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Abstract

We introduce fast multilevel functional principal component analysis (fast MFPCA), which scales 

up to high dimensional functional data measured at multiple visits. The new approach is orders 

of magnitude faster than and achieves comparable estimation accuracy with the original MFPCA 

(Di et al., 2009). Methods are motivated by the National Health and Nutritional Examination 

Survey (NHANES), which contains minute-level physical activity information of more than 10000 

participants over multiple days and 1440 observations per day. While MFPCA takes more than 

five days to analyze these data, fast MFPCA takes less than five minutes. A theoretical study of 

the proposed method is also provided. The associated function mfpca.face() is available in the 

R package refund.
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1 Introduction

Functional data measured at multiple visits have become increasingly common. A standard 

technique for analyzing such data is multilevel functional principal component analysis 
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(MFPCA) (Di et al., 2009), which provides a decomposition of the observed data 

into within- and between-subject variation. The MFPCA model generalizes traditional 

measurement error and multilevel models to the case when the basic measurement unit 

is a function.

The motivating data is a large physical activity dataset from the National Health and 

Nutrition Examination Survey (NHANES), a study conducted in two-year waves by the 

United States Centers for Disease Control and Prevention (CDC). Each study participant 

in the 2003–2004 and 2005–2006 waves was asked to wear a hip-worn physical activity 

monitor (PAM) for seven consecutive days. Acceleration data were publicly released as 

minute-level activity counts (AC), a proprietary measure of physical activity intensity. For 

quality control purposes, some days were excluded from the analysis; see Section 6 for 

exclusion criteria. Figure 1 displays the physical activity profiles of three randomly selected 

NHANES study participants (left, middle and right panels). The number of available days 

varies by study participant with a maximum of 7. For example, the data for the study 

participant shown in the left panels contains only 6 days, while the data for the study 

participant shown in the middle panels contains only 5 days. Within a column, each row 

shows the minute-level AC of one day from midnight to midnight, where the title for each 

panel indicates the corresponding day of the week. The dataset has 12802 study participants 

and 65777 days in total, with 1440 observations per day for a total of 94718880 minute-level 

observations.

The NHANES dataset is an example of large-scale multilevel high-dimensional functional 

data. For subject i on day j of the week, the physical activity intensity value at minute 

s ∈ S can be denoted as Yij(s), where S is the time interval from midnight to midnight. 

Functional principal component analysis (FPCA) is a popular approach in functional data 

analysis (Ramsay and Silverman, 2005). Some early work, including Ramsay and Dalzell 

(1991); Silverman et al. (1996); Yao et al. (2005), focused on single-level analysis. For 

multilevel functional data, multilevel functional principal component analysis (MFPCA) (Di 

et al., 2009) provides an explicit decomposition of the within- and between-subject variation 

in the functional space. MFPCA is designed to analyze functional data with two levels of 

functional variation. This is the simplest model in the rapidly expanding family of multilevel 

functional mixed effects models, including multilevel functional models (Aston et al., 2010; 

Brumback and Rice, 1998; Chen and Müller, 2012; Gaynanova et al., 2022; Goldsmith et 

al., 2015; Li et al., 2015; Morris et al., 2011; Morris and Carroll, 2006; Serban and Jiang, 

2012; Xu et al., 2018), longitudinal functional models (Boland et al., 2022; Cui et al., 

2021b; Greven et al., 2010; Li et al., 2022; Park and Staicu, 2015; Scheffler et al., 2020; 

Shamshoian et al., 2022; Zipunnikov et al., 2014), spatial functional models (Li et al., 2021; 

Zhang et al., 2016), and structured functional models (Scheipl et al., 2015; Shou et al., 

2015). MFPCA is also related to but distinct from multivariate functional data (Berrendero 

et al., 2011; Chiou et al., 2014; Happ and Greven, 2018; Kowal et al., 2017; Wong et al., 

2019).

Applying MFPCA to a dataset with over 10000 study participants and over 1000 

observations per function remains computationally challenging. The current implementation 

of MFPCA is slow for high dimensional functional data, as the number of computations 
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is proportional to the cube of the number of observations per function. The problem is 

that the current MFPCA requires: (1) the construction, smoothing and eigendecomposition 

of covariance matrices with the dimension equal to the number of observations per 

function; and (2) the score prediction which relies on the inversion of multiple high 

dimensional covariance matrices. The fast covariance estimation in Xiao et al. (2016), 

referred to as FACE, addressed these problems for single-level functional data. Indeed, 

FACE, implemented in the fpca.face() function of the refund R package (Goldsmith et 

al., 2020), requires only minutes to smooth covariance matrices of dimension 100000. Here 

we provide methods that substantially accelerate MFPCA by extending methods inspired by 

FACE.

Therefore, we propose fast multilevel functional principal component analysis (fast 

MFPCA) and implement it in the mfpca.face() function of the refund R package. 

The fast MFPCA approach improves MFPCA by: (1) constructing transformed functional 

data instead of calculating the method of moments estimators of covariance matrices; (2) 

obtaining level-specific eigendecompositions by extending FACE to multilevel functional 

data, which avoids using high dimensional covariance matrices; and (3) predicting principal 

component scores based on mixed model equations (MME). Using the combination of these 

ideas, the fast MFPCA scales up linearly with the number of observations per function and is 

orders of magnitude faster than MFPCA. For example, fast MFPCA took less than 5 minutes 

to fit the NHANES data compared with MFPCA, which took more than 5 days.

The rest of the paper is organized as follows. We review MFPCA in Section 2 and introduce 

the fast MFPCA approach in Section 3. A theoretical study of the proposed method is 

provided in Section 4. A simulation study is conducted in Section 5 to compare the 

computation time and accuracy of our new approach with existing methods. We discuss 

the NHANES application results in Section 6 and conclude with a discussion in Section 7.

