledge of mechanisms involved. For example, we confirmed that siRNA 

knockdown of Shank3 led to a marked reduction in SHANK3 levels at synapses. 

Knockdown of Pten led to a broad increase in nearly all synaptic markers, consistent with its 

role as a negative regulator of PI3K-dependent neurite and synapse proliferation70.

To support the validity of RNAi with PRISM to reveal phenotypes directly connected 

to gene function, we performed chemical inhibition and knockdown experiments using 

conventional immunofluorescence (figure 2F–I), showing that: (i) treatment with bpV(pic), 

a PTEN phosphatase inhibitor, increased synaptic F-actin and PSD95, mimicking Pten 
knockdown in a dose-dependent manner (2F); (ii) treatment with Harmine, a Dyrk1a 

inhibitor, decreased F-actin, mimicking Dyrk1a knockdown in a dose-dependent manner 

(2G) and also increased the fraction of GluR2-positive synapses (figure S2D–F); (iii) 

knockdown of Shank3 reduced synaptic SHANK as well as mGluR1/5, as previously 

reported71 (2H); and (iv) knockdown of Grin2a increased PSD95 levels and density of 

NMDAR-containing synapses (2I). We also noted that the effects of Dyrk1a inhibition on 

synaptic F-actin and the fraction of GluR2-positive synapses were similar with and without 

application of heat-induced antigen retrieval (figure S2D–E), suggesting that the observed 

phenotypes are likely due to changes in protein content and not antigen accessibility. Finally, 

we noted that the effect on GluR2-positive fraction was similar whether staining for total 

or only externalized GluR2 (figure S2F), indicating that although GluR2-negative synapses 

identified in our screen are not necessarily silent68 and vice-versa (because GluR2 may be 

present but below threshold, or present but not externalized), they may act as a reasonable 

proxy for changes in silent synapse populations.

To test the hypothesis that PSD95 levels respond to mitigate decreased NMDAR presence or 

activity, we treated cultures for either a short time (48 hours) or chronically with NMDAR 

blocker D-APV72 (2I). After the short treatment, NMDAR levels per synapse decreased 

~30%. This effect disappeared after two weeks, accompanied by an increase in PSD95 and 

excitatory synapse density that mimics Grin2a knockdown, consistent with a compensatory 

response.

Multiplexed imaging reveals clusters of hierarchical synaptic protein compositions

We applied Uniform Manifold Approximation and Projection (UMAP)73,74 on the 11-

dimensional dataset of synapse protein levels, yielding the 2D projection in figure 3A of 

different synapse compositions. The distribution of synapses shows distinct clusters defined 

combinatorially by the presence or absence of certain proteins, similar to our previous 

observations57. These included two inhibitory clusters and several excitatory clusters. 

Protein absences that defined certain clusters may have resulted from ‘true’ complete 

absences or merely from levels below threshold. However, we observed similar distributions 

when changing threshold levels for synapse identification (to 75% and 133% of defined 

levels, figure S3), indicating that the clusters arose at least in part from qualitatively different 

synapse compositions.

All treatment groups had synapses in all 9 clusters (figure S4), with some population 

changes between clusters observed as a result of different gene knockdowns (figure 3C 
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and S4). These changes were consistent with the changes observed in mean protein levels 

in figure 2E. For example, Pten knockdown, which increased all excitatory proteins save 

for GluR2, was seen here to enrich cluster #2 (GluR2-negative, positive for all others) at 

the expense of clusters #1 (GluR2-positive) and #6 (F-actin-negative). Nevertheless, they 

provided more detailed information about the specific synapse population changes that 

occurred as a result of gene knockdown.

In addition, we were able to use spatial information to aid in interpreting protein 

combinations. A small fraction of puncta was identified as vGluT1-positive, vGAT-negative, 

and Gephyrin-positive (figure S5A,B), despite Gephyrin being well established as an 

inhibitory synaptic protein75. However, upon closer examination we observed that Gephyrin-

Synapsin puncta distances in that subset were 50% greater than expected (figure S5C), 

leading us to infer that these puncta were probably not associated physically with the other 

excitatory markers, and to exclude them from future analyses.

Finally, we observed that not every combination of proteins was present (figure 3B). For 

example, synapses that were negative for Bassoon or β-actin typically lacked or had very 

low levels of other post-synaptic proteins, indicating a hierarchy in protein dependencies 

on one another, which we sought to characterize systematically using Bayesian network 

inference as previously applied to signaling networks59.

Bayesian network inference of the glutamatergic synapse

All excitatory synaptic proteins were positively correlated with one another (figure 

3D). However, when we examined each pair individually by measuring their correlation 

controlled via stratification for all other six proteins (see STAR Methods), some correlations 

disappeared (figure 3E). This revealed protein pairs that were not directly connected but 

only correlated through their inter-dependence on a third protein, which could be either a 

common effector (A←C→B) or an intermediate (A→C→B). To systematically map which 

causal connections among excitatory synaptic proteins were direct versus indirect, and to 

establish the directionality of their inter-dependence, we derived a Bayesian network from 

the 8-dimensional distribution of protein levels in excitatory synapses.

This approach was first tested on simulated PRISM-like Bayesian networks—high-

dimensional distributions that mirrored real PRISM data but with the distributions of 

variables conditional on one another in predetermined ways (figure 4A,E, see STAR 

Methods for details on network simulation).

To derive the Bayesian networks (figure 4B,F), we applied the ‘tabu’ algorithm of the 

BNLEARN package76 in R that searches model-space in a Monte-Carlo-like manner, 

maximizing an overall score that is based on the likelihood of the data given the 

model76–79. Additional costs to the score were imposed on each edge to prefer simpler, 

more parsimonious models76,79. To estimate confidence levels on the presence of edges 

and their directions, we applied a bootstrapping method that re-derived separate Bayesian 

networks for 50 independent samplings of 10,000 points in the simulated distribution. An 

edge was considered present (and is shown in 4B,F) if it appeared in >80% of bootstrapped 

networks, and a direction indicated (as a unidirectional arrow in 4B,F) if that direction 

Falkovich et al. Page 7

Cell Rep. Author manuscript; available in PMC 2023 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



appeared in >60% of bootstrapped networks where the edge was present. To derive edge 

strengths, shown as arrowhead sizes in figures 4B and 4F, we calculated the correlations 

between the parent and child node when controlling by stratification for all other parents 

of that node79,80. In bidirectional edges, both nodes were considered child nodes for this 

purpose.

This method reconstructed predefined networks with high fidelity. Notably, even when a 

distribution was not generated by a Bayesian network (i.e., it contained cycles, which cannot 

be reflected in a directed acyclic graph but can occur in reality as feedback loops) the 

inference algorithm still reconstructed the general network structure and edge strengths 

with reasonable fidelity, reversing some intra-cycle edges to avoid loops but preserving 

extracyclical edges. Edge strength calculation recovered the original interaction parameters 

(figure 4E) better than using uncontrolled, total correlations (4F).

We applied the above approach to the entire 3.5-million synapse dataset across all treatments 

yielding the network shown in figure 5A. This network exhibited several features that 

were anticipated given our knowledge of the function and connectivity of these proteins. 