2 Multilevel Functional Principal Component Analysis

We briefly review the multilevel functional data model proposed in Di et al. (2009). Denote 

by Yij(s) the observed data for subject i = 1, . . ., I at visit j = 1, . . ., Ji and location 

s ∈ s1, …, sL ∈ S, where S is a compact domain. Each function has L observations at 

the same set of time points and we focus on the case when L is relatively large. Denote 

by n = ∑i = 1
I Ji the total number of visits. Consider a functional ANOVA model with 

measurement error: Yij(s) = Xij(s) + ϵij(s) = μ(s) + ηj(s) + Zi(s) + Wij(s) + ϵij(s), where 

μ(s) is the population mean function, ηj(s) is the jth visit-specific shift from μ(s), Zi(s) is 

the random subject-specific mean deviation for the ith subject, Wij(s) is the random jth 

visit-specific deviation from Zi(s), and ϵij(s) is a white noise with variance σ2. The random 

functions Zi(s) and Wij(s) are mutually independent zero mean processes with covariance 

functions KB(s, t) = cov{Zi(s), Zi(t)} and KW(s, t) = cov{Wij(s), Wij(t)}, respectively.
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Algorithm 1

MFPCA

1. Estimate mean functions μ(s) and ηj(s) by applying univariate smoothers to observed data under working 
independence assumption and subtract them from observed data.

2. Construct method of moment (MoM) estimators of the total covariance KT(s, t) and between-subject covariance KB(s, 
t), denoted by KT(s, t) and KB(s, t), respectively.

3. Smooth KT(s, t) and KB(s, t) using bivariate smoothing, leading to two smooth estimates, denoted by KT(s, t)
and KB(s, t), respectively. Let KW (s, t) = KT(s, t) − KB(s, t).

4. Conduct eigenanalysis on discretized KB(s, t) and KW (s, t) matrices.

5. Estimate error variance σ2 by σ2 = ∫S{KT(s, s) − KT(s, s)}ds.

6. Predict scores using best linear unbiased prediction (BLUP).

Let KT(s, t) := cov{Xij(s), Xij(t)} = KB(s, t) + KW(s, t) be the total variance of the 

smooth functional data. Suppose that the between-subject covariance function KB admits 

the eigendecomposition KB(s, t) = ∑k ≥ 1 λk
(1)ϕk(s)ϕk(t), where λ1

(1) ≥ λ2
(1) ≥ ⋯ ≥ 0 are eigenvalues 

with associated orthonormal eigenfunctions ϕk(s), that is, ∫Sϕk1(s)ϕk2(s)ds = δ k1 = k2  for any 

pair (k1, k2). Here δ{·} is an indicator function which is equal to 1 if the statement is true and 

0 otherwise. Then the random function Zi(s) can be written as Zi(s) = ∑k ≥ 1 ξikϕk(s), where 

ξik are scores with zero mean and variance λk
(1) and are mutually uncorrelated. Similarly, 

suppose that the within-subject covariance function KW also has an eigendecomposition 

KW (s, t) = ∑k ≥ 1 λk
(2)ψk(s)ψk(t), where λ1

(2) ≥ λ2
(2) ≥ ⋯ ≥ 0 are the eigenvalues with associated 

orthonormal eigenfunctions ψk(s). Then W ij(s) = ∑k ≥ 1 ζijkψk(s), where ζijk are mutually 

uncorrelated scores with zero mean and variance λk
(2).

The primary goal of MFPCA is to reduce the functional data to two sets of uncorrelated 

scores: level-1 scores ξik1 and level-2 scores ζijk2. The eigenfunctions are also useful for 

understanding the variation patterns in functional data. The traditional MFPCA methods in 

Di et al. (2009) are summarized in Algorithm 1.

3 Fast MFPCA

MFPCA slows down substantially when the number of observations per function increases. 

Indeed, constructing the L × L sample covariance matrices (step 2 of Algorithm 1) 

requires O(IL2) computations, where I is the total number of functions. Next, standard 

bivariate smoothing of L × L covariance matrices (step 3 of Algorithm 1) requires O(L3) 

computations. Furthermore, the eigenanalysis of L × L matrices (step 4 of Algorithm 1) also 

requires O(L3) computations. Finally, the score prediction (step 6 of Algorithm 1) requires 

inversion of covariance matrices of size L × L, which require O(L3) computations.

To deal with the computational challenges of traditional MFPCA, we propose the fast 

MFPCA approach, which differs from traditional MFPCA in three aspects. First, we 

construct transformed functional data for which the underlying smooth curves have the 

desired covariance operators. This construction takes only O(IL) computations compared 
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to O(IL2) computations for the method of moment (MoM) sample covariance estimators. 

Second, we apply the fast covariance estimation method (FACE, Xiao et al. (2016)) to the 

transformed data to estimate the covariance operators. FACE avoids the direct calculation 

of MoM and eigenanalysis of empirical of L × L covariance matrices. The computational 

complexity of FACE is O(ILc), where c is the number of B-spline bases functions used for 

smoothing and is much smaller than I and L. Finally, we predict the principal component 

scores using mixed model equations (MME), which is computationally efficient because the 

number of eigenfunctions is much smaller than the number of observations per curve.

To the best of our knowledge, this is the first time FACE is extended and applied to 

general multilevel functional data. Moreover, we are not aware of any literature using 

MME for score prediction in functional data analysis. This idea combination reduces the 

computational complexity of MFPCA from from O(IL2 + L3) to O(ILc).

3.1 FACE and Eigenanalysis

The fast covariance estimation method (FACE) in Xiao et al. (2016) is a bivariate 

smoothing method based on the tensor-product splines. FACE is computationally fast 

as it scales up linearly with the number of functions and the number of observations 

per function. In addition, the eigenanalysis via FACE avoids computationally expensive 

eigendecompositions of large covariance matrices. Below, we provide the technical details of 

FACE, which inspired the functional data transformation described in Section 3.2.

Let Y be an L×I data matrix with each column corresponding to one observed single-level 

function (centered and scaled) evaluated at the time points {s1, . . ., sL}. Let K = I−1YYT

be the sample covariance matrix estimator. Denote by B(s) = [B1(s), . . ., Bc(s)]T the c 
× 1 dimensional vector of c cubic B-spline basis evaluated at s. Let B = [B(s1), . . ., 

B(sL)]T be the L × c design matrix, where each row corresponds to a sampling point 

and each column corresponds to a spline basis. An L × L smoother matrix is constructed 

as S = B(BTB/L + λP)−1BT/L, where P is the qth order penalty matrix in P-splines 

(Eilers and Marx, 1996) and λ is the smoothing parameter; see Section S.1 in the 

supplementary material for more details. FACE uses K = SKS as the smooth estimator of 

the covariance. Thus, the (s, t) entry of the covariance estimator is K(s, t) = BT (s)ΘB(t), 

where Θ = (BTB/L + λP −1(BTKB/L2) BTB/L + λP)−1
 is a c × c symmetric and positive 

semi-definite matrix. FACE does not directly calculate K and only computes the c × c 

coefficient matrix Θ, which can be written as FFT with F = (L I)−1 BTB + λP −1BTY. 