For example, the presynaptic proteins Bassoon, Synapsin1 and vGluT1 (the latter two co-

localized in the same synaptic vesicles) appear tightly interconnected, and their correlation 

was independent of the postsynaptic proteins. Of the three presynaptic proteins, Bassoon 

levels were most directly connected to those of the postsynaptic proteins, possibly by acting 

as a proxy for the size of the active zone. Of the postsynaptic proteins, GluR2 was directly 

downstream of PSD95, in accordance with the latter’s role as a dynamic anchor for the 

receptor whose levels dictate the number of sites that can capture diffusing AMPARs on the 

postsynaptic density81. Finally, levels of synaptic F-actin were upstream determinants of all 

other postsynaptic proteins, likely due to the cytoskeletal protein acting as a proxy for the 

size of the dendritic spine, which may limit other protein amounts. Additional, unanticipated 

features included presynaptic Bassoon appearing to influence levels of postsynaptic F-actin, 

PSD95, and Homer1 more than the latter influenced one another, as inferred from network 

edge strengths as defined above.

Importantly, our model also lends itself to testable hypotheses of causal connections derived 

from sub-structures of the network. For example, the position of SHANK3 downstream 

of the other components predicted that they would not be affected significantly by the 

direct perturbation of SHANK3, e.g., by siRNA-induced knockdown. Our screen confirmed 

this (figure 2E, Shank3 line and 2H), consistent with a previous study that used shRNA 

knockdown of Shank3 to show that mGluR5 levels were reduced but other postsynaptic 

proteins were unaffected71. To prevent circular logic (i.e., the presence of the Shank3 

knockdown data in the network generating this prediction) we derived the same Bayesian 

network when excluding the Shank3 treatment group (figure S6), showing that BN inference 

can predict the effects of perturbations that are excluded from the training data.

A more complex, predictive sub-structure of the network is the inter-dependence chain: 

F-actin → PSD95 → SHANK3. This structure predicts that a) perturbing F-actin should 

affect both PSD95 and SHANK3, but the effect on SHANK3 should decrease or disappear 

when controlling for PSD95, while the effect on PSD95 should be relatively independent 
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of SHANK3, and b) perturbing PSD95 should affect SHANK3, but not vice-versa. To 

test the first prediction, we treated hippocampal cultures with Jasplakinolide (Jasp.) or 

Latrunculin B (Lat.) at DIV 6, fixing at DIV 19 and staining for Synapsin1, F-actin, 

PSD95 and SHANK3 (figure 5B). Interestingly, although Jasplakinolide and Latrunculin B 

are generally inhibitors of F-actin depolymerization and polymerization, respectively, their 

effects on synaptic F-actin after chronic treatment were reversed. Effects on PSD95 and 

SHANK3 were consistently in the same direction as the effects on F-actin (decreased for 

Jasp. and increased for Lat.) and completely disappeared or even reversed when controlling 

for F-actin. In addition, controlling for PSD95 greatly diminished or reversed the effect 

on SHANK3, as predicted, while the reverse was not true. To test the second prediction, 

we treated DIV 6 cultures with siRNA mixes against Shank3, Dlg4 (the gene coding for 

PSD95), or a non-targeting siRNA mix (NonT), and fixed and stained at DIV 21 for MAP2, 

Synapsin1, SHANK3, and PSD95 (figure 5C). Synapsin-controlled SHANK3 levels were 

reduced compared to NonT in both Dlg4 and Shank3-treated synapses, but PSD95 was 

reduced only in Dlg4-treated synapses, establishing the PSD95>SHANK3 hierarchy. Taken 

together, these observations support the conditional dependency chain predicted by the 

network.

Network inference on real PRISM data may be sensitive to experimental and image analysis 

artifacts, such as thresholding, image quality, and rules for synapse identification, as 

these may impose artifacts on correlations between protein measurements. We therefore 

performed several quality controls to ensure that our model did not result in such artifacts 

(figure S6). In one, we limited network inference only to synapses positive for all protein 

components. In another, we varied the thresholds for puncta identification in CellProfiler to 

75% or 133% of their values used in the primary analysis. In a third, we used puncta of 

postsynaptic proteins (F-actin and PSD95) to assign synapse identity, instead of Synapsin1 

and vGluT1. All these manipulations yielded network structures that were largely similar to 

that in 5A, especially in presence, relative strengths, and directionalities of trans-synaptic 

and intra-postsynaptic edges. The few inconsistencies included interchanges in the relative 

positions of Synapsin1 and vGluT1 in the network. Finally, we derived a network based on 

different eight-protein measurements in a previous study57 (figure S6). Although that dataset 

was smaller with fewer perturbations than the current one, and thus with reduced confidence 

in edge presence and directionality, we observed that the six proteins common to both 

studies exhibited similar connectivity patterns. That the network features were robust against 

these manipulations, replicated across experimental conditions, and include substructures 

that were directly validated in perturbation experiments, strengthened our confidence that 

these features represent real underlying biology.

Convergent effects of siRNA treatments on network structure

Next, we sought to investigate the effects of siRNA treatments on underlying protein 

networks to investigate whether convergent synaptic phenotypes resulted from distinct 

genetic perturbations. When analyzing the effects of a chemical or genetic perturbation 

on a biomolecular distribution, it is often difficult to distinguish direct from secondary, or 

downstream effects. Informed by the network model, our multiplexed imaging enables this 

distinction. We analyzed the effects of each siRNA treatment on each protein of excitatory 
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synapses while controlling for all parent nodes of that protein in the network, thus retaining 

only effects that were direct and not mediated by a parent node (figure 6A). Isolating 

direct effects revealed that Pten knockdown affected all postsynaptic protein levels that we 

examined nearly exclusively through the increased localization of F-actin within dendritic 

spines, in accordance with what is known of its regulatory role70. This also allowed us to 

discover direct effects that were hidden under second-order effects in the opposite direction, 

for example that knockdown of Pten caused a strong specific decrease in synaptic GluR2 in 

parallel to a general increase of all post-synaptic proteins.

Finally, we looked for quantitative effects of siRNA gene knockdowns on the Bayesian 

network structure itself, particularly on edge strengths that indicate inter-dependencies 

of distinct synaptic protein components. We quantified the strengths of the 17 edges in 

the network for each culture (figure 6B,C). We discovered that some edges—particularly 

centered around PSD95 and GluR2—were uniformly strengthened or weakened by nearly 

all treatments, regardless of direct effects on the proteins themselves, even in treatments 

that had weak if any effects on the protein levels. For example, Synapsin1-PSD95 and 

Synapsin-GluR2 edges were strengthened in nearly all gene knockdowns compared with 

the NonT groups, and not weakened in any, even though different treatments increased 

or decreased each protein on its own. Conversely, the PSD95-Homer1, Homer1-GluR2 or 

PSD95-GluR2 edges were weakened in most treatments compared with NonT.

Independent treatment effects on different proteins were likely to reduce edge strengths 

indiscriminately, indicating that that there might be an underlying molecular process by 

which knockdowns of many different genes all serve to, for example, weaken the extent by 

which PSD95 determines GluR2 and strengthen the extent by which PSD95 and Synapsin1 

influence each other, where these effects are superimposed on any direct effects they may 

also have on these proteins.

To the best of our knowledge, this is the first time that a direct measurement of 

synaptic protein networks has yielded molecular phenotypes common to many different 

ASD- and schizophrenia-associated mutations, which may be reflective of shared synaptic 

pathogenesis.

DISCUSSION

Detailed parallel phenotyping of synaptic biochemistry in ASD and SCZ models

We used simultaneous measurement of multiple proteins at single-synapse resolution to 

infer causality relationships among protein numbers in the synaptic molecular network, 

and systematically map how it is affected by the perturbation of ASD- and SCZ-

associated genes. PRISM, supported by automated probe exchange, image analysis, and 

synapse segmentation and quantification, can be used to measure multiple synapse-specific 

phenotypes across many treatment groups in a single experiment, as well as to identify 

synapse types and population changes that are more intricate than bulk effects on a protein 

due to its ability to resolve synapse-to-synapse heterogeneity in multiple protein levels.
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We observed phenotypes that were anticipated based on previous studies or their known 

activity, such as Pten70 and Shank371. We also observed phenotypes that to the best 

of our knowledge have not been previously reported, such as Cul1 on F-actin, Setd1a 
on Homer, and Grin2a on PSD95. Follow-up on the latter yielded tentative evidence 

for a long-term compensatory mechanism that responds to NMDAR deficiency (by gene 

knockdown) or reduced activity (by APV blockade, which also reduces NMDAR levels), 

with increased excitatory synapse density and levels of NMDAR anchoring protein PSD95, 

possibly a compensatory effect. Of the overall molecular signatures, Dyrk1a exhibited the 

most unusual pattern, combining a markedly higher E:I ratio, lower levels of F-actin and 

downstream postsynaptic proteins, but not of GluR2 (and generally a lower percentage of 

silent synapses). This is congruent with reports of Dyrk1a-associated autism presenting a 

unique neurological character82,83.

Another important consequence of the ability to measure multiple proteins simultaneously 

is that it can facilitate deconvolution of direct causal relationships from those mediated by 

other processes. Instead of having to experimentally constrain any possible confounding 

variables, multiplexed imaging allows measuring them simultaneously, while moderate 

throughput offers a large enough number of data points (>3×106 in this study) to 

directly control for possible confounding variables via stratification. The results of such 

intra-dataset controls must be interpreted carefully due to potential artifacts arising from 

comparing different synapse populations. Nevertheless, when using information about causal 

connections between variables, either from prior knowledge or, as in this case, inferred 

directly from the probability distributions, such a controlled analysis can help identify 

when a certain effect is entirely mediated by other variables (as with Pten or Dyrk1a on 

postsynaptic proteins, mediated by F-actin) or when a certain variable deviates significantly 

due to a hidden direct effect from what is expected given its upstream network connections 

(as with Pten on GluR2). The network-based prediction that Dyrk1a effects are mediated via 

F-actin is supported by an in-depth investigation84 of changes to dendritic spine formation in 

heterozygous Dyrk1a truncation mutants.

It is important to note that although parallel measurements of many proteins may serve as 

a hypothesis generator for synapse level molecular mechanisms, this study is fundamentally 

a phenotypic assay and does not purport to test or establish any specific mechanism 

definitively. Some gene perturbation effects may be the result of transcriptional changes 

in upstream gene expression networks (for example, by histone modifying enzymes), to 

which our assay is agnostic.

Interpreting inter-protein dependencies from Bayesian network structure and edge 
strengths

In the inferred Bayesian network, an edge from node A to B indicates that the PD of B 

depends on A even after accounting for all other measured components. This dependence 

can be direct or via a hidden (unmeasured) component. Conversely, lack of a direct edge 

between two correlated nodes indicates that any correlation between them can be explained 

by the other known components. Thus, while the overall structure is dependent on the set 

of proteins measured, we expect ‘non-edges’, such as F-actin-SHANK3, to be a conserved 
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feature even as the network expands to include more proteins. The structure we observed 

hints at some general rules governing synaptic molecular composition, which have also been 

observed in the literature: relative independence of the presynaptic active zone assembly and 

molecular composition85,86, and receptor levels driven by scaffolding proteins rather than 

the reverse.81,87,88

The interpretation of changing edge strengths is not mechanistically obvious. As a rule, 

injecting perturbative noise into a system weakens correlations by default. Thus, a weakened 

edge may correspond to a loss of correlation that can occur if only one protein of a pair 

is perturbed, or if they are perturbed in different directions. However, this is not always 

the case—for example, knockdown of Cul1 reduces both PSD95 and GluR2 to a similar 

extent, but also weakens the PSD95-GluR2 edge. In general, an edge from a parent node to 

a child node is considered in the context of all the other parents of that node. Thus, an effect 

that perturbs the mechanism by which one parent node affects the distribution of the child 

will weaken the corresponding edge but may strengthen the edge from another parent, and 

vice-versa. It is thus interesting to observe that trans-synaptic edges are strengthened by the 

genetic knockdowns in this study, while intra-postsynaptic edges are generally weakened.

Comparison with other protein network models

Our results add to a growing body of genomic and proteomic observations of convergent 

changes at the protein network level in ASD. These are based on physical interaction 

networks derived from yeast two-hybrid (Y2H) tests52 or bulk quantitative multiplexed 

co-immunoprecipitation (QMI)53. It is important to note differences between physical 

interaction networks as obtained from Y2H screens or coimmunoprecipitation, and our 

network, which does not provide information about direct biochemical protein-protein 

associations, but rather provides constraints on the multiprotein joint PD that reports 

on synaptic-level protein co-localizations. When many parallel biochemical interaction 

pathways exist, the Bayesian network enables us to infer those that causally determine 

synapse protein levels. For example, the F-actin → PSD95 → SHANK3 causal chain we 

established implies that it is likely an interaction chain from actin to PSD95 (possibly via 

ARPC489) that drives PSD95 (and therefore SHANK3) levels. It must be noted that for 

F-actin, our measurement mixes together signal from both pre- and post-synaptic β-actin 

filaments. However, because postsynaptic F-actin is thought to be more abundant, we believe 

that the observed conditional dependencies are due mostly to postsynaptic F-actin levels.

Causal correlations may also show up if a certain target is the best available proxy for a 

different measure that drives protein levels such as Bassoon for the active zone or F-actin 

for the dendritic spine. For example, knockdown of Bassoon itself does not seem to affect 

postsynaptic protein localization and ultrastructure. Rather, we hypothesize that the edges 

from Bassoon to F-actin, PSD95 and Homer represent different paths, through unmeasured 

targets, by which the size of the active zone affects levels of different post-synaptic proteins. 

Finally, our network so far only measured protein abundances, and not phosphorylation 

activation or other modification changes (or splice isoforms), which are often influenced by 

interaction partners.
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The two frameworks thus complement each other: Physical interaction networks provide 

mechanistic biochemical associations albeit in some cases in unphysiological conditions 

such as in yeast and, by casting a wider, less biased net, identify new targets to measure, 

whereas Bayesian network analysis integrates these details into a global picture of what 

shapes the overall synapse protein composition. This, in turn, provides insight into possible 

dynamical processes in the synaptic molecular network, which are tested by once again 

returning to mechanistic connections between components. Based on recent advances in 

automated, multiplexed superresolution imaging such as maS3TORM90, Bayesian network 

analysis could be, in the future, directly combined with single-synapse-level knowledge of 

physical synaptic protein organization.