Notice that F is of dimension c × I and its calculation requires O(ILc) computations. 

Because c is the number of spline functions, which is much smaller than L and I, the 

calculation of F is much faster than direct bivariate smoothing of a covariance operator. 

The main idea is to use the decomposition of the sample covariance K combined with the 

property that the smoothed covariance K matrix is low rank. FACE selects the smoothing 

parameter λ by minimizing the pooled generalized cross validation (PGCV) (Xiao et al., 

2013), which is fast because it relies on univariate functional smoothing to control bivariate 

covariance smoothing.
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The tensor product spline form of K(s, t) can be used to reduce the computational 

complexity of eigenfunctions and eigenvalues estimation procedure. Indeed, let 

G = ∫ B(s)BT (s)ds, which can be constructed to be positive definite. Take the 

eigendecomposition G1/2ΘG1/2 = UΛUT, where U = [U1, . . ., Uc] is an orthonormal 

matrix and Λ = diag(λ1, . . ., λc) is a diagonal matrix with λ1 ≥ λ2 ≥ · · · ≥ λc ≥ 

0. Then, Uk
TG−1/2B(s) is the estimated kth eigenfunction corresponding to eigenvalue λk. 

In contrast, the direct approach is to conduct a spectral decomposition of the covariance 

matrix evaluated on a dense grid; see, for example, Yao et al. (2005). This method is 

computationally expensive, especially in high dimensions.

3.2 Transformed Functional Data

To simplify the notation introduced in Section 2, let Y ij(s) = Y ij(s) − μ(s) − ηj(s) be the 

demeaned observed data, where μ(s) and ηj(s) will be replaced by their estimates in 

applications. Recall that the data are observed on a regular grid {s1, ..., sL}. Define 

Yij = Y ij s1 , …, Y ij sL
T  and Y = Y11, …, Y1J1, …, YI1, …, YIJI ∈ ℝL × n. Denote by n = ∑i = 1

I Ji, 

the total number of curves, and define nI = ∑i = 1
I Ji Ji − 1 .

As suggested in Shou et al. (2015), MoM estimators of covariance matrices in structured 

functional data often take the “sandwich” form n−1YHYT , where H are design-specific 

matrices. For example, for the MoM estimator of total covariance, H is the n × n identity 

matrix. Therefore, FACE can be applied to the transformed data YH1/2 to smooth the 

covariance whenever H is positive semi-definite. However, there are two potential issues 

with this approach. First, the sample covariance matrix for the between-subject covariance 

KB and the corresponding H matrix are not positive semi-definite. Therefore, FACE is not 

directly applicable. One solution was proposed by Xiao et al. (2016), who truncated negative 

eigenvalues to zero. The second issue the computation of H1/2, which is of dimension n × n. 

When the total number of curves, n, is large, calculating H1/2 can become challenging.

To address the first problem, we smooth the total and within-subject covariance, which are 

positive semi-definite. The between-subject covariance is then estimated by the difference 

between total and within-subject covariance. To address the second problem, we provide an 

analytic form for the transformed functional data. We provide the technical details below.

As in Di et al. (2009), an empirical estimator of the between-subject covariance is given 

by the L × L matrix KB = nI
−1YHBYT , where HB = blockdiag 1J11J1

T − IJ1, …, 1JI1JI
T − IJI , IJ is 

the identity matrix of size J and 1J = (1, 1, …, 1)J
T. As each block matrix 1Ji1Ji

T − IJi has only 

two different eigenvalues, Ji − 1 (with geometric multiplicity 1) and −1 (with geometric 

multiplicity Ji − 1), HB is not a positive semi-definite matrix. Because most eigenvalues 

are equal to −1, this may be the reason why the estimation performance was found to be 

sub-optimal when trimming negative eigenvalues of HB (Xiao et al., 2016). We next focus 

on the total and within-subject covariance.
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For the total covariance, let J = n−1∑i Ji be the average number of visits per subject. The 

MoM estimator of the total covariance, KT(s, t), is KT(s, t) = ∑i = 1
n ∑j = 1

Ji wiY ij(s)Y ij(t), where 

wi > 0 are weights that satisfy the constraint ∑i Jiwi = 1. In Di et al. (2009), the same weight 

is used for each visit, which means wi = 1/(nJ), though other weights could be used. For 

example, by setting wi = 1/(IJi), equal weights are assigned to study participants instead 

of visits. The matrix format of KT(s, t) is KT = ∑i = 1
I ∑j = 1

Ji wiYijYij
T
. The key insight is that KT

is the sample covariance of the transformed functional data nwiYij, 1 ≤ j ≤ Ji, 1 ≤ i ≤ I . 

Therefore, smoothing KT can be achieved by applying FACE to the transformed functional 

data.

For the within-subject covariance, notice that KW (s, t) = E Y ij(s) − Y ik(s) Y ij(t) − Y ik(t) T /2
if j ≠ k. Let vi ≥ 0 be weights such that ∑i = 1

I Ji Ji − 1 vi = 1. An estimator of KW(s, t) is 

KW = ∑i = 1
I vi/2∑j ≠ k Yij − Yik Yij − Yik

T . The constraint on the weights ensures that when 

functional data are observed without random noise, σ2 = 0, KW  is an unbiased estimator 

of KW. If the same weight is used for each visit, then vi = nI
−1. If the same weight is 

used for each participant, then vi = {(∑l = 1
I δ Jl ≥ 2 )Ji Ji − 1 }−1 if Ji ≥ 2 and 0 otherwise. Let 

Yi . = Ji
−1(∑j = 1

Ji Yij). It can be shown that KW = ∑i = 1
I ∑j = 1

Ji viJi Yij − Yi ⋅ Yij − Yi ⋅
T , which is the 

sample covariance of the transformed data nviJi Yij − Yi ⋅ , 1 ≤ j ≤ Ji, 1 ≤ i ≤ I . Therefore, 

smoothing of KW  can be achieved by applying FACE to the above transformed data.

The construction of transformed functional data for the total and within-subject covariance 

require O(nL) operations. This is a critical difference from the traditional MoM estimators, 

which require O(nL2) operations.

3.3 Multilevel FACE

We apply FACE to the transformed functional data for the total covariance and within-

subject covariance, respectively, and obtain the smooth estimates. The corresponding 

eigenfunctions are obtained as described in the FACE approach for univarate functional 

data. Let KT(s, t) = BT (s)ΘTB(t) be the estimate of KT(s, t) and KW (s, t) = BT (s)ΘW B(t)
be the estimate of KW(s, t). Here ΘT and ΘW are both c × c positive semi-definite 

matrices obtained from FACE. The between-subject covariance KB(s, t) is estimated by 

KB(s, t) = B(s)TΘBB(t), where ΘB = ΘT − ΘW. To ensure that KB(s, t) is positive semi-definite, 

an eigendecomposition of ΘB is taken and the eigenvectors associated with negative 

eigenvalues are discarded. For details, see Section S.2 of the supplementary material.

3.4 Score Prediction via Mixed Model Equations

Predicting the principal component scores via best linear unbiased prediction (BLUP) 

requires the inversion of matrices that are of dimension equal to the number of observations 

per curve, L. Here we propose a novel solution based on mixed model equations (MME), 

which further reduces the computational complexity.
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Assuming the level-1 eigenfunctions ϕk(s) and level-2 eigenfunctions ψk(s) are known, the 

multilevel functional model becomes the mixed effects model

Y ij(s) = ∑
k1 ≥ 1

ξik1ϕk1(s) + ∑
k2 ≥ 1

ζijk2ψk2(s) + ϵij(s), (1)

where ξik1, ζijk2 are uncorrelated scores that are uncorrelated with the ϵij(s). After obtaining 

ϕk(s) and ψk(s) by multilevel FACE in Section 3.3, Equation (1) can be approximated by

Y ij(s) = ∑
k1 = 1

N1
ξik1ϕk1(s) + ∑

k2 = 1

N2
ζijk2ψk2(s) + ϵij(s),

where we have retained N1 level-1 scores and N2 level-2 scores.

Define Mi = JiL. Let Yij = Y ij s1 , …, Y ij sL
T , ξi = ξi1, …, ξiN1

T , ζij = ζij1, …, ζijN2
T , 

ϕk1 = ϕk1 s1 , …, ϕk1 sL
T , ψk2 = ψk2 s1 , …, ψk2 sL

T , Φ = ϕ1, …, ϕN1 ∈ ℝL × N1, 

Ψ = ψ1, …, ψN2 ∈ ℝL × N2, and ϵij = [ϵij1, . . ., ϵijL]T. Then Yij = Φξi + Ψζij + ϵij. We 

further define Φi = 1Ji ⊗ Φ ∈ ℝMi × N1, Ψi = IJi ⊗ Ψ ∈ ℝMi × JiN2 , ζi = [ζi1
T , …, ζiJi

T ]T ∈ ℝJiN2, 

Yi = [Yi1
T , …, YiJi

T ]T ∈ ℝMi, and ϵi = [ϵi1
T , …, ϵiJi

T ]T ∈ ℝMi. The covariance matrix is 

Λ1 = diag(λ1
(1), …, λN1

(1)) for ξi, Λ2 = diag(λ1
(2), …, λN2

(2)) for ζij, and σ2IMi for ϵi. We then have the 

matrix form of the mixed effects model

Yi = Φiξi + Ψiζi + ϵi,

E
ξi

ζi

ϵi

=
0N1

0JiN2

0Mi

, Cov
ξi

ζi

ϵi

=
Λ1 0 0
0 IJi ⊗ Λ2 0
0 0 σ2IMi

.
(2)

It follows that the BLUP of ξi and ζi is

ξi

ζi

=
Λ1Φi

T

IJi ⊗ Λ2 Ψi
T cov(Yi) −1Yi, (3)

where cov Yi = ΦiΛ1Φi
T + Ψi IJi ⊗ Λ2 Ψi

T + σ2IMi ∈ ℝMi × Mi.

When Mi is large, implementing equation (3) is difficult as the inverse of cov Yi  requires 

O Mi
3  calculations. In practice, it takes more than a day to predict scores when I = 1000, Ji 

= J = 3, L = 1000 using existing methods. The mixed model equations (MME) (Henderson, 

1973) can be used to re-express the scores as

ξi

ζi

=
Φi

TΦi + σ2Λ1
−1 Φi

TΨi

Ψi
TΦi Ψi

TΨi + σ2IJi ⊗ Λ2
−1

−1 Φi
TYi

Ψi
TYi

, (4)
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where the dimension of the matrix that is inverted is (N1 + JiN2), which is usually much 

smaller than Mi. As a result, the total computational time using equation (4) is reduced to 

O(Mi(N1 + JiN2)2 + (N1 + JiN2)2), which is linear in L since Mi = JiL. In addition, the 

matrix inverse can be computed using block-wise calculations. The equivalence of BLUP 

and random effects solutions in MME was shown in Henderson (1963).

3.5 Fast MFPCA Algorithm

We summarize the steps of the fast MFPCA method in Algorithm 2. When compared with 

Algorithm 1, there are major differences in Steps 2–4 and 6. Steps 2–4 of fast MFPCA 

avoid computations that involve construction, smoothing and eigendecomposition of high 

dimensional covariance matrices. Step 6 of fast MFPCA uses a faster approach to the 

prediction of scores. The algorithm was implemented in the function mfpca.face() and 

released in the R package refund.

Algorithm 2

fast MFPCA

1. Estimate mean functions μ(s) and ηj(s) and subtract them from the observed data.

2. Apply FACE to the transformed functional data nwiYij, 1 ≤ j ≤ Ji, 1 ≤ i ≤ I  for total covariance.

3. Apply FACE to the transformed functional data nviJi Yij − Yi ⋅ , 1 ≤ j ≤ Ji, 1 ≤ i ≤ I  for within-subject 

covariance and obtain within-subject eigenfunctions/eigenvalues.

4. Calculate between-subject covariance from the difference between total and within-subject covariance and extract 
between-subject eigenfunctions/eigenvalues.