The steady-state of the synaptic molecular network in ASD and SCZ

We propose a theoretical framework for future exploration into the convergence of 

phenotypes of different disease-associated mutations at the level of the synaptic molecular 

network. A dynamical system like the synapse with many components generally exists 

in a high-dimensional space of component abundances and activation states. However, 

with sufficient interactions and feedback loops such systems invariably settle into a much 

lower-dimensional space of allowable stable or metastable states. In the case of the synapse, 

these are guaranteed by the high interconnectivity among synaptic proteins, and feedback 

constraints such as homeostatic plasticity. In other words, since synaptic structural dynamics 

(e.g., LTP and LTD) occur at longer timescales than the biochemical feedback interactions 

that establish the allowed states, the former navigate a comparatively narrow landscape 

of only those states that the dynamical system can consistently sustain, and the synapse 

population distribution reflects this landscape.

A similar constraint-induced dimensionality reduction is considered to stabilize symmetric 

phenotypes in genotype-phenotype maps91. In the context of ASD- and schizophrenia-

associated genotypes mapping to a synaptic phenotype space with reduced dimensionality 

caused by interaction-based constraints, this means that a multitude of seemingly unrelated 

disease-associated mutations, can drive similar perturbations to the lower-dimensional 

stable/allowed-state landscape, as measured in synaptic protein networks.

Thorough investigation of such a mechanism in ASD and SCZ will require characterization 

of this space of allowed synaptic states and how it changes under different mutations, a 

characterization for which this work and others provide initial outlines. This characterization 

should also provide additional starting points to investigate the downstream effects of 

convergent synapse structure phenotypes on the architecture of the synaptome and specific 

neuronal circuits.

Given the potential of PRISM with automated probe exchange for increasingly higher 

throughput, along with the theoretically unlimited multiplexing capacity, our method 

of multiplexed imaging with single-synapse analysis is well-poised to investigate such 

hypotheses, as well as any other processes in the synaptic molecular network. Specifically, 

the properties of BN inference mean that additional measured nodes would increase 

both the scope of, and confidence in, network structures, as well as help establish 

differences in network structure underlying qualitatively different functionality in excitatory 
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synapses connecting different neuron types6. Finally, the tool presented here needs not 

be limited to synapses, and can be applied to any subcellular structure which can be 

identified individually in fluorescent microscopy, including mitochondria, phagosomes, 

nuclear compartments, etc. Thus, PRISM, supported by Bayesian network analysis may 

come to serve as a general hypothesis-generating tool for understanding complex protein 

networks in situ in cells, organelles, and subcellular structures.

Limitations of the study

The objective of this study was to perform high-dimensional in situ synaptic protein 

phenotyping in an ASD- and SCZ-associated genetic screen and search for similarities in 

synaptic protein compositions and convergent synapse phenotypes across disease-associated 

genes. One major limitation of this study was the use of self-transfecting siRNA knockdown 

in 2D rodent neuronal culture as a model for ASD and SCZ genotypes. While this model 

system often reproduces qualitative effects of haploinsufficiency or partial loss of function 

(PLOF), they may be fundamentally different from, for example, complete knockout or 

gain-of-function models, some of which have observed different synaptic phenotypes92,93. 

Even for the former, gene dosage differences may produce qualitatively different results, 

with our treatments variably reducing mRNA levels by 40–80%, which may be different 

from the gene dosage produced by heterozygous mutants or PLOF. As such, this study 

should be treated as a starting point to investigate convergent gene-proteome connections 

rather than a definitive description of protein changes in the disease itself.

Another potential limitation is the exclusive use of immunofluorescence for protein 

quantification, which offers the possibility of artifacts due to variability in epitope 

accessibility as well as non-specific binding that may confound results. While we have 

performed extensive validations in this and previous studies to establish the quantitative 

validity of PRISM, the possibility of such artifacts remains. Finally, the network inference 

approach presented is based on one imaging dataset and may additionally contain artifactual 

edges and substructures, despite care to account for possible statistical artifacts. Future work 

that incorporates additional protein nodes and a larger variety of cellular conditions will help 

to further establish the biological validity of the present work.

STAR METHODS

Resource Availability

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Mark Bathe (mbathe@mit.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Single-synapse measurements as processing output of 

CellProfiler applied on imaging data have been deposited to Mendeley Data as CSV files 

under the paper title.
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Original code for data analysis, network simulation, and network inference, as well as 

original CellProfiler pipelines, have been deposited to github.com/lcbb/PRISM-CellProfiler-

Analysis-Pipelines.

Raw and processed imaging data is locally stored due excessive file sizes and will be 

delivered upon request.

Experimental model and subject details

All experiments were performed on dissociated hippocampal neurons of embryonic day 18 

Sprague-Dawley rats. Each experiment included neuronal cultures of pooled neurons from 

1–3 embryos of a single pregnant rat, and each experiment used a separate pregnant rat. 

Embryos were not sexed prior to dissection and culturing.

Culturing conditions (for detailed conditions see method details section): Embryo 

hippocampi were dissected in 4°C Hibernate E supplemented with B27. Hippocampal 

tissues were digested in Hibernate E using papain at 37°C. Neurons were plated at 15,000 

cells/well in NbActiv1 supplemented with 25mM glutamate on poly-d-lysine coated 96-

well-plates, treated at DIV 2 with AraC and at DIV 6 with the siRNA/chemical treatment 

and left to develop in NbActiv4 until fixation and staining at DIV 19.

Procedures for rat neuronal culture were reviewed and approved for use by the Broad 

Institutional Animal Care and Use Committee, in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals.

Method details

Antibody details: Table S1 details the antibodies used for multiplexed imaging, including 

the conjugation strategy used for each. The Key Resources Table provides additional details, 

and information on all other antibodies used for follow-up validation experiments.

Antibody-docking strand conjugation – SMCC: Most antibodies were conjugated 

using 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid N-hydroxysuccinimide 

(SMCC), a heterobifunctional molecule which binds exposed amines on the antibody via 

an N-hydroxysuccinimide (NHS) moiety on one end and binds thiol-oligonucleotides via 

a maleimide on the other end. Antibodies were purchased as formulations without serum 

proteins as listed below (Table S1), 0.1–1 mg of antibody were purified into PBS using Zeba 

spin columns (7 kDa, Thermo Fisher Scientific). Subsequently, antibodies were concentrated 

to 1 mg/ml using Amicon Ultra centrifugal filters (100 kDa, 4000 g, EMD Millipore). 

The initial concentration of anti-vGAT was 2 mg/ml. From a freshly prepared stock at 2 

mM in DMF, SMCC (Sigma Aldrich) was added to the antibody at 7.5x molar excess. 

The reaction mixture was protected from light and incubated for 3 h at 4°C on a shaker. 