5. Estimate error variance σ2 by σ2 = ∫S{KT(s, s) − KT(s, s)}ds.

6. Estimate scores by MME in equation (4).

3.6 Incomplete Data

As in the physical activity data, some data might be missing. Xiao et al. (2016) proposed 

an iterative approach for single-level functional data which consists of: (1) initializing the 

missing data by imputation from any smoother; (2) applying FACE to the data and impute 

missing data by their BLUP; (3) iterating step 2 until reaching convergence. They reported 

convergence usually within 10 iterations. As we rely on FACE, which was designed to deal 

with missing data, the problem is solved automatically in our approach. The MME for score 

prediction in (4) can be easily modified to work with observed data only and hence the 

details are omitted. We have found that this method works well for incomplete data; see 

simulation results in Section 5.

4 Asymptotic Theory

We establish the L2 convergence rate of the proposed fast MFPCA method for estimating the 

between- and within-subject covariance functions and show that a parametric convergence 

rate can be achieved when functional data are densely observed. To simplify theoretical 

analysis, we assume that μ(s) and ηj(s) are known and that the study participants have the 

same number of visits, Ji = J. In this case the weights are wi = (nJ)−1 for estimating the 
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total covariance function and vi = {nJ(J−1)}−1 for estimating the within-subject covariance 

function. Finally, we use the same smoothing parameter λ for both KT and KW , the smooth 

estimates from fast MFPCA.

We introduce some notation. The little o and big O notation are with respect to the number 

of study participants I and we allow the number of observations per curve L to increase with 

I. For two scalars a and b, let a ∧ b = min(a, b) and a ∨ b = max(a, b). For a bivariate 

continuous function g over S2 let g L2 be its L2 norm. For an integer p ≥ 2, let Cp S2  be the 

class of bivariate functions such that if K ∈ Cp S2 , then for any 0 ≤ j ≤ p, ∂pK(s, t)/∂sj∂tp−j 

is continuous in S2.

Assumption 1

(a). The random functions Zi are independent across the subjects with zero-mean function 
and the same covariance function KB(s, t); (b). The random functions Wij are independent 
across i and j with zero-mean function and the same covariance function KW(s, t); (c). 
The random errors ϵijℓ = ϵij(sℓ) are independent across i, j and ℓ with zero-mean and the 
same variance σϵ

2 < ∞; (d). The random functions Zi, W i1, …, W iJi , and the random errors 

{ϵij1, . . ., ϵijL} are mutually independent across the subjects.

Assumption 2

sups ∈ SE Zi
4(s) < ∞; sups ∈ SE[W ij

4(s)] < ∞; E[ϵijℓ
4 ] < ∞.

Assumption 3

a. (a). L ≥ Iδ1 for some constant δ1 > 0; (b). c ≥ Iδ2 for some constant δ2 > 0 and c = o(I); (c). 

There exists a sufficiently small constant δ3 such that c ≤ δ3L; (d). λ = o I−2qδ1 .

Recall that m is the order of spline functions, c is the number of spline functions, and q is the 

order of smoothness penalty. Let h = c−1 and he = h ∨ λ1/(2q), and the latter is the effective 

bandwidth for penalized splines (Xiao, 2019). The proof for the theorem below is given in 

Section S.3 of the supplementary material.

Theorem 1

Suppose that Assumptions 1 – 3 hold. If KB ∈ Cp S2  and KW ∈ Cp S2  with q ≤ p ∧ m, then

E( KB − KB L2
2 ) = O(L−2ℎe

−1) + O(ℎ2m) + o(ℎ2p) + O(λ2ℎe
−2q) + O(I−1),

E( KW − KW L2
2 ) = O(ℎ2m) + o(ℎ2p) + O(λ2ℎe

−2q) + O(I−1) .

Except for the term O(L−2ℎe
−1), the derived rate in Theorem 1 is the same as those 

in Theorem 4.1 in Xiao (2020), which considers covariance function estimation using 

penalized splines for functional data with a fixed common design. The convergence rate for 
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estimating the between-subject covariance contains the term O L−2ℎe
−1 , which is due to the 

bias in the MoM estimator of the total covariance, which involves the extra variance, σ2, 

along the main diagonal. The convergence rate for estimating the within-subject covariance 

does not have the term O L−2ℎe
−1  because the empirical estimate KW  is an unbiased estimate 

of KW.

In both of the derived rates in Theorem 1, the term O(h2m) + o(h2p) is the approximation 

bias of spline functions, the term O(λ2ℎe
−2q) is the shrinkage bias due to the smoothness 

penalty, and the term O(I−1) is the variability of the estimate. To achieve a parametric rate 

of O(I−1) for KW , a simple choice is to let q = p and h = O(I−1/(2p)). The second condition 

on h means that the method could achieve a parametric rate as long as the number of 

knots (or spline functions) is sufficiently large. As for KB, the parametric rate can also be 

achieved if the condition L−2ℎe
−1 = O I−1  also holds. This means that a sufficiently dense 

sampling design for each function is required. The additional condition seems reasonable 

for high-dimensional functional data. When L is small and the condition L−2ℎe
−1 = O I−1

becomes stringent, one could smooth the empirical estimate KT without its diagonal terms or 

we replace the diagonal terms by other estimates with negligible bias.

While these theoretical results are for multilevel functional data, the proofs can be applied 

to other functional data and the convergence rate of the FACE method for single-level 

functional data has also been derived; see Section S.3 of the supplement for more details.

5 Simulation Studies

We perform simulations to: (1) assess the computational improvement and scaling behavior 

of fast MFPCA; and (2) evaluate the estimation accuracy of the fast MFPCA method. The 

mfpca.face() function is provided in the supplementary material and published in the 

refund package. For the implementation of traditional MFPCA we use the mfpca.sc() 

function in the refund package. For fast MFPCA, we use the same weight for each visit 

(curve), the same as traditional MFPCA. Additional simulation results for fast MFPCA with 

equal weight per subject are given in Section S.4 of the supplementary material.

5.1 Simulation Settings

We assume that the functions are observed on an equally-spaced grid {s1, ..., sL} of domain 

S = [0, 1] such that sl = l/L for l = 1, . . ., L. We also consider scenarios with incomplete 

(missing) data, where the number of observed points per function is Tij = 0.5 × L. Denote by 

J the mean number of visits per subject. For each subject i, the number of visits Ji is either 

balanced (Ji = J) or unbalanced (Ji varies by subject). We use a similar simulation setting as 

in Di et al. (2009). For visit j of subject i consider the following model

Y ij sl = ∑
k1 = 1

4
ξik1ϕk1 sl + ∑

k2 = 1

4
ζijk2ψk2 sl + ϵij sl ,
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where ξik1 N{0, λk1
(1)}, ζijk2 N{0, λk2

(2)}, ϵij(s) N 0, σ2 . We assume that there are N1 = 4 

components at the between-subject level and N2 = 4 components at the within-subject level. 

Higher ranks on both levels with higher frequency eigenfunctions were further evaluated for 

both methods and the results are shown in Section S.4 of the supplementary material. The 

true eigenvalues are λk1
(1) = 0.5k1 − 1, k1 = 1, 2, 3, 4 and λk2

(2) = 0.5k2 − 1, k2 = 1, 2, 3, 4. The true 

eigenfunctions are selected as

Level 1: ϕk1(s) = 2sin(2πs), 2cos(2πs), 2sin(4πs), 2cos(4πs)

Level 2: ψk2(s) = 1, 3(2s − 1), 5 6s2 − 6s + 1 , 7 20s3 − 30s2 + 12s − 1

The eigenfunctions within levels 1 and 2 are mutually orthogonal, but they are not 

orthogonal between levels. We fix σ = 1, as the difference on computation time is marginal 

for different noise levels. We consider the following sample size parameters: (1) number of 

subjects: I ∈ {100, 200, 1000, 5000}; (2) number of visits per subject: J ∈ {2, 4, 20, 100}. 

For unbalanced design, the number of visits Ji is drawn from Poisson(J) with a minimum 

of 1 visit for subject i; and (3) dimension of the functional domain: L ∈ {100, 200, 1000, 

5000, 50000}. To reduce computational burden, we set the baseline as {I = 100, J = 2, L 
= 100} and increase the sample size one at a time while fixing the others. For example, 

we fix J = 2, L = 100 and increase I from 100 to 5000. This gives a total of 2 × 2 × (4 

+ 3 + 4) = 44 simulation scenarios. For each scenario we conduct 100 replications on a 

high performance computing cluster using 1 core per simulation. The computation time of 

fast MFPCA (mfpca.face) and MFPCA (mfpca.sc) is obtained under different scenarios. 

In addition, we derive the estimation accuracy of both methods by calculating MISE(Y), 

MISE(ϕ) = N1L −1‖ϕ − ϕ‖F
2  and MISE(ψ) = N2L −1‖ψ − ψ‖F

2  for each simulation.

5.2 Simulation Results

Tables 1–3 provide the simulation results for different scenarios. For each table, we only 

increase one parameter in the order by I, J, L, while fixing the others at their baseline, as 

discussed in Section 5.1. Within each table, we show the computation time (“Time(s)”), 

MISE of Y (“MISE(Y)”) and MISE of eigenfunctions (“MISE(ϕ)”, “MISE(ψ)”) using both 

methods for complete and incomplete data for balanced and unbalanced designs. For fast 

MFPCA we display the results weighted by visits. The results weighted by subjects are in 

Section S.4 of the supplementary material.

When I is large, fast MFPCA achieves similar accuracy for eigenfunction estimation with 

MFPCA for a balanced design and performs slightly better when the data are unbalanced. 

From a computational perspective, both methods exhibit a linear increase in computation 

time with I, though fast MFPCA is still much faster than MFPCA. For example, for I = 

5000 with complete data and unbalanced design fast MFPCA takes less than 6 seconds 

compared to 900 seconds for traditional MFPCA (Table 1). The computational advantage 

of fast MFPCA is more pronounced when J and L increase; see Table 2 and Table 3. For 

example, for complete data with an unbalanced design, MFPCA takes at least 3 hours when 
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J = 20 and more than a day when J = 100. In contrast, fast MFPCA takes 2.7 seconds for 

J = 20 and less than 8 seconds for J = 100. For large L, MFPCA slows down substantially 

and takes, for example, over 6 hours for an analysis of complete unbalanced data when L = 

1000. In contrast, fast MFPCA takes fewer than 100 seconds for L = 50000 (MFPCA would 

simply not run on such large examples).

Figure 2 shows the estimated eigenvalues for the complete unbalanced data when I = 1000. 

True eigenvalues are shown as gray dashed lines, while results from 100 simulations are 

shown in red for fast MFPCA and in blue for MFPCA. The eigenvalue estimates of both 

levels are close to their nominal values, while the level-2 estimates have higher precision 

using both methods. For level-1 there is a slight bias for the third and fourth eigenvalues 

using both methods, while the first eigenvalue estimates appears to be more precise for 

fast FPCA. In general, the eigenvalue estimates are accurate for large datasets using both 

approaches.

Figure 3 shows the estimated eigenfunctions under the same simulation setting. The top 

two rows display estimates from fast MFPCA in red and the bottom two rows display 

estimates from MFPCA in blue. Within each panel, the black solid curves indicate the 

true eigenfunctions at each level. For level-1 eigenfunctions, both methods exhibit similar 

accuracy. For level-2 eigenfunctions, we observe a larger variability for MFPCA, especially 

on the third and fourth eigenfunctions. This higher accuracy of fast MFPCA is also reflected 

by its slightly smaller MISE(ϕ) (0.0120 vs. 0.0146) and much smaller MISE(ψ) (0.0063 vs. 

0.0176) shown in Table 1.

In summary, fast MFPCA achieves similar estimation accuracy with MFPCA under different 

simulation settings, while the computation is at least two orders of magnitude faster. For a 

dataset with a large number of visits per subject (J ~ 100) or very high dimensions of the 

functional domain (L ~ 50000), fast MFPCA helps reduce the total computation time from 

several days or longer to just a few minutes.

6 Application

Objective physical activity measured by accelerometers and its association with health 

outcomes is an active area of research (Cui et al., 2021a; Smirnova et al., 2020). The 

National Health and Nutrition Examination Survey (NHANES) is a study conducted by the 

United States Centers for Disease Control and Prevention (CDC) with the aim of assessing 

the health and nutritional status of the US population. It became a continuous program 

conducted in two-year waves since 1999. The NHANES study collected accelerometry data 

using hip-worn physical activity monitors (ActiGraph model AM-7164) in the 2003–2004 

and 2005–2006 waves. Both waves share the same protocol, where each study participant 

was asked to wear the device for 7 consecutive days. Data were released by the National 

Center for Health Statistics (NCHS) as minute-level activity counts (AC), a proprietary 

measure of physical activity intensity. We use the processed accelerometry data as described 

in Leroux et al. (2019). To reduce the severe skewness of the original data, for this analysis 

the minute-level AC were transformed into LAC := log(1 + AC), as suggested by Varma 

et al. (2017, 2018). The 2003–2004 and 2005–2006 waves have a total of 14631 study 
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participants with accelerometry data. Days with less than 10 hours of estimated wear time 

or days that were deemed by NHANES to have poor quality data were excluded. The final 

dataset has 12802 study participants and 65777 participant-days, with 1440 observations per 

day. The average number of available days per study participant is 5.14.