Excess SMCC was removed by purification into PBS using Zeba spin columns (7 kDa, 

Thermo Fisher Scientific). In parallel, 25 nmol 5’ thiol-modified ssDNA (Integrated DNA 

Technologies, modification catalog no. /5-ThioMC6-D/) was dissolved in 25 ul water and 

55 ul PBS with 2 mM EDTA at pH 8.0 (Table S2). After the addition of 20 ul of 

a freshly prepared stock of 500 mM DTT in PBS with 2 mM EDTA at pH 8.0, the 

reaction mixture was protected from light and incubated for 2 h at 25°C on shaker. The 
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reduced 5’ thiol-modified ssDNA was purified into water using NAP-5 columns (GE Life 

Sciences). Fractions containing ssDNA were identified using absorbance measurements at 

260 nm and DTT was monitored calorimetrically using bicinchoninic acid. The reduced 

5’ thiol-modified ssDNA was immediately added to the antibody-SMCC conjugate at 15x 

molar excess, the reaction mixture was protected from light and incubated overnight at 

4°C on a shaker. Antibody-ssDNA conjugates were purified into PBS using Amicon Ultra 

centrifugal filters (50 kDa, 4000 g, EMD Millipore). Amino-modified phalloidin (Bachem) 

was conjugated using the procedure described above, but with the following changes: the 

molar excess of SMCC was 10x and the molar excess of reduced 5’ thiol-modified ssDNA 

was 1x. HPLC purification was employed to remove unreacted SMCC and 5’ thiol-modified 

ssDNA, respectively (Waters, BEH C18 column, gradient for phalloidin-SMCC: from 80% 

TFA in water and 20% acetonitrile to 20% TFA in water and 80% acetonitrile over 10 min, 

gradient for phalloidin-ssDNA: from 90% 0.1 M TEAA in water and 10% acetonitrile to 

60% 0.1 M TEAA in water and 40% acetonitrile over 10 min). Antibody concentration were 

determined by absorbance measurements at 280 nm. Conjugation efficiency was estimated 

by MALDI-TOF mass spectrometry and ranged from 1 to 3, depending on the antibody. 

Antibody-ssDNA conjugates were stored at −20 C in PBS with 50% glycerol.

Antibody-docking strand conjugation - SiteClick: For Homer1, ssDNA-antibody 

conjugates were synthesized using the SiteClick™ (Invitrogen) conjugation technique 

following the manufacturer’s protocol. This technique replaces the Fc galactoses on 

the antibody with azide-modified sugars, which then react with a DBCO-modified 

oligonucleotide. 200 μg of the anti-Homer 1 was concentrated to 2 mg/ml in 1x Tris buffer 

and incubated with β-galactosidase. Azide-modified, terminal galactosides were attached 

using β-galactosyltransferase. Azide-modified antibody was purified into 1x Tris buffer 

using Amicon Ultra centrifugal filters (50 kDa, 4000 g, EMD Millipore). 5’ DBCO-modified 

ssDNA (Integrated DNA Technologies, modification catalog no. /5-DBCON/) was dissolved 

in water, added to azide-modified antibody at a molar excess of 30 and incubated overnight 

at 25°C (Table S2). Antibody-ssDNA conjugates were purified into PBS using Amicon 

Ultra centrifugal filters (50 kDa, 4000 g, EMD Millipore). Antibody concentrations were 

determined by absorbance measurements at 280 nm. Conjugation efficiency was estimated 

by MALDI-TOF mass spectrometry and ranged from 1 to 2, depending on the antibody 

batch. Antibody-ssDNA conjugates were stored at −20°C in PBS with 50% glycerol.

Imager strands: 25 nmol of 5’/3’ diamino-modified ssLNA (Qiagen) was dissolved in 

500 ul PBS with 10% DMSO at pH 8.3 and 250 nmol of NHS-Atto 565 or NHS-Atto 

655 (Sigma Aldrich) were added from a 15 mM stock in DMSO (Table S2). Following 

immediate vortexing, the reaction mixture was protected from light and incubated overnight 

at 25°C on a shaker. Excess dye was removed using NAP-5 columns (GE Life Sciences). 

Fractions containing ssDNA were identified using absorbance measurements at 260 nm. 

Subsequently, 0.1 M TEAA was added ssLNA-dye conjugates and conjugates bearing two 

dyes were purified by HPLC (Waters, BEH C18 column, gradient for Atto 565: from 80% 

0.1 M TEAA in water and 20% acetonitrile to 70% 0.1 M TEAA and 30% acetonitrile over 

10 min, gradient for Atto 655: from 90% 0.1 M TEAA in water and 10% acetonitrile to 75% 

0.1 M TEAA in water and 25% acetonitrile over 10 min). Peaks corresponding to ssLNA 

Falkovich et al. Page 16

Cell Rep. Author manuscript; available in PMC 2023 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conjugates bearing two, one or no dye were assigned based on absorbance spectra. Solvents 

were removed in vacuo and ssLNA-dye conjugates were dissolved in water at 10 to 100 μM, 

depending on the yield. Yields were determined by absorbance measurements using 565 nm 

or 655 nm wavelengths.

Neuronal culture and treatment: Procedures for rat neuronal culture were reviewed and 

approved for use by the Broad Institutional Animal Care and Use Committee, in accordance 

with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

In each of N=4 biological repeats, 1–2 Embryonic Day 18 embryos were collected from 

a separate pregnant Sprague Dawley rat killed by CO2 (Taconic). Embryo hippocampi 

were dissected in 4°C Hibernate E supplemented with 2% B27 supplements and 100 U/ml 

penicillin/strep (Thermo Fisher Scientific). Hippocampal tissues were digested in Hibernate 

E containing 20 U/ml papain, 1 mm L-cysteine, 0.5 mm EDTA (Worthington Biochem), and 

0.01% DNase (Sigma-Aldrich) for 8 min. Neurons were centrifugated at 1000rpm by 5min, 

pellet with cells were then resuspended into NbActiv1 (BrainBits LLC, now TransnetYX) 

supplemented with 25mM glutamate, and plated at a density of 15,000 cells/well onto 

poly-d-lysine-coated, black-walled, thin-bottomed 96-well plates (Corning BioCoat). After 

48 hours, AraC was added to each culture at a concentration of 1uM, to suppress glia 

proliferation and minimize well-to-well variability resulting from it. At DIV 5, the media 

was entirely replaced with warm NbActiv4. At DIV 6, each culture was treated with Accell 

SMARTpool (Dharmacon/Horizon from Perkin Elmer), a mix of four chemically modified 

self-transfecting siRNAs, against the relevant gene (Table S3) to a total siRNA concentration 

of 1uM in NbActiv4. Cultures were then left undisturbed until fixation on DIV 21. Each 

plate included 60 wells/separate cultures, 3–4 in each treatment group. Across 4 plates, 

one for each biological repeat, this results in a total of n=11–18 technical repeats in each 

treatment group. For validation experiments, cultures were treated at DIV 6 with 0.1uM/

0.5uM bpV(pic), 0.2uM/2uM Harmine, 20uM/50uM D-AP5, and Nontargeting, Shank3 or 

Grin2a Accell SMARTpool siRNA, and left undisturbed until fixation on DIV 8 or 19 as 

described.