For this analysis, we are interested in decomposing the variability of the minute-level 

accelerometry data at both study participant (level-1) and day of the week (level-2) levels. 

While the problem is stated in simple terms, applying the existing MFPCA method to this 

large dataset takes at least 5 days on a regular laptop (2.7GHz Dual-Core i5 Processor). In 

contrast, fast MFPCA took less than 5 minutes on the same laptop.

Figure 4 displays the estimated overall mean function μ(s) and the mean function for each 

day of the week μ(s) + ηj(s), j = 1, . . ., 7. The weekend curves are shown as dashed lines, 

while the weekday curves are shown as dotted lines. The overall mean function exhibits 

a clear circadian rhythm. In addition, there are distinguishable weekend-weekday patterns, 

as the physical activity intensity is higher than average on Friday and Saturday nights and 

lower than average on Saturday and Sunday mornings. These results provide visual evidence 

of a weekend effect in the NHANES cohort.

We identify 22 level-1 principal components and 31 level-2 principal components using the 

pre-specified percentage of variance explained (PVE) with a value of 0.99 at both levels. 

The total explained between-subject variance is 1.02. The total explained within-subject 

variance is 1.78, which is nearly twice that of the between-subject variance. The proportion 

of variability explained by level 1 is 0.36, defined as ∑k1 = 1
∞ λk1

(1)/(∑k1 = 1
∞ λk1

(1) + ∑k2 = 1
∞ λk2

(2)) in Di 

et al. (2009). Figure 5a shows the first three estimated level-1 eigenfunctions ϕk1
(1)(s) of the 

physical activity data, which explain 78.4% of the total variability. The first eigenfunction is 

negative at night and positive during the day, suggesting that study participants with positive 

scores on this component will have less activity at night and more activity during the day. 

The second eigenfunction is only negative during the morning (5am to 12pm), suggesting 

that study participants with positive scores on this component will have less activity in the 

morning and more activity during the rest of a day. Study participants with positive scores 

on the third component have less activity during working hours (10am to 6pm) and more 

activity at all other times of a day.

At level 2 the first 3 components explain only 35.8% of the level 2 variability. Figure 5b 

shows the first three estimated level-2 eigenfunctions ψk2(s). The interpretation is different, 

as level-2 characterizes within-subject behavior. Specifically, days of the week with positive 

scores on the first principal component correspond to lower physical activity at night and 

sharply higher in the morning compared to the average activity of the individual. Similarly, 

days of the week with positive scores on the second principal component correspond to 

lower activity during the morning and higher during the rest of the day compared to the 

average activity of the individual.
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7 Discussion

We propose fast MFPCA, which solves the major computational bottlenecks of the 

traditional MFPCA (Di et al., 2009), enabling it to be used on much larger and higher 

dimensional data sets. For example, the NHANES dataset contains minute-level physical 

activity information of more than 10000 study participants over multiple days. While 

applying MFPCA on such dataset takes more than 5 days on a regular laptop, the proposed 

fast MFPCA takes less than 5 minutes. The substantial computational improvement is due 

both to the development of new methods and to their careful coding. Simulation results show 

that fast MFPCA achieves similar estimation accuracy with MFPCA, while the computation 

times are at least two orders of magnitude faster.

In this paper we only considered a dense design for functional data, the most common 

scenario. However, the extension of FACE Xiao et al. (2018) to sparse designs suggests 

possible extensions to multilevel sparse functional data (Di et al., 2014). Such extensions 

will be studied in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Physical activity profiles of three NHANES study participants over available days. Each 

study participant is uniquely identified by the SEQN number. Left column: SEQN 22092. 

Middle column: SEQN 30209. Right column: SEQN 40757. Within each column, each row 

displays the minute-level AC of one day from midnight to midnight, titled by day of the 

week from Sunday (top row) to Saturday (bottom row).
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Figure 2: 
Boxplots of estimated eigenvalues from 100 replications when the data are complete with I 
= 1000, J = 2, L = 100 under unbalanced design for level-1 (first row) and level-2 (second 

row). True eigenvalues are shown as gray dashed lines, fast MFPCA are shown in red while 

MFPCA are shown in blue.
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Figure 3: 
Estimated eigenfunctions for fast MFPCA (top two rows) and MFPCA (bottom two rows) 

when the data are complete with I = 1000, J = 2, L = 100 with unbalanced design. Within 

each model, the top row displays level-1 estimates and the bottom row displays level-2 

estimates. Black lines: true eigenfunction; red lines: 100 fast MFPCA estimates; blue lines: 

100 MFPCA estimates.
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Figure 4: 
Estimated overall mean function μ(s) and day-of-the-week-specific mean function μ(s) + 

ηj(s) in the NHANES dataset using fast MFPCA. Overall mean curve: black solid line; 

weekend days means: dashed lines; weekday mean curves: dotted lines.
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Figure 5: 
The top three estimated level-1 (first row) and level-2 (second row) eigenfunctions from 

the NHANES dataset using fast MFPCA. The proportion of variability explained in each 

principal component within each level is shown on the title of each panel.
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Table 1:

Simulation results for different I when J = 2 and L = 100. The computation time (“Time(s)”), MISE of Y 
(“MISE(Y)”) and eigenfunctions (“MISE(ϕ)”, “MISE(ψ)”) reported in the table are median values across 100 

replications.