RTqPCR knockdown validation: RTqPCR was performed using Fast Advanced Cells-

to-CT kit (Ambion) according to the manufacturer’s protocol. In short, cells were prepared 

for lysis by washing them with cold PBS 1x, then Stop solution was added following lysis 

buffer with DNAse I. RT Master Mix using Cells-to-Ct lysate was prepared and reverse 

transcription was done on a thermal cycler. Lastly, qPCR was done using LightCycler® 480 

Probes Master (Roche) with TaqManTM Gene Expression Assays designed for each target 

(see Table S3 for catalog numbers) and performed on a LightCycler® 480 Instrument. Two 

TaqManTM Gene Expression Assays (Life Technologies). Actb was used as a reference 

gene to normalize the results (Life Technologies). For relative quantification of gene 

expression, the 2− ΔΔCt method was used.

Staining and Imaging: Cells were fixed and stained as described previously7,57,58. Cells 

were fixed in fixation solution (4% paraformaldehyde and 4% sucrose in PBS) for 20min at 

RT, then permeabilized with 0.25% Triton X-100 in PBS for 10. They were then incubated 

in a mixture of RNases A and T1 to reduce the fluorescent background caused by ssLNA-
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RNA binding and blocked with 5% Bovine Serum Albumin (BSA). The first round of 

primary staining was performed using unconjugated primary antibodies (table S1 rows 1–6) 

diluted in the regular blocking buffer. Cells were blocked with nuclear blocking buffer [5% 

BSA and 1 mg/ml salmon sperm DNA (Sigma-Aldrich) in PBS] and then incubated with 

conjugated secondary antibodies (table S1 rows 7–11) diluted in the nuclear blocking buffer. 

After post-fixation, cells were stained in the third round with conjugated primary antibodies 

(table S1 rows 12–16) in nuclear blocking buffer and then with DAPI.

High-throughput spinning disk confocal LNA-PRISM imaging was performed using the 

Opera Phenix High-Content Screening System (PerkinElmer) as described before7,57,66 with 

the following main changes: first, two colors were used for PRISM in each round, and 

second, probe introduction, wash and exchange was performed automatically using a Bravo 

automated liquid handling system. In each round, a pair of imaging probes in two colors 

(see table S2 for sequences) was freshly diluted to 10 nM in imaging buffer (500 mm NaCl 

in PBS, pH 8) immediately before imaging. Neurons were incubated with imaging probes 

for 5 min and then washed twice with imaging buffer to remove unbound probe. The plates 

were then imaged in 4 wavelengths: 405nm (DAPI), 488nm (MAP2), 561nm (orange probe) 

and 647nm (red probe). For each field of view, a stack of five images was acquired with an 

axial step-size of 1 μm. Either four (in one plate) or nine (in the other three plates) lateral 

fields of view were imaged in each culture. Following each round of imaging, cells were 

washed two times with wash buffer (0.01 × PBS) for 3 min per round, and then re-imaged 

to ensure that all PRISM fluorescent signal was removed before introducing the next probe 

pair. After all imaging rounds, neurons were stained with a 568nm fluorescent nanobody 

against vGlut1 (table S1 row 17) for 1 hour and imaged again. Although the combined 

staining with multiple antibodies simultaneously may reduce primary PRISM signal due to 

crowding, we observed this reduction to be less than 15%, and should be identical across all 

treatment groups.

For staining externalized GluR2 (figure S2), an N-terminal-specific Guinea Pig anti-GluR2 

antibody (see table S1) was used before permeabilization, and a C-terminal-specific Mouse 

anti-GluR2 antibody was used after permeabilization, along with a labeled anti-vGluT1 

nanobody and a chicken anti-MAP2 antibody. For heat-induced antigen retrieval, wells were 

incubated after permeabilization with pre-heated antigen retrieval buffer (10mM Citric Acid, 

0.05% Tween 20, pH 6.0) at 95°C for 30min, and then stained as usually. We also attempted 

proteolysis-induced epitope retrieval (0.05% Trypsin, 20min at 37°C) which completely 

abolished Synapsin1 and F-actin signals.

Automated image analysis using CellProfiler: CellProfiler was used to automatically 

correct images for uneven illumination, align images across channels, and segment and 

quantify synapses in images. This tool allows for modular construction of pipelines for 

image analysis66,67. The pipeline used here is similar to a previous study57 and is available 

on github.com/lcbb/PRISM-CellProfiler-Analysis-Pipelines. The main steps in the image 

analysis pipeline are as follows:

1. By-pixel maximum projections of confocal Z-stacks of all images in each round 

are calculated separately and loaded into CellProfiler.
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2. MAP2 (488nm) images in each round are used to align images of other channels 

between rounds.

3. An illumination profile correction is applied to all images based on background 

averages across all wells.

4. For each round and wavelength, the average intensity in untreated wells of a 

plate is calculated and used to normalize the images in all other wells. This is 

used to account for between-plate differences in exogenous brightness (staining 

strength, laser strength, exposure time etc.)

5. The DAPI image is used to identify nuclei objects. All other images of the same 

field are then masked by the nuclei to prevent artifacts from non-specific nuclear 

localization of the antibodies.

6. The MAP2 image is used to identify dendrite objects.

7. A white top hat filter with a radius of 4px is applied to all synaptic protein 

images across all rounds to enhance puncta.

8. For synapse counting analysis (figure 2B–D), synaptic objects were segmented 

and identified in images of each channel by applying the RobustBackground 

tool, which calculates an optimal threshold value for each window individually 

based on the intensity histogram. For all other analyses, we calculated 

a per-channel global threshold from the average threshold calculated by 

RobustBackground across all imaged fields in untreated wells. We then applied 

this value as a uniform threshold to all images of that channel to ensure that all 

images are segmented identically.

9. Synapsin1 puncta are then masked using the dendrites previously identified, to 

retain only puncta which are within 12px of a dendrite. These are then defined as 

synapses.

10. Puncta in all other channels are assigned to synapses if they overlapped with 

Synapsin1 puncta more than 6.25% (for postsynaptic proteins) or more than 50% 

(for presynaptic proteins).

11. Finally, levels of each protein per synapse are calculated as the intensity 
integral of that protein’s image across its punctum. If a certain protein did 

not have an identified puncta associated with a synapse, its level was marked as 

0.

Synapses were identified as excitatory if they contained only vGlut, inhibitory if they 

contained only vGAT, and otherwise excluded from further analysis (positive or negative 

for both vGlut and vGAT). Excluded synapses were 20–30% of all identified synapses. We 

also performed the same analysis with uniform threshold values of 75% and 133% of the 

calculated average, which yielded more and less synaptic puncta, respectively, but similar 

observations in treatment effects, clusters, Bayesian networks and edge strengths. In controls 

for network inference by alternative synapse identification, instead of Synapsin1 puncta for 

synapse definition and assignment of all other proteins, we used postsynaptic puncta defined 

by merging of F-actin, PSD95 and Shank3 puncta.
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Network simulation: Data points for simulated networks were sampled from a modified 

gamma distribution, which contains a separate probability for a value of 0 (see equation 

1). To simulate dependency of one variable on others, the distribution from which the child 

variable is sampled has p0 and scale parameter θ modified based on the values of the parent 

variables according to equation 2.

P(X = x) = pX
0 , x = 0

ΓX(x ∣ k, θ), x > 0
 B A C (1)

pA, modified 
0 = pA, base

0 ⋅ b−αAB ⋅ c−αAC θA,  modified 
0 = θA, base 

0 ⋅ b−αAB ⋅ c−αAC (2)

Where X, A, B, C are variable names, pX
0  is the probability for node X to be 0, 

Γ(x ∣ k, θ) ∝ xk − 1 ⋅ e− x
θ  is the gamma distribution with shape parameter k and scale 

parameter θ, b = b
median(B)  and C = c

median(C)  are the values of B and C for a specific 

datapoint relative to their median, and αAB and αAC are the predefined interaction 

coefficients of A with B and C, respectively (edge strengths in the B → A ← C subgraph).

20 such networks with 6–12 nodes were generated, sampled, and reconstructed to determine 

the optimal Bayesian network inference algorithm. To simulate a network with a cyclic 

dependence, e.g. A→B→C→A, A is separated into two variables A1 and A2 to create a 

directed acyclic graph which is sampled as above, and the final value of A is A1 + A2.

Bayesian network analysis and controlled edge calculation: Bayesian network 

inference was performed on a combined random sample of synapses from each well, 

while limiting only to excitatory-labeled synapses and 8 excitatory synaptic proteins. 

Measurements in each protein were discretized into 51 bins in the following way: all 

measurements of 0 (no puncta of that protein associated with the synapse) were assigned to 

bin 0, and bins 1–50 were assigned by equal-frequency discretization.

The discretized dataset was then sampled for 3000 points which were used to construct 

a Bayesian network using the likelihood-score-maximizing ‘tabu’ algorithm76. 50 such 

samplings and rederivations of the network were used to establish confidence in the presence 

and direction of edges. Network derivation was done using the tabu and boot.strength 

functions in the R package bnlearn76, A similar procedure was applied to simulated datasets, 

data from a previous synaptic scaling study57, and adversarially modified data sets.

Given a network, we define the strength of an edge between two nodes as the average 

correlation of the two variables across strata where the other parents of the daughter node 

are held constant79,80. That is, the strength of an edge from A to B, where B also has 

edges leading to it from n other variables, for example C and D with n=2, as the correlation 

between A and B when controlling for C and D. To estimate that, we repeated the following 

algorithm to calculate average correlations between A and B across strata of equal C and D:

• Sample a point (A0, B0, C0, D0)
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• Find set of all points (A, B, C, D) such that C − C0
2 + D − D0

2 < ε ⋅ n
where n is the number of variables to control for (2 in this example) and ε 
is a predetermined tolerance level set at 0.5 (smaller tolerances did not yield 

significantly different measures)

• If the set contains more than 5 points, calculate Pearson’s correlation coefficient 

cor(A, B) across that set.

• Average the resulting correlation measure across 20 · 2n such samplings.

A similar stratification procedure was done to assess the conditional effect of a certain 

treatment on protein A when controlling for proteins B and C. The treatment and NonT 

groups were pooled together, a point was sampled at random and a set of all points with 

similar B and C was found, and the log2-fold difference between the mean levels of A in 

treated vs NonT synapses was calculated and averaged across many samplings.

Quantification and statistical analysis

Software: All statistical analysis was performed in R (versions 4.0.0–4.3.0), using the base, 

stats, umap (version 0.2.7.0), and bnlearn (version 4.7) packages.

Biological and technical repeats: Each experiment includes pooled neurons from 1–

3 embryos of one pregnant rat, split into wells of a 96-well-plate. The wells constitute 

separately grown, treated and stained cultures. Each well is subsequently considered a 

technical repeat. All images in different wells from a single experiment are analyzed using 

the same CellProfiler pipeline for consistency in synapse determination and quantification. 

The main RNAi screen pools 4 experiments into one dataset by dividing all synaptic protein 

values of a certain experiment by the average values for untreated wells in that experiment.

Nature of repeats and values per repeat: For statistical analysis, relevant values 

are calculated for synapses in individual wells: (i) Average protein intensity integral 

over synaptic puncta. (ii) Total number of synapses or synapses conforming to a certain 

condition, (iii) Fraction of synapses conforming to a certain condition, (iv) Total area of 

identified dendrites, (v) Average protein intensity over whole image, (vi) Average protein 

intensity integral over soma, (vii) Network edge strengths (i.e., controlled correlation 

between nodes). By-well values are then used for calculating standard error and significance 

testing. Significance testing was done using a two-tailed Student’s T-test. The number of 

wells per treatment group is 11–18 for the main RNAi screen and 4–7 for each validation 

experiment. All heatmaps and bar graphs present average values across wells, all error bars 

are standard error of mean across wells.

Data exclusion: The following subsets of images from the main RNAi screen were 

excluded from subsequent analysis:

• One row in plate #1, for which one of the imaging rounds was out of focus.

• All images of NR2A, for which staining was very diffuse and very few puncta 

could be identified.
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• All images of cultures treated with siRNA against Xpo7, which exhibited highly 

irregular staining patterns for Homer1 that could not be reproduced with other 

batches of that siRNA. We attributed the effect to an issue with the specific 

siRNA batch used.

UMAP and clustering: Uniform Manifold Approximation and Projection (UMAP) was 

performed using the umap R package (version 0.2.7.0). A combined sample was used 

with 200 points randomly sampled from each well. Each variable was scaled to a standard 

deviation of 1, and UMAP was applied with min_dist=0. Density-based clustering on the 

2D layout was done automatically using HDBSCAN94,95 with parameters that yielded 14 

clusters, after which small clusters that accounted for <1% of all points were manually 

merged into the nearest (by centroid distance) large cluster, resulting in the 9 main clusters 

shown in figure 3.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Genes and targets.
A) Schematic summarizing approximate synaptic context of the 10 imaged targets. B) 

Venn diagram of gene knockdowns. C) Representative images of the same neuronal culture 

in different imaging rounds, showing colocalized puncta of each protein. Bottom right – 

automatically identified and segmented excitatory (red) and inhibitory (blue) synapses. Scale 

bars are 5μm.
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Figure 2: Synapse effects of siRNA knockdowns.
A) Representative images from medium-sized dendrites across 4 channels. Bottom left scale 

bar is 5um. B) Excitatory (Syn+, vGlut+, vGAT−) to inhibitory (Syn+, vGlut−, vGAT+) 

count ratios. C) Percent of GluR2 negative synapses from all excitatory synapses. D) 

Estimates of total dendrite proliferation from MAP2 staining, normalized to NonT. B-D blue 

lines indicate mean and SEM of NonT measurements. E) Log fold change (relative to NonT) 

of mean levels of each protein in excitatory and inhibitory synapses. Coloring of genes in 

B-E: red, only ASD, blue, only SCZ, purple, both. F-I) Validation experiments with chronic 

treatments (DIV 6–19) measured by conventional IF. Mean synaptic protein levels or other 

measurements depicted as Log2-fold change from untreated control (for chemical treatment 

experiments) or NonT siRNA (for RNAi) treated wells. F) Treatment with bpV(pic), a 

PTEN inhibitor. G) Treatment with Harmine, a Dyrk1a inhibitor. H) SHANK and mGluR1/5 
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after knockdown of Shank3. I) PSD95, NR1, and density of NR1-positive synapses after 

short and chronic NMDAR blockade with D-APV, or chronic RNAi knockdown of Grin2a. 