Design I Method
Balanced Unbalanced

Time(s) MISE(Y) MISE(ϕ) MISE(ψ) Time(s) MISE(Y) MISE(ϕ) MISE(ψ)

Complete

100
fast MFPCA 1.81 0.9450 0.0781 0.0319 1.74 0.9450 0.1203 0.0416

MFPCA 14.82 0.9451 0.0797 0.0315 21.51 0.9571 0.1930 0.1286

200
fast MFPCA 1.70 0.9469 0.0413 0.0182 1.88 0.9465 0.0469 0.0229

MFPCA 25.42 0.9474 0.0377 0.0171 48.90 0.9530 0.0780 0.0698

1000
fast MFPCA 2.20 0.9505 0.0093 0.0075 2.07 0.9524 0.0120 0.0063

MFPCA 109.15 0.9501 0.0073 0.0042 262.76 0.9525 0.0146 0.0176

5000
fast MFPCA 4.60 0.9506 0.0034 0.0043 5.31 0.9516 0.0037 0.0046

MFPCA 540.84 0.9503 0.0019 0.0008 943.56 0.9514 0.0036 0.0033

Incomplete

100
fast MFPCA 2.16 0.9003 0.0942 0.0348 2.03 0.9010 0.1570 0.0461

MFPCA 3.58 0.8921 0.0999 0.0614 5.00 0.9089 0.2496 0.1644

200
fast MFPCA 2.34 0.9028 0.0554 0.0198 2.46 0.9056 0.0671 0.0278

MFPCA 4.80 0.8950 0.0489 0.0303 8.34 0.9045 0.0917 0.0857

1000
fast MFPCA 5.48 0.9087 0.0230 0.0081 5.83 0.9074 0.0246 0.0074

MFPCA 13.19 0.9037 0.0102 0.0064 29.46 0.9055 0.0179 0.0194

5000
fast MFPCA 19.99 0.9077 0.0147 0.0048 22.21 0.9086 0.0150 0.0051

MFPCA 58.19 0.9041 0.0022 0.0012 134.49 0.9066 0.0043 0.0037
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Table 2:

Simulation results for different J when I = 100 and L = 100. The computation time (“Time(s)”), MISE of Y 
(“MISE(Y)”) and eigenfunctions (“MISE(ϕ)”, “MISE(ψ)”) reported in the table are median values across 100 

replications. Computation time more than 24 hours is denoted as ∞.

Design J Method
Balanced Unbalanced

Time(s) MISE(Y) MISE(ϕ) MISE(ψ) Time(s) MISE(Y) MISE(ϕ) MISE(ψ)

Complete

2
fast MFPCA 1.81 0.9450 0.0781 0.0319 1.74 0.9450 0.1203 0.0416

MFPCA 14.82 0.9451 0.0797 0.0315 21.51 0.9571 0.1930 0.1286

4
fast MFPCA 1.98 0.9532 0.0547 0.0126 1.80 0.9528 0.0634 0.0171

MFPCA 46.93 0.9537 0.0483 0.0099 75.87 0.9597 0.0800 0.0463

20
fast MFPCA 2.33 0.9614 0.0364 0.0056 2.66 0.9618 0.0314 0.0054

MFPCA 10146.82 0.9617 0.0317 0.0019 10334.10 0.9626 0.0346 0.0088

100
fast MFPCA 6.02 0.9626 0.0335 0.0042 7.15 0.9632 0.0332 0.0043

MFPCA ∞ - - - ∞ - - -

Incomplete

2
fast MFPCA 2.16 0.9003 0.0942 0.0348 2.03 0.9010 0.1570 0.0461

MFPCA 3.58 0.8921 0.0999 0.0614 5.00 0.9089 0.2496 0.1644

4
fast MFPCA 2.48 0.9094 0.0616 0.0142 2.48 0.9100 0.0784 0.0200

MFPCA 11.07 0.9147 0.0615 0.0161 17.14 0.9173 0.0842 0.0544

20
fast MFPCA 5.88 0.9158 0.0432 0.0060 6.08 0.9162 0.0393 0.0067

MFPCA 733.01 0.9254 0.0325 0.0037 903.30 0.9262 0.0399 0.0099

100
fast MFPCA 21.44 0.9159 0.0384 0.0044 23.72 0.9160 0.0375 0.0046

MFPCA ∞ - - - ∞ - - -
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Table 3:

Simulation results for different L when I = 100 and J = 2. The computation time (“Time(s)”), MISE of Y 
(“MISE(Y)”) and eigenfunctions (“MISE(ϕ)”, “MISE(ψ)”) reported in the table are median values across 100 

replications. Computation time more than 24 hours is denoted as ∞.

Design L Method
Balanced Unbalanced

Time(s) MISE(Y) MISE(ϕ) MISE(ψ) Time(s) MISE(Y) MISE(ϕ) MISE(ψ)

Complete

100
fast MFPCA 1.81 0.9450 0.0781 0.0319 1.74 0.9450 0.1203 0.0416

MFPCA 14.82 0.9451 0.0797 0.0315 21.51 0.9571 0.1930 0.1286

200
fast MFPCA 1.67 0.9722 0.0804 0.0277 1.78 0.9746 0.1193 0.0395

MFPCA 119.92 0.9733 0.0785 0.0272 334.66 0.9830 0.1933 0.1398

1000
fast MFPCA 2.51 0.9953 0.0758 0.0244 3.06 0.9976 0.1145 0.0368

MFPCA 16883.52 0.9963 0.0784 0.0237 24395.62 1.0055 0.1794 0.1058

5000
fast MFPCA 7.79 0.9990 0.0756 0.0246 12.40 1.0023 0.1103 0.0369

MFPCA ∞ - - - ∞ - - -

50000
fast MFPCA 29.05 1.0000 0.0767 0.0243 68.71 1.0028 0.1081 0.0362

MFPCA ∞ - - - ∞ - - -

Incomplete

100
fast MFPCA 2.16 0.9003 0.0942 0.0348 2.03 0.9010 0.1570 0.0461

MFPCA 3.58 0.8921 0.0999 0.0614 5.00 0.9089 0.2496 0.1644

200
fast MFPCA 2.52 0.9515 0.0828 0.0291 2.41 0.9498 0.1308 0.0408

MFPCA 17.01 0.9484 0.0914 0.0368 26.18 0.9579 0.2138 0.1426

1000
fast MFPCA 3.35 0.9923 0.0811 0.0263 3.86 0.9949 0.1160 0.0363

MFPCA 1883.75 0.9903 0.0788 0.0274 2697.17 1.0023 0.1889 0.1425

5000
fast MFPCA 10.09 0.9985 0.0773 0.0247 14.56 1.0022 0.1147 0.0374

MFPCA ∞ - - - ∞ - - -

50000
fast MFPCA 60.59 1.0006 0.0761 0.0250 91.23 1.0034 0.1091 0.0368

MFPCA ∞ - - - ∞ - - -
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