Bars are mean ± s.e.m. across wells. *p<0.05, **p<0.01, ***p<0.001, two-sided t-test.
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Figure 3: Synaptic multiprotein distributions.
A–C) Composition-defined synaptic subtypes. A) UMAP projection of scaled synaptic 

measurements. B) Row-normalized (across all clusters) mean levels of each specific protein 

in specific clusters identified in A. C) Log fold-change of excitatory cluster populations 

under each treatment. Right: overall composition of the synapse population by cluster. D) 

Direct correlations between proteins in excitatory synapses. E) Correlations in each pair, 

controlling for all other 6 proteins.
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Figure 4: Bayesian network inference on simulated networks.
A) Simulated Bayesian network. B) Reconstructed network. C,D) Calculated edge strengths 

of the edges in (B) versus defined interaction coefficients in (C). C – edge strengths 

calculated by parent-controlled correlations. F – total (uncorrected) correlations. E) 

Simulated non-Bayesian network with cycles (CED and BDGH). F) Reconstructed Bayesian 

network. Cycles cannot be represented but the overall structure and relative edge strengths 

are preserved. Arrowhead sizes represent predefined interaction parameters αXY in A,E and 

inferred edge strengths in B,F.
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Figure 5: Bayesian network of 8 excitatory synaptic proteins.
A) The inferred network. Presynaptic proteins in blue, postsynaptic in green. Red arrows 

indicate substructure probed in B and C. B) Log fold-change in F-actin, PSD95 and 

SHANK3 after treatment with two actin polymerization perturbations, total and controlled 

for each protein. C) Log fold-change in PSD95 and Shank3 after treatment with 3 siRNAs: 

nontargeting, against Dlg4 (PSD95) and against Shank3. Bars are mean ± s.e.m. across 

wells.
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Figure 6: Network-informed analysis of the genetic screen.
A) ‘Direct’ effects of each treatment on each protein separately. Like 2F but controlled for 

the parent nodes of each protein. B) Effect of each treatment on the strength of each network 

edge. C) Network from 4A, each edge colored by the average change in strength across 

treatments. All colors are log2-fold-change relative to nontargeting siRNA control.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-MAP2, chicken polyclonal Novus Biologicals Cat#NB300–213

anti-PSD95, rabbit monoclonal Cell Signaling Technology Cat#3450
Clone: D27E11

anti-Gephyrin, rat monoclonal IgG1 Synaptic Systems Cat#147208
Clone: rtmAb7a

anti-GluR2, N-terminus, guinea pig polyclonal Synaptic Systems Cat#185105

anti-NR2A, mouse monoclonal IgG2a Neuromab Cat#75–288
Clone: N327/95

anti-Shank3, mouse monoclonal IgG1 Synaptic Systems Cat#162311
Clone: 144b12

anti-vGAT, mouse monoclonal IgG3 Synaptic Systems Cat#131011
Clone: 117G4

anti-Synapsin1, mouse monoclonal IgG1 Synaptic Systems Cat#106011
Clone: 46.1

anti-Homer1, mouse monoclonal IgG1 Synaptic Systems Cat#160011
Clone: 2G8

anti-vGluT1, camelid sdAb Synaptic Systems Cat#N1602

anti-mGluR5, rabbit polyclonal Sigma Aldrich Cat#AB5675

anti-Shank1/2/3, mouse monoclonal IgG2a Synaptic Systems Cat#162111
Clone: 151E3

anti-NR1, mouse monoclonal IgG2a Millipore Cat#MAB363
Clone: 54.1

anti-GluR2, C-terminus, mouse monoclonal IgG2a
Millipore Cat#MAB397

Clone: 6C4

anti-Synapsin1, goat polyclonal Santa Cruz biotechnologies Cat#sc-7379

anti-Rabbit, goat polyclonal Invitrogen Cat#A16126

anti-Mouse IgG1, goat polyclonal Abcam Cat#ab98689

anti-Mouse IgG2, goat polyclonal Novus Biologicals Cat#NB7513

anti-Guinea Pig, goat polyclonal Invitrogen Cat#A18777

anti-Rat, goat polyclonal Invitrogen Cat#A18873

anti-Goat 405, donkey polyclonal Abcam ab175665

anti-Goat 488, donkey polyclonal Invitrogen A-11055

anti-Chicken 405, goat polyclonal Abcam ab175674

anti-Chicken 488, goat polyclonal Invitrogen A-11039

anti-Mouse 488, goat polyclonal Abcam ab150113

anti-Mouse 568, donkey polyclonal Invitrogen A10037

anti-Mouse 647, donkey polyclonal Abcam ab150107

anti-Rabbit 488, goat polyclonal Abcam ab150077

anti-Rabbit 568, donkey polyclonal Abcam ab175470

anti-Rabbit 647, donkey polyclonal Invitrogen A-31573

Biological Samples
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REAGENT or RESOURCE SOURCE IDENTIFIER

E18 Rat Hippocampal Neurons
Privately sourced at the Broad 
Institute

Chemicals, Peptides, and Recombinant Proteins

4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid N-
hydroxysuccinimide (SMCC)

Sigma Aldrich Cat#573115
CAS 92921-24-9

Phalloidin 7-Ornithine Bachem Cat#H7643

Harmine Tocris Cat#5075 CAS 442-51-3

bpV(pic) Sigma Aldrich Cat#SML0885 CAS 
148556-27-8

D-AP5 Alomone Labs Cat#D-145 CAS 79055-68-8

RNase A Invitrogen Cat#EN0531

RNase T1 Invitrogen Cat#EN0542

Hibernate E Thermo Fisher Cat#A1247601

NbActiv1 Brainbits LLC (now Transnetyx) Cat#NB1

NbActiv4 Brainbits LLC (now Transnetyx) Cat#NB4

B27 Supplement Thermo Fisher Cat#17504044

Arabinofuranosyl Cytidine (AraC) Sigma Aldrich Cat#C6645 CAS 69-74-9

Atto 565 NHS Atto-Tec GmbH Cat#AD 565–31

Atto 655 NHS Atto-Tec GmbH Cat#AD 655–31

Critical Commercial Assays

LightCycler 480 Probes Master Roche Cat#04707494001

TaqManTM Gene Expression Assays Life Technologies See table S3

SiteClick Azido Antibody Modification Kit Thermo Fisher Cat#S10900

Experimental Models: Organisms/Strains

Rattus Norvegicus, Sprague-Dawley, wild-type Broad Institute

Oligonucleotides

Thiol-modified ssDNA docking strands Integrated DNA Techologies See table S2

DBCO-modified ssDNA docking strands Qiagen See table S2

Amine-modified LNA imaging strands Qiagen See table S2

Software and Algorithms

CellProfiler version 3.0 McQuin, C. et al. CellProfiler 3.0: 
Next-generation image processing 
for biology. PLoS Biol. 16, (2018).

R package: umap, version 0.2.7.0 Tomasz Konopka. umap: Uniform 
Manifold Approximation and 
Projection. R package version 
0.2.7.0 https://CRAN.R-project.org/
package=umap. (2020).

R package: bnlearn, version 4.7 Scutari, M. Learning Bayesian 
networks with the bnlearn R 
Package. J. Stat. Softw. 35, 1–22 
(2010).

CellProfiler Synapse Analysis Pipeline This study

R markdown document: Workup and analysis of PRISM data This study

R markdown document: Network simulation and inference This study
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